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Abstract

Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable
regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the
variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to
evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D
structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent
regions of homologous proteins corresponding to a-helical conformation with different spatial orientations. In a rigid body
superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial
deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another
kind of difference is conformational variability and the most common example is topologically equivalent loops of two
homologues but with different conformations. In the current study, we present a refined view of the ‘‘structurally variable’’
regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural
alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity
has been identified in a substantial number of ‘variable’ regions in a large data set of protein structural alignments; optimal
residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also,
through an example, we have demonstrated how the additional information on local backbone structures through protein
blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships
can be enhanced through our approach. This has been illustrated through examples where the equivalent regions in
homologous protein structures share sequence similarity to varied extent but do not preserve local structure.
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Introduction

Comparison of protein structures is an indispensable step in

understanding structure-function relationships. In most cases, first

reasonable impressions on function of a protein can be generated if

the protein shares high structural similarity to a protein of known

function [1]. It also gives hint on evolutionary relationships [2–5].

During evolution, fold of homologous proteins are conserved even

without detectable sequence similarity [6,7]. High structural

similarity associated to the very low sequence similarity is indicative

of either a common origin [4,6] or an independent origin with

convergence to a common fold [8]. During evolutionary process,

different regions of proteins are constrained differently; the regions

critical for functional and structural integrity are well preserved,

while the rest of the structure can diversify to accommodate

insertions, deletions and substitutions [9,10].

The 3-D superimposition of protein structures obtained by using

structure comparison tools is very useful in quantifying structural

dissimilarity and in analyzing structural divergence. Structural

comparison influences classification of proteins into protein

families, superfamilies etc [11,12], i.e., they allow a complete

representation of protein fold space. Hence, for a newly

determined protein structure, mining the structural databases

enables the identification of protein structures/sub-structures

similar to the given structure [13–18]. Proteins are not rigid

macromolecules and they exhibit certain degree of flexibility to

allow structural variations critical for functional mechanisms [19].

Thus comparison of structures corresponding to the active and

inactive states of a protein can further our understanding on the

conformational plasticity of protein structures and the insights

gained can improve the drug design process [20–22].

Alignment of proteins on the basis of their 3-D structures is

more complex than sequence-based alignment as the 3-D

structural information is more complex [23]. From a computa-

tional point of view, identifying the best match having least spatial

distance between the maximum numbers of equivalent regions is
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highly expensive. Heuristics is usually added to make the problem

tractable. The difficulty in aligning structures is compounded

when the structures share similar secondary structures with

different connectivity. In such cases, matching of equivalent

regions is not sequential. Due to its utility and the difficulties

mentioned before, innumerable methods to compare and align

protein structures have been developed, e.g., DALI [14], SSAP

[24], MAMMOTH [25], CE [26], COMPARER [27], FATCAT

[28] and Matt [29]. These methods seek to find maximum

correspondences between the structural elements (i.e., atoms,

residues or secondary structures), and compute a similarity

measure. They differ at the level of (i) representation of protein

structure (points, vectors, internal distances or graphs), (ii) measure

of similarity and (iii) the algorithm used for comparison, (for

reviews see [30–32]). The comparison algorithms are varied such

as dynamic programming, stochastic algorithms like Monte Carlo

methods and graph theory based methods.

The algorithms can be grouped into rigid body methods, that

view protein structures as rigid bodies, e.g., STAMP [33], DALI

[14], CE [26] and MAMMOTH [25] and flexible methods, that

connect series of aligned fragments or substructures, e.g., FATCAT

[28], FlexProt [34] and Matt [29]. The structural alignments

provided by flexible methods is believed to be better as they are

biologically more meaningful [35].

In this work, we attempt to add a component of flexible

alignment in local variable regions which are initially recognized

by rigid body superposition. Here, we focus on the ‘‘structurally

variable’’ (high spatial deviation) regions in the alignments of

three-dimensional structures of homologous protein domains in

PALI database [36]. PALI database comprises of protein families

from SCOP [11]. It contains structural alignments generated

using DALI [14], a well established structure comparison method

and subsequently superimposed using rigid body alignment

method. After such a rigid body superposition, the backbone

regions with highly similar structures are evident by good overlap

of Ca atoms. The structural differences in homologous proteins

could be due to structural re-ordering to accommodate

mutations. These differences vary from subtle variations in

backbone structure to large orientation differences to accommo-

date substitutions especially at the core [6,37–39]. Insertions are

accommodated as an extension to the existing secondary

structures or addition of new regular/irregular structures

[37,38,40]. These insertions may either act as embellishments

or promote functional diversity by presenting altered/new

binding site for ligand or macromolecule [38,40].

The current study pertains to those backbone regions of

homologous proteins that are not well superimposed in the rigid

body superposition. These structural differences between homo-

logues can be categorized into rigid body displacements and

conformational variations. However due to rigid body displace-

ments, an optimal superposition may not be obtained using a rigid

body superposition method. Through Protein Blocks [41], a

simplified representation of protein structures, we classify the

variable regions into conformationally dissimilar regions and

regions that share local structural similarity obscured in a global

fit. In the next step we refine the alignment between homologues

in PALI database, obtained through a recognized rigid body

method, using match of protein blocks in the local structurally

variable regions. Additionally, based on the similarity measure

used, the assignment of residue-residue equivalences for a

structural superposition may differ [23]. The discrepancies are

higher when the Ca-Ca deviation is high. An optimal local

alignment would help in the assignment of residue-residue

equivalences more precisely.

For this work, Protein Blocks (PBs) [41–44] is the major tool

used. They represent a higher level abstraction of protein

backbone conformation. This is a set of 16 prototype conformers,

denoted from a to p, which approximate the local protein structure

with an average root mean square deviation of 0.42 Å. Protein

Blocks have been used in comparison of protein structures [41,45]

and database mining [46]. PBs have been found to be useful in

prediction of short loops [47]. Protein blocks approach has also

been used to build trans-membrane protein structures [42], to

design peptides [48], to define reduced alphabets for designing

mutants [49], to analyze protein contacts [50], to find structural

motifs across protein families [18] and to identify Mg2+ binding

sites in proteins [51].

Results and Discussion

Superimposed proteins from PALI database have regions of

correspondence that exhibit high structural deviation, namely

‘‘Structurally Variable Regions’’ (SVRs). These regions may

appear ‘‘structurally variable’’ (not well superimposed) in a global

context but may exhibit local conformational similarity. For

example an a-helical region in a protein might correspond to an a-

helical region in the homologue; however if the helical regions in

the two proteins are in slightly different orientations they may not

appear superimposed if the two structures are superimposed as a

whole. Using PB Substitution Matrix (SM) coupled with

CLUSTALW [52] alignment approach, SVRs were re-aligned

to seek an improvement in the local alignment for these regions

(see Materials and Methods section). We investigated the differences

in alignments obtained after employing protein blocks approach

(aSVRs – ‘‘a’’ stands for ‘‘after’’) and alignments before employing

the approach (bSVRs – ‘‘b’’ stands for ‘‘before’’), to evaluate our

protocol in revealing similarities not identified using a global rigid-

body superposition method. For this purpose, we compared the

two alignments, referred to as bSVRs and aSVRs in the rest of this

paper, based on PB scores and values of root mean square

deviation (rmsd) or a similar measure, Structural Distance Metric

(SDM). An improvement in the values for these two parameters for

aSVR would reflect an improvement in the alignment obtained

using PBs. A total of 347,062 Structurally Variable Regions

(SVRs) and 542,610 Structurally Conserved Regions (SCRs) were

identified in the PALI database (Refer Materials and Methods).

Distribution of scores
Re-alignment of PB sequences of SVRs change the alignment

scores. Figure 1 shows the distribution of normalized score for

aligned pairs (SAP score) obtained for SCRs, bSVRs and aSVRs.

A normal distribution of scores was observed. Using two-sided

Kolmogorov-Smirnov statistic, the p value for each of the three

distributions is less than 2.2e-16. As expected, the values for SAP

are higher in SCRs as compared to bSVRs indicating higher

structural similarity in SCRs compared to bSVRs. However,

compared to bSVRs, a significant shift of SAP values towards

higher scores was observed for aSVRs (p value ,2.2e-16; Paired

student t test, see Figure 1). An analysis of the difference in SAP

values for aSVRs and bSVRs indicates an improvement for 56%

of SVRs and a decrease for 13% of SVRs. The scores remain

unchanged for the remaining 31% of the alignments. The trend

for the distribution of scores for complete alignment (SCA) was

similar to SAP scores; 59% aSVRs scored higher and 14% scored

lower than bSVRs (see Text S1 and Figure S1). SCA and SAP

scores have reasonable correlation in the two scores for both

bSVRs and aSVRs. A shift could be observed towards higher

scores; 55% of aSVRs scored above -1 for SCA and SAP

Protein Blocks-Based Alignment
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measurements as opposed to 41% of bSVRs, i.e., an increase in

number by 14% (see Text S2 and Figure S2). Thus, an increase in

the scores after realignment indicates that the regions concerned

are more similar in terms of conformation than previously

represented in the PALI database. Both measurements show

improvement indicating better alignment of SVRs.

Analysis of the distribution of SCA and SAP allowed us to

define a cutoff score of 20.42 to distinguish SVRs as conforma-

tionally similar and dissimilar (see Figure 1). The cutoff was chosen

such that 90% of the scores corresponding to the structurally

conserved regions score above this threshold. Based on this cutoff,

53% of the bSVRs and 74% of aSVRs were classified as

conformationally similar, i.e., an increase by 21% (45,343 SVR

segments). Thus, through our approach we have been able to

identify local structural similarity in a substantial number of SVRs

which was not known from classical approach.

PB substitutions in bSVRs and aSVRs
An improvement of scores is observed after re-alignment. This

increase is due to a higher number of PB-PB equivalences (i.e.,

number of PB aligned with another PB and not a gap), and/or a

change in the nature of PBs aligned at various positions in the

alignment. 76% of SVRs showed no change in the raw number of

correspondences after re-alignment. On an average, for each

segment, 0.5 more PB is aligned with a PB in aSVRs as compared

to bSVRs (see Figure S3). Figure 2 shows the difference in the

distribution of PB-PB substitutions between bSVRs and aSVRs.

Alignment of identical PBs (i.e., diagonal elements of the plot) is

increased for each PB. Among the non-identical substitutions, the

highest increase has been observed for the alignments of PB f (C

cap b strand), PB k and l (loop to N cap a helix). A lower increase

was observed in the alignments of PB a and c (N cap b strand), PB

d (b strand), PB m (a helix), PBs n to p (C cap a helix) and PB h

(loop). The alignments of PB m with each PB types except itself

shows a drop, the highest decrease being in the alignments with

PBs d, f, k, l and n. A lower decrease was observed for the

alignment of PB a and c with PBs corresponding to loops, PB d

with PBs corresponding to loops and capping regions of a helix,

PB f (C cap b strand) with PBs corresponding to N cap b strand

and loops, PB k with PBs corresponding to N and C caps of b
strand and PBs l with PBs c, e, k and p. In general, this decrease

concerns unrelated or dissimilar PBs and the increase is mainly

observed in highly similar or identical PBs. The increase in the

number of equivalences for PBs corresponding to N cap and C cap

regions of helices and strands as seen in Figure 2 suggests an

improved alignment of these regions. Similar conclusions were

drawn from the plots generated for data sets corresponding to

various SCOP classes.

Hence, the major contributing factor for the increase in scores is

the change in the type of equivalences rather than an increase in

the number of correspondences. In fact only 30% of SVRs share

more than 95% of the equivalences. In the rest 70% of SVRs (see

Figure S4A) the percentage of equivalence is shared to varied

extent. Nevertheless, a common PB pair found in the two

alignments could in fact come from different regions in the

sequences. 40% of SVRs have undergone changes in the

alignments to form new equivalences although the PB-PB

equivalences are preserved, while for 40% SVRs, the equivalences

are retained in the alignment (see Figure S4B).

A comparison of the difference in percentage of gaps between

bSVRs and aSVRs (Figure S5A) shows that 76.6% of the

alignments have no change in the number of gaps. A decrease

in the percentage number of gaps has been observed for 18.4%

SVRs and an increase is seen in 5.0% of SVRs. Although, a

decrease in the percentage of gaps is indicative of higher similarity

in terms of lengths of the protein structures aligned, the

introduction of gaps is sometimes favored as it reduces the

number of equivalences of dissimilar PBs. Another interesting

parameter compared was the number of gap openings in the

alignments. An accommodation of insertions and deletion would

require a re-adjustment in protein structures. We would expect

fewer insertion and deletion events during protein evolution to

preserve the three dimensional structure and thus intuitively less

number of gaps interspersed in the alignments especially in the

middle of helices and strands [37,38,53]. The difference in the

number of gap openings in aSVRs as compared to bSVRs is not

significant (mean value equals to 20.38) (see Figure S5B).

Nonetheless, some examples were observed where gaps in the

stretch of aligned PBs corresponding to a-helix and b-strand are

eliminated in aSVRs (see the section below).

Analysis of SVRs
Local structural similarity could be identified in terms of PB

sequence similarity. We have also analyzed it by comparing SDM

of bSVR and aSVR alignments. Profit software [54] was used to

perform the superimposition. Rmsds obtained from these superim-

positions were converted in SDMs (Structural Distance Metric)

[55,56] (see Materials and methods section).

With a global rigid body protein structure superposition, regions

corresponding high deviations usually correspond to regions (i)

that are spatially displaced although being structurally similar or

(ii) with genuine difference in local conformation. Protein Blocks

approach can distinguish these two scenarios. Indeed, a rigid body

displacement of a local region after superposition would result in a

high PB score and low SDM for the aligned regions. However,

when the regions are conformationally distinct, the PB score would

be low and SDM would be high.

Figure 1. Distribution of scores for aligned PBs in structurally
conserved regions (SCRs, solid line), structurally variable
regions before re-alignment (bSVRs, broken lines,blue) and
SVRs which have been re-aligned using PB approach (aSVRs,
red).
doi:10.1371/journal.pone.0017826.g001
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Figure 3 shows a plot indicating the variation of difference in

SDM values with respect to the difference in PB SAP scores for

segments before and after re-alignment, i.e., aSVRs and bSVRs.

The results on the assessment of approach in terms of SDM and

PB scores have been tabulated (see Table 1). On an average 36.2%

of SVRs showed an improvement in SDM values. For 32.7% no

change has been observed while for 31.0% a decrease has been

observed. In the last category of cases, often superimposition is not

relevant as the mean PB scores for these SVRs is 0.02 after re-

alignment (20.49 before re- alignment). 28.9% of the SVRs in the

dataset showed an improvement both in PB scores as well as SDM

values. Improvements were due to re-alignment of segments which

were displaced/oriented differently in previous alignments.

Figure 4A shows an illustrative example highlighting improved

alignment of an a-helix displaced in alignment obtained by

superposition of gross structures. The figure on the left shows a

superposition of SVR segments based on alignment obtained by

using DALI. Superposition of the segments obtained after re-

alignment is shown on the right. Below each superposition, are

Figure 2. Difference in distribution of nature of aligned PBs observed after re-alignment of SVRs compared to the original
alignment. Various colors indicate the extent of differences in the number of various PB-PB equivalences between bSVRs and aSVRs. Blue color
indicates a decrease and red color indicates an increase in the number of corresponding PB equivalences in aSVRs compared to bSVRs. The other
colors indicate intermediate values.The values in the top diagonal of the matrix have been normalized by the number of PBs as denoted in x axis.
Similarly, the values in the bottom diagonal have been normalized by the number of PBs as denoted in the y axis.
doi:10.1371/journal.pone.0017826.g002

Figure 3. Difference in scores of aligned PBs (SAP score) and of
SDM values between aSVRs and bSVRs. A negative difference in
SDM values and a positive difference in scores indicate an improve-
ment.
doi:10.1371/journal.pone.0017826.g003

Table 1. Results on assessment of aSVRs in terms of PB scores
and SDM*.

DSDM

better equal Worse Sum

DSCA better 19457 (28.9) 12 (0.02) 14654 (21.8) 34,123 (50.8)

equal 1158 (1.7) 21989 (32.7) 1024 (1.5) 24,171 (36.0)

worse 3755 (5.6) 2 (0.003) 5183 (7.7) 8,940 (13.2)

Sum 24370 (36.2) 22003
(32.7)

20861
(31.0)

67,234 (100.0)

*The numbers outside brackets correspond to the number of SVRs. These
numbers expressed as percentage are shown in brackets.
doi:10.1371/journal.pone.0017826.t001
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shown the alignments, PB scores and SDM values for alignments,

bSVRs and aSVRs. With appropriate placement of gaps, PBs k, l,

m, n, o, p and a are aligned in aSVR thus identifying local structural

similarity previously unknown. Similarly, a b-strand oriented

differently in the homologue could be aligned with a lower SDM

using PB approach as shown in the Figure 4B. Figure 4C shows

the superposition of regions corresponding to loops. Although the

loop conformations are identical, as indicated by the identical PBs

in the two structures, the SDM is high due to difference in the

orientation (superposition on the left). An optimal superimposition

and residue-residue equivalences could be obtained using PB

approach (superposition on the right). As exemplified above, the

local structural similarity was unidentified previously due to rigid

body shifts. In other cases, improvements were observed in

alignment of segments with differing lengths but with local

structural similarity. The region of similarity was found to lie at

either ends in the alignments or in the middle of alignment flanked

by gaps. Figure 4D shows an example of a region similar at one

end. Moreover, the continuity in helix in the new alignment is

evident bringing the PBs f, k, l and series of m in the two sequences

in register. As mentioned in the previous section, insertions and

deletions in the middle of a helix or a strand are tolerated to a

lesser extent as compared to the rest of the structure. Through our

approach, gaps in the middle of a helix or a strand have been

reduced/eliminated. Figure 4E shows an example of a region of

local similarity in the middle of alignment. The PBs a, c and d

correspond to a small strand with a transition to coil-like region

denoted by PBs k and l in the variable segment of CD4

glycoprotein (PDB code: 1cid, chain A; shown in red; [57]). This

region is aligned with the C terminal end of the b-strand in the

homologue (in blue). The example highlights an improvement in

the capping region of b-strand transiting to coils. The improve-

ment in scores could also be attributed to a decrease in the

equivalences of PBs corresponding to PB m (i.e., helical state) with

PBs associated to strands and capping regions (i.e., PBs d, b, c and

f,) as illustrated in Figure 4F. An alignment of a helix and a strand

is meaningless in structural context as these regions, though

equivalent in homologous proteins, do not share structural

similarity. Hence the alignment of PBs corresponding to helices

and strands would be insignificant.

32.7% of the alignments showed no difference in PB scores and

SDM. The plausible reasons are the already existing optimal

equivalences in SVRs which could not be improved further using

PB approach and/or the regions that are aligned are conforma-

tionally different. Equivalences were preserved in majority of

aSVRs. One quarter of these alignments correspond to confor-

mationally different segments (according to the cutoff determined

previously, see the first section in Results and discussion). An example

where the scores for aSVRs fall below the cutoff and the sequences

aligned are conformationally different is presented in one of the

subsequent sections.

21.8% of the aSVRs have better PB scores but SDM value

differences were slightly higher (3.7Å on average) than bSVRs.

25.5% of these SVRs correspond to conformationally dissimilar

regions based on the cutoff previously determined; hence such

regions cannot be superimposed well. In general, changes in PB-

PB equivalences were observed due to re-distribution of gaps

which improved the scores; however this increase is not reflected

in SDM values. The short stretches of local similarity in segments

of overall different conformations led to an increase in the PB

scores but with a slight increase in SDM values due to poor

similarity in the remaining segment presenting complex cases of

superposition. This has been explained though an example

illustrated in Figure 4G. The PBs k, l and m are aligned in aSVR,

hence improving the score though the remaining segment shares

low similarity. A similar observation can be made from the

example in Figure 4H. The PBs a, c, f and k align in the aSVR and

improve the score. Therefore where the conformations of the

segments superposed are very different with similar region being

very short, overall PB score may improve but the SDM values may

increase slightly.

In contrast to the above scenario, 5.6% of the aSVRs have a

lower PB scores but improved SDM values. 42.02% of these

segments aligned are conformationally distinct. In the remaining

cases, a redistribution of gaps led to different equivalences. Here,

the mean difference in SDM is 216.77 for conformationally

similar segments (SAP .20.42). Small regions of similarity are

preserved while the rest of alignment undergoes a change in

equivalences. In certain cases, this results in an improvement of

overall superposition but a decrease in PB scores. An example is

presented (Figure S6A). The region of alignment of identical PBs is

small (PBs k and l at the C terminal end). The rearrangement of

PB equivalences in the remaining region decreases the score.

For 14 cases (0.023%) of alignments, no differences in SDM

values were observed but a difference in scores for aligned PBs

was found. For 12 out of 14 cases the PB score improved and for

2 cases PB score did not improve. 21.43% of these segments

exhibit conformational dissimilarity. The mean difference in

scores for the remaining segments corresponds to 0.52. The

change in scores indicates change in PB-PB equivalences. In two-

thirds of the cases, number of equivalences before and after

realignment remains same without a change in overall atomic

superposition. In the remaining one-thirds, the number of

equivalent PBs (or % gaps in the alignment) has changed without

changing the SDM values.

More surprisingly, for a limited number of cases, i.e., 3.2% of

SVRs, no difference in PB scores were observed, but a change in

SDM was seen. It is a consequence of new equivalences without a

change in the nature of PBs aligned, which improved the SDM in

1.7% of these SVRs but did not improve in the rest 1.5% of SVRs.

Finally, 7.7% of the aSVRs showed a decrease both in PB scores as

well as higher deviation at Ca positions. It is mainly due to repeats

of PBs which leads to the possibility of alternate alignments

analogous to alignment of low complexity regions in amino acid

sequences. The local similarity is observed at the ends of the

alignment. PBs at the end come close while eliminating the gap

which results in poor SDM and poor score (see Figure S6B).

Structural alphabets m and f are repeated. As a result, many

alternate alignments are possible. The PBs c, f and k in the segment

of protein cytochrome P450 (PDB code: 1io7, chain A;[58]) could

align to PBs c, f, b or d, f and k.

The application of the approach in modeling loop regions and

in analyzing structure-function relationships has been discussed in

the next two sections.

Figure 4. Illustrative examples of superposition of SVRs before and after realignment using PB approach. The global superposition of
protein structures before re-alignment is shown as cartoons in blue and red. The regions which were re-aligned locally are encircled. The local
superposition is shown in ribbon representation. PB equivalences, scores and SDM values for bSVRs and aSVRs are also shown. This Figure and other
figures showing an overlay of protein structures have been generated using Pymol software [82]. A–F: Examples of improved PB scores and SDM
values using PB approach. G and H: Improved PB scores but an increase in SDM. Refer text for further details.
doi:10.1371/journal.pone.0017826.g004
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Loop modeling
One of the most challenging tasks in comparative modeling

[59,60] is to obtain an accurate model of protein loops as they often

hold the functional site [61,62]. Errors in modeling loops are high as

they are structurally variable regions and may not be conserved

even among the closely related proteins [63,64]. Modeling loop

regions is difficult as the conformations also depend on length of the

loop and certain key residues [65]. If the sequence similarity among

the homologues is low or the regions are variable in length, the

problem is compounded. Additionally, the number of geometrically

possible loop conformations increases exponentially with loop

length. Consequently, it becomes a daunting task to obtain an

accurate model of loop regions. The conformation of a loop can be

predicted by identifying a loop template from homologous structure

or by searches in databases of loop conformations of various lengths

obtained from known three-dimensional structures [59,66–68]. It

has been shown previously that the modeling of loops is more

accurate if a homologue is used as one of the templates [69].

However, finding a homologue as a template for loop modeling is

not always possible and in most cases a template is obtained from

database search. The alternate approach, ab initio modeling of loop

region is based on the potential or scoring function and works best

for short segments [59,70–72].

Having known that loop modeling is non-trivial and is most

accurate when the equivalent regions are obtained from

homologues, we have explored the use of information on local

conformation through representation of templates as Protein

Blocks in obtaining clues on comparative modeling. This has been

exemplified through modeling exercise of a segment of Alpha-l-

arabinofuranosidase protein (from Bacillus stearothermophilus, PDB

code 1qw9 [73]) using Beta-D-xylosidase structure (PDB code

1w91 [74]) as the template which share overall sequence identity

of 7.7% with the target. A number of models (100 each) were

generated using Modeller 9v7 with classical approach [60] based

on alignments from bSVRs and aSVRs of the target and template

sequences. Figure 5A shows the variation in rmsd values for various

models with respect to the template structure. Rmsd values are

lower when models are generated based on the equivalences from

aSVRs (red, Figure 5A) as compared to bSVRs (blue, Figure 5A).

This indicates an improvement in models of the target segments

when new equivalences based on PB approach were used. The two

alignments: bSVR and aSVRs along with the corresponding PBs

are shown in Figure 5B. For further analysis, the best models

having lowest rmsd with respect to the template structure from each

set of 100 models were selected (model 8: lower plot for aSVRs;

and model 74: upper plot for SVRs). Figure 5C shows the

superposition of the modeled segments with the known crystal

structure (green) based on the alignment from bSVRs (blue) and

aSVRs (red), respectively. The model generated based on the

equivalences from PB approach produces lower rmsd (1.98 Å) when

superposed on the crystal structure as compared to the model

generated using the original approach (rmsd: 3.50 Å).

Figure 5. Illustrative example to highlight the utility of Protein Blocks in comparative modeling. A. Plot shows the variation in RMSD
values of the models with respect to the template structure generated based on the new equivalences (aSVRs, dark red) and previousequivalences
(bSVRs, blue). B. The alignments used in modeling the template fragment. The top panel shows the alignment of model and template structures (PB
alignment and the corresponding amino acid sequences) based on previous equivalences. The bottom panel shows the new equivalences as
obtained using our approach. C. The superposition of crystal structure for the target (green), modeled structure based on previous equivalences
(blue) and new equivalences (red).
doi:10.1371/journal.pone.0017826.g005
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Understanding sequence-structure relationships
Sequences of homologous proteins may evolve and diverge

beyond recognition by simple homology searches. Usually, the

extent of difference exhibited by sequences is higher compared to

structures. In this section we show how the current analysis of

consideration of PB-based alignment of SVRs can be taken to the

next level of understanding of sequence-structure relationships.

Here we present two examples where the local structures are very

different in the pairs of homologous protein structures. Figure 6A

shows the superposition of 3-D structures of two homologous

elongation factors 1d2e [75] (from cow) and 2c78 [76] (from

Thermus thermophilus) belonging to SCOP family c.37.1.8. The

regions, encircled in Figure 6A are identical in terms of amino acid

sequence but adopt very different structures. The PB score after

optimal PB-based alignment of SVRs (aSVR) is 22.07. Figure 6B

shows an example of homologous protein structures (PDB code

1nkr [77] and 1cvs [78]; SCOP family b.1.1.4, I-set domains) with

poor sequence and structural similarity in a local region. Although

the rest of the structures superimpose well, regions encircled in

Figure 6B have very different local structures. The PB-score after

the optimal PB-based alignment of SVRs is -2.07. As illustrated in

two examples above, the regions are conformationally different.

In the example of elongation factors shown in Figure 6A one

might expect almost identical structure for the local regions with

identical sequences of two closely related proteins However the

PB-based alignment of SVRs shows that this is not a spatial

difference of conformationally similar SVRs. Indeed the low PB-

score indicates very different conformations of identical amino

acid sequence regions. In fact the extent of conformational

difference between SVRs of homologues is comparable to that

shown for another pair of homologous proteins in Figure 6B where

the amino acid sequences in SVRs is very different [79]. Thus PB-

based alignment of local regions (SVRs) are very helpful in

cautioning us on unexpected structural differences even among

‘‘equivalent’’ SVRs of homologous proteins with highly similar or

even identical amino acid sequences. Further, the example of

elongation factor suggests that prediction of secondary structures

based on sequence composition and sequence similarity to a

‘homologue’ should be exercised with caution. Such conforma-

tional differences are often possible in the functional regions of

homologous proteins when the homologues are crystallized in

different functional forms such as active and inactive forms of

enzymes.

Conclusions
In the current work, we have presented a refined view of the

regions of homologous protein structures that exhibit apparent

high deviation on global structural superposition. When the

deviation is high, the equivalences assigned through atomic

superimposition are inaccurate. Through representation of protein

structures as PB sequence, conformational similarity could be

identified for 159,780 (74%) variable segments, based on PB

scores, an increase by 21%, compared to a classical structural

alignment approach in the database of structurally aligned

homologous protein structures. The improvement was also

reflected in the lower SDM in 3D superposition based on new

equivalences after re-alignment of SVRs. The equivalences could

be refined for the capping regions of helices and strands and loops.

Regions of high similarity could be located in homologous pairs of

protein structures even when the aligned regions were of different

Figure 6. Superposition of homologous pairs of protein structures. The equivalent regions that have adopted a different structure are
encircled. The inset shows the local alignment of the conformationally distinct regions. The amino acid residues and the corresponding PBs (in
brackets) are shown in a box alongside. A. An illustrative example where the encircled region exhibit high sequence similarity but low structural
similarity. B. A classical scenario, where the encircled region has poor sequence similarity and poor structural similarity.
doi:10.1371/journal.pone.0017826.g006
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lengths. Also segments which were spatially displaced could be

identified and aligned efficiently. All these cases have been

explained through appropriate examples. For the cases where

the approach does not perform as well, the best (most optimal)

alignment can be chosen based on the global context in the protein

structures following the principles governing protein structure; for

example, regions flanking the variable segment could be

considered. The best alignment could be the one with continuous

helix or strand uninterrupted by gaps in the alignment. The

approach can be used in identifying equivalent regions in

homologous structures that do not share structural similarity and

in the understanding of sequence-structure relationship. It can aid

in providing clues to model loops for which homologue of similar

length is unavailable. The approach can be extended to

understand the effect of amino acid substitutions on the local

structural alterations in the homologous protein structures. As the

approach is quite general, it can be used in conjunction with any

structural alignment algorithm.

With an improvement in structural alignments which are

central in understanding of protein structure-function and

evolutionary relationships, the applications of the approach are

manifold. The approach can be extended to refine regions of high

deviation obtained using simultaneous superposition of multiple

protein structures. The method can be improved by using gap

penalties specific to PB types with respect to major secondary

structures. In the near future, we propose to develop a web server

based on our refinement approach. This comprehensive data set

on homologous structures would serve as a valuable resource to

study the extent and nature of alterations/structural rearrange-

ments in backbone conformation of homologous structures as a

consequence of substitutions (conservative as well as non

conservative) and indels during the course of evolution.

Materials and Methods

Protein Data set
The protein data set was obtained from PALI [36] (Phylogeny

and Alignment of homologous protein structures) v2.7 database

which contains structure-based sequence alignments for protein

domain families defined by SCOP database (v 1.73). The data set of

74,705 pairwise alignments, generated through DALI [14] software

followed by rigid body superimposition, correspond to 1,664 protein

domain families. The structural alignments were analyzed to

identify topologically equivalent and non equivalent residues. A

stretch of three or more contiguous residues with Ca–Ca deviation

at every position lower than 3.0 Å is considered as topologically

equivalent segment or Structurally Conserved Region (SCR). The

other regions are considered Structurally Variable Regions (SVRs).

This rule, classically used in PALI, categorizes regions as

Structurally Conserved Regions or Structurally Variable Regions.

Based on this criterion, 542,610 SCRs and 347,062 SVRs were

identified. These SVRs correspond to 49% of the alignment

positions in the data set. Of these, 215,920 complete SVRs with

more than three aligned PBs have been considered for further

analyses. Our entire analysis is confined to alignment of SVRs.

Protein Blocks
Protein Blocks (PBs) correspond to a set of 16 local prototypes,

labeled from a to p (see Figure 1 of ref [43]), of 5 residues length

based on (w, y)dihedral angles description. They were obtained by

an unsupervised classifier similar to Kohonen maps [80] and

hidden Markov models [81]. The PBs m and d can be roughly

described as prototypes for central a-helix and central b-strand,

respectively. PBs a through c primarily represent b-strand N-caps

and PBs e and f, C-caps; PBs g through j are specific to coils, PBs k

and l to a -helix N-caps, and PBs n through p to C-caps. This

structural alphabet allows a reasonable approximation of local

protein 3D structures with a root mean square deviation (rmsd)

now evaluated at 0.42 Å [42,43]. PBs have been assigned using in-

house software. It follows rules similar to assignment done by PBE

web server (http://bioinformatics.univ-reunion.fr/PBE/) [41].

Re-alignment of structurally variable region
To re-align SVRs in quest of improvement of alignments, we

have adapted our previous approach [41,45]. We had proposed a

PB substitution matrix (PB SM) similar to a matrix used for

sequence alignment. A novel refined version of PB SM optimized

for mining databases and improving the alignment quality has been

generated (Joseph et al., submitted). In this work, we have used the

refined PB SM coupled with classical CLUSTALW approach [52]

to realign protein structures. The parameters used in CLUSTALW

were tuned to make it specific for PBs instead of amino acid residues.

All residue-specific and position-specific gap penalties were turned

off. A range of gap penalty values were evaluated systematically for

generating alignments. Finally, a gap opening penalty of 10 and a

uniform gap extension penalty of 0.2 were chosen based on the

alignment scores. It must be noted that PB substitution matrix

values were scaled between 0 and 10 to make it compatible with the

alignment software. Newly aligned SVRs are named aSVR while

previous alignments are named simply bSVR.

Calculation of alignment scores
To evaluate the quality of new alignments of SVRs over the

previous alignments, scores were computed for both alignments.

Two scores were calculated for each alignment, based on inclusion

or exclusion of gaps in the alignment. Calculation of these scores

would reflect the differences in two alignments of a pair of segments

in terms of the substitution of PB at an alignment position as well as

the lengths of the alignment. The aligned PB positions were scored

based on the values from PB SM. Summation of these values was

normalized by the number of PB pairs to compute the Scores for

Aligned Pairs (SAP) for an alignment. To calculate scores for

complete alignment (SCA), including gaps, every alignment position

with a gap was given a score of -3. The scores were normalized by

the length of the alignment.

Calculation of SDM values
To assess the improvement of alignments using our approach,

SDM of SVR before and after re-alignment were compared.

PROFIT software [54] was used to calculate rmsd values. The

SVRs corresponding to N and C termini were removed from the

analysis. 67,234 SVRs were considered for this analysis. Rmsds for

the remaining SVRs were converted into structural distance

metric (SDM) as proposed by Blundell and coworkers [55,56].

SDM ~ -100 � ln (W1 � PFTEzW2 � SRMS)

Where,

PFTE ~

Number of equivalent residues in alignment = Length of smallest segment

RMS ~ 1-(RMSD (in Å)
.

Highest RMSD from all alignments)

W1 ~ (1-PFTEz1-SRMS) = 2

W2 ~ (PFTEzSRMS) = 2

Suitable modifications have been done in SDM calculations to

make it suitable for the data we present here. i.e., in RMS
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calculation instead of dividing rmsd by 3.0 we are dividing rmsd by

the highest rmsd (24.97) from all the alignments for SVRs to get

the values of RMS in the range of 0 to 1.

Supporting Information

Figure S1 The distribution of scores for bSVRs (A and
C) and aSVRs (B and D). (A) and (B) show the distribution of

scores for bSVRs and aSVRs respectively, calculated by

considering only the aligned PBs (SAP scores). (C) and (D) show

the distribution of scores after including gaps in scoring (SCA) for

bSVRs and aSVRs, respectively.

(TIF)

Figure S2 The variation of scores for aligned PBs (SAP)
and scores for complete alignment (SCA) for bSVRs (A)
and aSVRs (B).
(TIF)

Figure S3 Difference of PBs aligned before and after re-
alignment. Positive values correspond to an improvement.

(TIF)

Figure S4 PB correspondences. A. Histogram of percentage

of PB correspondences common in bSVRs and aSVRs. The plot

depicts that about 30% of SVRs in the dataset share .95% of PB

correspondences. B. Histogram of the percentage conservation of

PB correspondences in bSVRs and aSVRs out of the common PB

correspondences. The plot indicates that about 40% of SVRs

exhibit very low and over 40% exhibit very high conservation of

PB correspondences.

(TIF)

Figure S5 Distribution of gaps. A. The plot shows the

difference in the percentage of gaps observed after re-alignment as

compared to the percentage of gaps before re-alignment for a

variable segment. B. The plot shows the distribution of difference

in gap openings in the aSVRs as compared to the bSVRs.

(TIF)

Figure S6 Illustrative examples of superposition of
SVRs before and after alignment using PBs. A: Reduced

PB score and improved SDM B: Reduced PB scores and increased

SDM.

(TIF)

Text S1 Comparison of the distribution of SAP and SCA
scores in bSVRs and aSVRs.

(DOC)

Text S2 Correlation of SAP and SCA scores in bSVRs
and aSVRs.

(DOC)
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