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Abstract

Increasing numbers of homes are being destroyed by wildfire in the wildland-urban interface. With projections of climate
change and housing growth potentially exacerbating the threat of wildfire to homes and property, effective fire-risk
reduction alternatives are needed as part of a comprehensive fire management plan. Land use planning represents a shift in
traditional thinking from trying to eliminate wildfires, or even increasing resilience to them, toward avoiding exposure to
them through the informed placement of new residential structures. For land use planning to be effective, it needs to be
based on solid understanding of where and how to locate and arrange new homes. We simulated three scenarios of future
residential development and projected landscape-level wildfire risk to residential structures in a rapidly urbanizing, fire-
prone region in southern California. We based all future development on an econometric subdivision model, but we varied
the emphasis of subdivision decision-making based on three broad and common growth types: infill, expansion, and
leapfrog. Simulation results showed that decision-making based on these growth types, when applied locally for subdivision
of individual parcels, produced substantial landscape-level differences in pattern, location, and extent of development.
These differences in development, in turn, affected the area and proportion of structures at risk from burning in wildfires.
Scenarios with lower housing density and larger numbers of small, isolated clusters of development, i.e., resulting from
leapfrog development, were generally predicted to have the highest predicted fire risk to the largest proportion of
structures in the study area, and infill development was predicted to have the lowest risk. These results suggest that land
use planning should be considered an important component to fire risk management and that consistently applied policies
based on residential pattern may provide substantial benefits for future risk reduction.
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Introduction

The recognition that homes are vulnerable to wildfire in the

wildland-urban interface (WUI) has been established for decades

[e.g., 1,2]; but with a recent surge in structures burning, this issue

is now receiving widespread attention in policy, the media, and the

scientific literature. Single fire events, like those in Greece,

Australia, southern California, and Colorado have resulted in

scores of lost lives, thousands of structures burned, and billions of

dollars in expenditures [3–6]. With the potential for increasingly

severe fire conditions under climate change [7] and projections of

continued housing development [8], it is becoming clear that more

effective fire-risk reduction solutions are needed. ‘‘Fire risk’’ here

refers to the probability of a structure burning in a wildfire within

a given time period.

Traditional fire-risk reduction focuses heavily on fire suppres-

sion and manipulation of wildland vegetation to reduce hazardous

fuels [9]. Enormous resources are invested in vegetation manage-

ment [10], but as increasing numbers of homes burn down despite

this massive investment, the ‘‘business-as-usual’’ approach to fire

management is undergoing reevaluation. One issue is that fuel

treatments may not be located in the most strategic positions, i.e.,

in the wildland-urban interface [11]. Yet, even if treatments

surrounded all communities, scattered development patterns are

difficult for firefighters to reach [12–14], and fuel treatments do

little to protect homes without firefighter access [15–16]. Fuel

treatments may also be ineffective against embers or flaming

materials that blow ahead of the fire front [17].

One alternative to traditional fire management that is receiving

widespread attention is to prepare communities through the use of

fire-safe building materials or creating defensible space around

structures [17–18]. These actions represent an important shift in

emphasis from trying to prevent wildfires in fire-prone areas to

better anticipating fires that are ultimately inevitable. Neverthe-

less, the cost of building and retrofitting homes to be fire-safe can

be prohibitive, and these actions do not guarantee immunity from

fire [19].

Land use planning is an alternative that represents a further

shift in thinking, beyond the preparation of communities to

withstand an inevitable fire, to preventing new residential

structures from being exposed to fire in the first place. The reason

homes are vulnerable to fires at the wildland-urban interface is a

function of its very definition: ‘‘where homes meet or intermingle

with wildland vegetation’’ [20]. In other words, the location and
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pattern of homes influence their fire risk, and past land-use

decision-making has allowed homes to be constructed in highly

flammable areas [21]. Land use planning for fire safety is

beginning to receive some attention in the literature [22–23],

and there is growing recognition of the potential benefits of

directing development outside of the most hazardous locations

[8,19,24].

Despite recent attention in the literature, land use planning for

wildfire has yet to gain traction in practice, particularly in the

United States. However, fire history has been used to help define

land zoning for fire planning in Italy [22], and bushfire hazard

maps are integrated into planning policy in Victoria, Australia

[25]. Although some inertia inevitably arises from complications

with existing policy and plans, a primary impediment to the design

and implementation of fire-smart land use planning is lack of

guidance about specific locations, patterns of development, or

appropriate methodology to direct the placement of new

development. Without a solid knowledge base to draw from,

planners will be misinformed about which planning decisions may

result in the greatest overall reduction of residential landscape risk.

Even worse, poor science could result in placement of homes in

areas that actually have high fire hazard.

Research on how planning decisions contributed to structures

burning in the past provides some guidance about what actions

may work in the future. Analysis of hundreds of homes that burned

in southern California the last decade showed that housing

arrangement and location strongly influence fire risk, particularly

through housing density and spacing, location along the perimeter

of development, slope, and fire history [26]. Although high-density

structure-to-structure loss can occur [27–28], structures in areas

with low- to intermediate- housing density were most likely to

burn, potentially due to intermingling with wildland vegetation or

difficulty of firefighter access. Fire frequency also tends to be

highest at low to intermediate housing density, at least in regions

where humans are the primary cause of ignitions [29–30].

These results suggest, for example, that placing new residential

development within the boundaries of existing high-density

developments or in areas of low relief may reduce fire risk.

However, it is difficult to know whether broad-scale planning

policies would actually result in the intended housing arrangement

and pattern at the landscape scale, and whether those patterns

would result in lower fire risk. Our objective here was to simulate

three scenarios of future residential development, and to project

wildfire risk, in a rapidly urbanizing and fire-prone region where

we have studied past structure loss [25]. We based all future

development on an econometric subdivision model, but we varied

the emphasis of subdivision decision-making based on three broad

and common growth types.

Although cities vary in extent, fragmentation, and residential

density [31–32], urban form typically adheres to a set of common

patterns [33–34], and we based our development scenarios on the

three primary means by which residential development typically

occurs: infill, expansion, or leapfrog [34]. Infill is characterized by

development of vacant land surrounded by existing development,

typically in built-up areas where public facilities already exist. [35–

36], and should result in higher structure density rather than

increased urban extent. Expansion growth occurs along the edge

of existing development, extends the size of the urban patch to

which it is adjacent, and may have variable influence on structure

density. Leapfrog growth occurs when development occurs beyond

existing urban areas such that the new structure is surrounded by

undeveloped land. This type of growth would expand the urban

extent and initially result in lower structure density; but these areas

may eventually become centers of growth from which infill or

expansion can occur. We asked:

1) Do residential development policies reflecting broad growth

types affect the resulting pattern and footprint of development

across the landscape?

2) Do differences in extent, location, and pattern of residential

development translate into differences in wildfire risk, based

on the current configuration of structures?

3) Which development process, infill, expansion, or leapfrog,

results in the lowest projected fire risk across the landscape?

Methods

Study Area
The study area included all land within the South Coast

Ecoregion of San Diego County, California, US, encompassing an

area of 8312 km2. The region is topographically diverse with high

levels of biodiversity, and urban development has been the

primary cause of natural habitat loss and species extinction [37].

Owing to the Mediterranean climate, with mild, wet winters and

long summer droughts, the native shrublands dominating the

landscape are extremely fire-prone. San Diego County was the site

of major wildfire losses in 2003 and 2007 [38], although large

wildfire events have occurred in the county since record-keeping

began, and are expected to continue, as fire frequency has steadily

increased in recent decades [29,39]. The county is home to more

than three million residents, and approximately one million more

people are expected by 2030 [40]. Although most residential

development has been concentrated along the coast, expansion of

housing is expected in the eastern, unincorporated part of the

county.

Econometric Subdivision Model
A host of alternative modeling approaches exist to simulate

future land use scenarios [41], including a cellular automaton

model that we previously applied to the study area [42]. We chose

to use an econometric modelling approach for this study because

we wanted to capture fine-scale, structure-level patterns and

processes that are correlated with housing loss to wildfire [26]; and

econometric models may perform better at the scale of individual

parcels [43].

Although we based the three development scenarios on

generalized planning policies, we also wanted to ensure that the

residential projections were realistic and adhered to current

planning regulations. The objective of the econometric modeling

was to estimate the likelihood that residential parcels will subdivide

in the future. Therefore, we used a probit model to estimate the

transition probability of each parcel based on a range of potential

explanatory variables typically associated with parcel subdivision

and housing development [44–45].

To develop the model of subdivision probability, we acquired

GIS data of the county’s parcel boundaries in years 2005 and 2009

from the San Diego Association of Governments (SANDAG). The

dependent variable was equal to 1 if a parcel subdivided between

2005 and 2009, and zero otherwise. Using these data layers we

first determined which parcels were legally able to subdivide given

current land use regulations. Minimum lot size restrictions are

typically considered the most import restriction for determining

future land use. We deemed a parcel eligible for subdivision if the

current lot size was greater than twice the minimum legal size

given the land class. To determine which parcels subdivided

between 2005 and 2009, we queried parcel IDs where the total
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area was reduced by at least the minimum lot size between the two

time periods. Finally, we were able to generate a suite of variables

that determine the likelihood of a parcel developing in the future

(Table S1).

We overlaid the parcel boundaries over a range of GIS layers

representing our explanatory variables. These data are available to

download at (http://www.sandag.org/index.

asp?subclassid = 100&fuseaction = home.subclasshome). Our ex-

planatory variables included: parcel size, parcel size squared, six

dummy variables which capture non-linear effects of parcel size,

distance to the coast, distance to the coast squared; distance to city

center and its square, current zoning, slope, land use, roads, if the

parcel is in a protected area, if the parcel is in a development area,

if the parcel is in the redevelopment area (Table 1).

Spatial Model of Future Development under Planning
Alternatives

The outcome of the land use change econometric model is the

subdivision probability for each parcel for a five-year time step.

Based on these probabilities, we developed a GIS spatial

simulation model of future land use under three distinct planning

scenarios: infill (development in open or low density parcels within

already developed areas), expansion (development on the fringe of

developed areas), and leapfrog (development in open areas). The

model runs in four 5-year time steps from 2010 to 2030, and

generates the spatial locations of new housing units in the county.

Although development decisions could feasibly depend on fire

risk, we did not model that here. There is no evidence that fire has

influenced past regional planning decisions, so it was not used as

an explanatory variable in the econometric model. Although we

could have evaluated the potential for future development

decisions to be based in part on fire risk, this would have required

simulation of feedbacks between fires and probability of develop-

ment. Because our objective in this study was to isolate the effects

of the three distinct growth types, we modeled fire risk only as a

function of development pattern and not vice versa.

We constructed a complete spatial database of existing

residential structures in the study area [26]. These structures

and their corresponding parcel boundaries served as the initial

conditions for all three scenarios of the spatial simulation model.

The current and projected future GIS layers of structures were

also subsequently used in the fire risk model (see below). The

Table 1. Variables and results from the probit regression model of parcel subdivision in San Diego County.

Subdivided (1 =yes,0 =no) Coefficient Std. Err. z P.|z| [95% Conf. Interval]

Acres of lot 0.0026342 0.00075 3.51 0 0.001164 0.004105

Acres of lot 2 23.02E-06 1.29E-06 22.34 0.019 25.55E-06 24.93E-07

Distance to ocean 27.42E-06 1.33E-06 25.59 0 20.00001 24.82E-06

Distance to ocean 2 2.33E-11 8.28E-12 2.82 0.005 7.11E-12 3.96E-11

Distance to major road 2.17E-07 2.74E-06 0.08 0.937 25.16E-06 5.59E-06

Distance to major road 2 21.94E-11 1.70E-11 21.14 0.252 25.27E-11 1.38E-11

Distance to nearest city center 20.0000115 1.70E-06 26.76 0 21.5E-05 28.16E-06

Distance to nearest city center 2 2.89E-11 9.70E-12 2.98 0.003 9.91E-12 4.79E-11

Slope between 0–5% 0.6211289 0.211761 2.93 0.003 0.206085 1.036173

Slope between 5–10% 0.3911427 0.210684 1.86 0.063 20.02179 0.804076

Slope between 10–25% 0.0716669 0.212725 0.34 0.736 20.34527 0.4886

Rural Residential 20.3563149 0.071512 24.98 0 20.49648 20.21615

Single Family 0.1361149 0.068678 1.98 0.047 0.001509 0.270721

Multi-Family 20.2505093 0.151486 21.65 0.098 20.54742 0.046397

Road 0.015329 0.086094 0.18 0.859 20.15341 0.184069

Open Space 20.7440933 0.099145 27.51 0 20.93841 20.54977

Orchard/Vineyard 20.5813305 0.097867 25.94 0 20.77315 20.38951

Agriculture 20.9785208 0.132734 27.37 0 21.23867 20.71837

Vacant Land 20.5222501 0.074586 27 0 20.66844 20.37606

Zoned protected 0.253769 0.076881 3.3 0.001 0.103086 0.404452

Area marked for redevelopment 20.2680261 0.14069 21.91 0.057 20.54377 0.007722

Area marked for development 0.5780101 0.064103 9.02 0 0.452371 0.703649

Parcel between 10–20 acres 20.3379532 0.065899 25.13 0 20.46711 20.20879

Parcel between 5–10 acres 20.6119036 0.067012 29.13 0 20.74325 20.48056

Parcel between 2–5 acres 21.16297 0.07062 216.47 0 21.30138 21.02456

Parcel between 1–2 acres 21.563956 0.090286 217.32 0 21.74091 21.387

Parcel between.5–1 acres 21.999939 0.099893 220.02 0 22.19573 21.80415

Parcel between.25–.5 acres 22.178273 0.117101 218.6 0 22.40779 21.94876

Constant 21.397931 0.227467 26.15 0 21.84376 20.9521

Sample size 113 001, LR Chi2 1535.23, pro.chi 0, pseudo R2 0.22. Further description of the variables is provided in Table S1.
doi:10.1371/journal.pone.0071708.t001
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dataset of existing housing includes locations of 687,869 structures,

of which 4% were located within the perimeter of one of 40 fires

that burned since 2001. During these fires, 4315 structures were

completely destroyed, and another 935 were damaged.

For future development scenarios, we wanted to allocate an

equal number of new structures to the landscape. This was to

ensure that any predicted difference in fire risk was a function of

the arrangement and location of structures, not the total number

of structures. Nevertheless, differences in the total number of

structures were simulated with each of the 5-year time steps. We

determined the number of housing units to add during the

simulations based on projections made by San Diego County [46].

Using factors such as development proposals, general plan

densities, and information from jurisdictions, the county estimated

that between 331,378 units and 486,336 units could be supported

within the developable residential land by 2030. Because the

eastern, desert portion of the county was not included in our study

area, we used a conservative approach and simulated the addition

of 331,378 new dwelling units. We divided this number by four to

define the number of new dwelling units to add at each time step,

assuming a linear growth rate.

One output of the econometric model was the prediction of the

maximum number of new dwelling units that could be added to

each parcel. However, dwelling units may consist of apartments as

well as single family homes. The mix of single and multifamily

units in the region has remained relatively constant over time, and

the overall trend has been a mix of roughly 1/3 multifamily and

2/3 single family units. Because the fire risk model is based on

points representing structure locations across the landscape,

regardless of the number of dwelling units per structure, we

needed to generate a conversion factor from dwelling units to

structures. We therefore defined a minimum lot size of 0.25 acre

on which no more than a single structure could be built, regardless

of the number of dwelling units in it (i.e., a single family home or

apartment complex). Then, once a parcel was selected for

development by the model (see details below), we divided its total

area by the maximum number of dwelling units to be added,

according to the econometric model. If the result was larger than

0.25, we subdivided parcels according to the result. If not, we

quantified how many 0.25 acre parcels fit into the original parcel,

and generated the new parcel boundaries accordingly.

Using the initial map of parcels (year 2010), we classified each

parcel that was defined as eligible for development (in the previous

stage) as suitable for one of the three planning scenarios described

above, according to the number of developed parcels in its

immediate neighborhood (i.e., those parcels that share a boundary

with the focal parcel). We defined ‘developed parcels’ as ones that

had more than one house per 20 acres (8.09 ha). Therefore,

according to these density thresholds, we allowed some parcels

with nonzero housing density to be considered as ‘undeveloped’

because these large, rural parcels might contain a single or a

handful of houses but they exist within a large open area. In other

words, the overall land cover of these parcels was effectively

undeveloped, and we therefore assumed that development in

adjacent parcels would be akin to development in open areas.

We defined infill parcels as those that were completely

surrounded by developed parcels. Expansion parcels had at least

one neighboring parcel that was undeveloped; and leapfrog parcels

were those with no developed parcels in their immediate

surroundings. We reclassified the type of each available parcel in

the same manner after each time step, to account for changing

dynamics in the development map of the county.

We conducted three simulations, one for each development

scenario (infill, expansion, and leapfrog). In each simulation, all

parcels were eligible to subdivide, regardless of their class.

Therefore, to build a simulation for a specific scenario, we

increased the development probability of parcels of the selected

scenario by 20%, to favor their development compared to the

other types of parcels, without prohibiting development in the

other parcel types. This approach was necessary because the

projected number of dwelling units was much larger than it would

be possible to fit in infill and leapfrog class parcels solely. For

example, as the spatial coverage of developed parcel expands,

there is less contiguous area that is undevelopable and suitable for

leapfrog development. Therefore, the scenarios are not exclusive,

but rather a mixture of the three development types. Yet, in each

scenario, there is one main type of development, and smaller

amounts of development events of the other two types.

Due to the immense computational demand of the simulations,

we adopted a deterministic, rather than a stochastic approach to

decide on which parcels were subdivided. After enhancing the

transition probability according to the corresponding scenario, we

ranked and then sorted all parcels according to their probability of

subdivision. We then sequentially selected parcels, while simulta-

neously tallying the number of dwelling units in them, until the

development target in that time step (one fourth of the total

number of dwelling units to be added: 82,795) was reached. Once

the development target was reached, we moved to the next time

step. After each time step, the remaining parcels that were still

eligible for development were re-classified to development types

according to the new spatial configuration of the landscape.

Once a parcel was selected for subdivision, and the number of

new parcels to develop in it was calculated (as detailed above), an

equal-area spatial splitting model was employed to split the parent

parcel to the predefined number of equal-area child parcels. We

developed a simple splitting model which is based on iterative

splitting of larger parcels into two smaller parcels using a straight

line splitting boundary. Once the parcel was fully split into the

needed number of sub-parcels, we allocated a new structure inside

each new parcel by generating a point at its centroid (center of

gravity). The point datasets of all structure locations per time step

per scenario were passed over to the fire risk model, which is

described below.

Fire Risk Modeling and Analysis
To project the distribution of fire risk under alternative

scenarios, we used MaxEnt [47–48], a map-based modeling

software used primarily for species distribution modeling [48], but

we have used it successfully for ignition modeling [50] and for

projecting current fire risk in the study area [26]. For this study, we

slightly modified the model from Syphard et al. [26]. The

dependent variable was the location of structures destroyed by

fire between 2001 and 2010. Although inclusion of damaged

structures in the data set does not significantly affect results [26],

we only included completely destroyed structures to avoid the

introduction of any uncertainty.

The MaxEnt software uses a machine-learning algorithm that

iteratively evaluates contrasts among values of predictor values at

locations where structures burned versus values distributed across

the entire study area. The model assumes that the best

approximation of an unknown distribution (i.e., structure destruc-

tion) is the one with maximum entropy. The output is an

exponential function that assigns a probability to every cell of a

map. Thus, the resulting continuous maps of fire risk represented

the probability of a structure being destroyed by fire. In these

output maps, areas of predicted high fire risk that did not have

structures on them represented environmental conditions similar

to those in which structures have actually burned.

Land Use Planning and Wildfire
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We based the explanatory variables on those that were

significantly related to burned structures in Syphard et al. [26],

including maps depicting housing arrangement and pattern,

housing location, and biophysical factors. Housing pattern

variables reflected individual structure locations as well as the

arrangement of structures within housing clusters. We calculated

housing clusters, defined as groups of structures located within a

maximum of 100 m from each other, by creating 100 m buffers

around all structures and dissolving the overlapping boundaries

[51].

Because burned structures were significantly related to small

housing clusters [26], we calculated the area of every cluster as an

attribute, and then created raster grids based on that attribute.

Low-to intermediate housing density and distance to the edge of

the cluster were also significant explanatory variables relative to

housing pattern and location [26], so we also created raster grids

for those. GIS buffer measures at 1-km have been found to explain

approximately 90% of the variation in rural residential density

[52], so we developed density grids using simple density

interpolation based on a 1-km search radius, with area determined

through square map units. To create grids representing distance to

the edge of clusters, we first collapsed the cluster polygons into

vector polyline files, and then created grids of interpolated

Euclidean Distance to the edge within each cluster.

Because the MaxEnt model randomly selects background

samples in the map to compare with locations of destroyed

structures, we used a mask to restrict sampling to the developed

environment within cluster boundaries; the distance to the edge of

the cluster would represent a different relationship inside a cluster

boundary versus outside in the wildland. We also modified the

grids to ensure that any random sample located within the 100m

buffer zone would receive a value of 100m; thus, all points within

the buffer were considered ‘‘the edge of the development’’.

After creating the grids representing housing pattern and

arrangement of the current configuration of structures, we applied

the same algorithms to the maps of simulated future structure

locations. We thus generated grids representing future housing

pattern and arrangement under alternative development scenar-

ios. The other explanatory variables, including fire history, slope,

fuel type, southwest aspect, and distance to coast [26] remained

constant through time for current and future scenarios. Although

historic fire frequency and fuel type typically change through time,

we did not simulate their dynamics here because we wanted to

isolate the effect of planning decisions on housing pattern and

arrangement while holding everything else constant.

We conditioned the MaxEnt model on present distributions of

housing using ten thousand random background points and

destroyed structures located no closer than 500-m to minimize any

effect of spatial autocorrelation. We used 80% (260 records) of

these data for model training, and 20% [66 records) for testing.

We repeated the process using cross-validation with five replicates

and used the average of these five models for analyses. For

smoother functions of the explanatory variables, we used hinge

features, linear, and quadratic with an increase in regularization of

beta set at 2.5, based on Elith et al. [48]. The smoother response

curves minimize over fitting of the model. We conducted jackknife

tests of explanatory variable importance.

We first developed the model using mapped explanatory

variables derived from the current configuration of structures.

To project fire risk under the different time steps of the alternative

development scenarios, projected the model conditioned upon

current conditions onto maps representing future conditions by

substituting the grids representing future housing pattern and

arrangement. This is similar to how potential future distributions

of species are projected under climate change scenarios [49].

To quantify differences among current and future alternative

scenarios, we calculated metrics representing housing density,

pattern, and footprint to determine the extent to which the

planning policies produced differences in housing pattern and

location. We compared the modeled structure fire risk of the

scenarios by overlaying all maps of structure locations with their

respective mapped output grids from the MaxEnt models and

calculating probability of burning for every structure point. We

also calculated total area of risk by selecting three threshold

criteria [53]. These criteria, at 0.05, 0.25, and 0.5 represented

three different degrees of risk, and we calculated the proportion of

structures that were located in risk areas for every time step in all

scenarios.

Results

The probit econometric model, run on 113 001 observations,

showed that larger parcels were most likely to subdivide, although

the relationship between parcel size and subdivision probability

was non-linear (Table 1). Parcels closer to existing roads, the

ocean, those with lower slopes, and those designated as fit for

development were all most likely to develop. Parcels designated in

redevelopment areas were less likely to develop. Overall, the

model had a pseudo r –squared of 0.22.

The land use simulation model, based on a combination of the

econometric subdivision model and three different growth policies,

resulted in substantial differences in the extent and pattern of

housing of the three scenarios. The total area of housing

development, or the housing footprint, was largest for simulations

where leapfrog growth dominated, followed by expansion-type

development, and then infill (Figure 1a). The differences in the

housing footprint became larger among the scenarios over time,

but the largest difference was between infill and the other two

development types. As the housing footprint expanded in the three

scenarios, the corresponding housing density declined, so that

leapfrog growth resulted in the lowest housing density per 1-km,

followed by expansion and then infill (Figure 2b). Despite the near

inverse of this relationship, there was generally a larger separation

among scenarios with regard to housing density. With larger

housing footprints and lower housing density, the number of

separate housing clusters increased while their size decreased

(Figure 2c).

In the first two time steps of the model (2015 and 2020), the

simulated development pattern closely followed the desired pattern

in the scenario, although some of the growth in the infill scenario

ended up becoming expansion or leapfrog (Table 2). In the last

two time steps (2025 and 2030), there were not enough infill

parcels left, and thus, the majority of growth in these simulations

became expansion, followed by infill, and then leapfrog. In the last

time step, there were not enough isolated parcels in the leapfrog

scenario and thus, the majority of development became expansion.

Thus in general, as more development occurred in the simulations

by the year 2030, the majority took the form of expansion.

The area under the curve (AUC) of receiver operating

characteristic (ROC) plots, indicating the ability of the MaxEnt

model to discriminate between burned and unburned structures,

averaged across five cross-validated replicate runs was 0.91. The

AUC represents the probability that, for a randomly selected set of

observations, the model prediction was higher for a burned

structure than for an unburned structure [49].The two most

important variables in the model according to the internal

jackknife tests in MaxEnt [47] were related to housing pattern:
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low to intermediate housing density and small cluster size and

housing density (Figure 3). The distance to the edge of housing

cluster was a less important contribution.

Maps showing the probability of a structure being destroyed in a

wildfire, displayed as a gradient from low to high risk, show broad

agreement relative to the general areas of the landscape that are

riskiest, with correlation coefficients ranging from 0.85–0.91

(Figure 4). Nevertheless, subtle differences are apparent in the

three development-scenario maps by year 2030, with the highest-

risk areas in the expansion scenario located farther east than infill,

and the highest-risk areas in leapfrog occupying a wider extent

than either of the other two scenarios.

Differences among current housing and the three development

scenarios are clearly illustrated through the mean landscape risk,

or total probability of all structures burning (Figure 5). All three

development scenarios were predicted to experience an increase in

mean landscape risk over the duration of the simulations, except

for infill at year 2015. The highest landscape risk to structures was

predicted for the leapfrog scenario, followed by expansion, and

then infill. The increase in risk over time is more gradual for the

infill scenario than the other two scenarios.

The ranking of scenarios varied according to the proportion of

structures located within different levels of risk defined through

binary thresholding (Figure 6). When the continuous risk maps

were thresholded at the lowest number of 0.05, a large proportion

Figure 1. Trends of development extent and pattern for three planning policy simulations from 2010–2030, including A) total
housing footprint representing the area of land within all housing clusters, and B) mean housing density averaged across all
housing clusters.
doi:10.1371/journal.pone.0071708.g001
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of structures in all scenarios fell within areas defined as risky

according to this criterion. At this threshold, the proportion of

structures in high-risk areas increased linearly for the expansion

and leapfrog development scenarios while the proportion of infill

homes increased more gradually. When risk was defined more

conservatively at 0.25, temporal trends for the leapfrog and infill

scenarios were similar to the 0.05 threshold. However, the

proportion of structures at risk in the expansion scenario initially

increased to 2020, but this proportion leveled off and declined by

2030. When the threshold was highest at 0.50, a very low

proportion of structures in any scenario were located in areas at

risk. But in these high-risk areas, the expansion scenario switched

places with infill to have the lowest proportion of structures at risk

in all time steps. Leapfrog had the largest proportion of homes at

risk. This proportion of homes located in areas at risk with a

threshold at 0.5 declined over time for all three scenarios.

Discussion

Our simulations of residential development showed that

planning policies based on different growth types, applied locally

for subdivision of individual parcels, will likely produce substantial

and cumulative landscape-level differences in pattern, location,

and extent of development. These differences in development

pattern, in turn, will likely affect the area and proportion of

Figure 2. Trends in number of patches and patch area for three planning policy simulations from 2010–2030. Numbers were log-
transformed for better visual representation of the scenarios.
doi:10.1371/journal.pone.0071708.g002
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structures at risk from burning in wildfires. In particular, the

scenarios with lower housing density and larger numbers of small,

isolated clusters of development, i.e., leapfrog followed by

expansion and infill, were generally predicted to have the highest

predicted fire risk to the largest proportion of structures in the

study area. Nevertheless, rankings of scenarios were affected by the

definition of risk.

Theoretically, it makes sense that leapfrog development

produced fragmented development with larger numbers of small

patches, lower housing density, and a larger housing footprint; and

that infill resulted in the opposite, with expansion in the middle. By

definition, leapfrog development requires open space around all

sides of the newly developed parcel, whereas infill requires

development on all sides, and expansion requires development

on one side and open space on another. Implementing these

planning policies on real landscapes, however, can be complex if

there are more houses to build than there are parcels that meet the

definitions of the three planning rules, and thus not all

development conforms strictly to the policy [54]. In our

simulations, parcels meeting the definition of each growth type

had a higher probability of subdividing; yet, as we were simulating

a real landscape, many newly developed parcels did not meet the

scenario criteria. That the three scenarios nevertheless produced

substantial differences in landscape-level development patterns

shows that decision-making at the individual level can lead to

meaningful broad-scale effects.

The objective of the econometric model was to provide a

baseline probability to predict which parcels were most likely to

subdivide; thus, the econometric model itself provides no

explanation of how a given policy affects likelihood of subdivision,

although it does indicate the correlation between the policy and

the outcome. In our setting, which areas are protected, marked for

redevelopment, or marked for development may be endogenous to

the land owner decision to subdivide. In the case of these variables

especially, our results should not be interpreted as causal

predictors. Likewise, we use data only from 2005–2009 to predict

changes to 2030. If major changes in the land market take place

over this time horizon our model will not be able to take this into

account.

Although some differences in predicted fire risk among the three

scenarios likely stemmed from location of new structures relative to

variables such as distance to coast, fuel type, or slope, the most

important variables in the fire risk model were housing density and

cluster size, with most structure loss historically occurring in areas

with low housing density and in small, isolated housing clusters.

Thus, leapfrog development was generally the riskiest scenario and

infill the least risky. The most surprising result was the variation in

predicted risk for the expansion scenario over time and at different

thresholds. While leapfrog and infill showed similar trajectories

across thresholds, expansion went from being the highest-risk

scenario at the low threshold to being the lowest-risk scenario at

the highest threshold. Because the threshold is merely a way to

group structures into a binary classification, this means that, while

the average risk calculated across all homes shows expansion to

rank in the middle of infill and leapfrog throughout the simulation

(Figure 5), the other two scenarios have a relatively larger

proportion of homes that are modeled to be at a very high risk (i.e.,

0.25 or 0.5), particularly by the end of the simulations. Because the

total number of structures with a risk greater than 0.25 or 0.5 is

relatively low in all scenarios, this difference in distribution of

homes at the highest risk is not reflected in the mean. Another

reason for the shift in rank of expansion over time is that, as more

development occupied the landscape, there were fewer parcels

remaining to accomplish infill or leapfrog type growth in the other

scenarios. Thus, by the end of the simulations in year 2030, the

majority of growth in all scenarios was expansion, and there was

some convergence between scenarios. Finally, the change in risk of

expansion growth over time may reflect that, despite the relatively

low importance of distance to edge of cluster as an explanatory

variable, expansion growth is characterized as having an initially

fragmented landscape pattern that eventually merges into large

patches with low edge.

Table 2. Pattern of simulated development under infill,
expansion, and leapfrog growth policies.

Actual development

Development scenario year Infill Expansion Leapfrog

Infill 2015 9450 18 6

2020 11787 153 29

2025 236 624 144

2030 325 890 179

Expansion 2015 0 772 0

2020 0 1243 2

2025 0 1871 1

2030 0 2662 0

Leapfrog 2015 0 10 408

2020 0 5 1132

2025 1 83 3563

2030 34 917 0

The numbers in the table denote the numbers of patches of a given
development type.
doi:10.1371/journal.pone.0071708.t002

Figure 3. The importance of explanatory variables averaged
across five cross-validated replications in the MaxEnt fire risk
model. Percent contribution is determined as a function of the
information gain from each environmental variable throughout the
MaxEnt model iterations. Permutation importance reflects the drop in
model accuracy that results from random permutations of each
environmental variable, normalized to percentages.
doi:10.1371/journal.pone.0071708.g003
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Although leapfrog development clearly ranked highest in terms

of fire risk, the interpretation of which planning policy is best may

depend on fire management objectives and resources, as well as

other considerations such as biodiversity or ecological impacts.

Figure 4. Maps of the study area showing projected wildfire risk at year 2030 for simulations of residential development under
policies emphasizing infill, expansion, or leapfrog growth.
doi:10.1371/journal.pone.0071708.g004
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The spatial pattern of development affects multiple ecological

functions and services [55], with potentially varying conservation

implications; both leapfrog and expansion development consumed

more land than infill, which would likely lead to more ecological

degradation [56]; nevertheless, higher-density clustered develop-

ment may be dominated by more invasive species [57]. Trade-offs

between fire protection and conservation are common, but

techniques are available for identifying mutually beneficial

solutions [58].

Different perceptions of the fire risk results could also potentially

translate into different planning priorities for management. For

example, if the priority is to plan for the lowest overall risk to

structures, then the mean landscape risk clearly delineates the

rankings of options, with infill being the winner. However, if the

objective is to reduce the number of structures at the highest risk

threshold, i.e., .= 0.5, then expansion is the best option, at least

by 2030. An important consideration for fire management is the

total area that needs to be protected, as well as the length of

wildland-urban interface [8,13]. Therefore, despite the lower

number of structures at the highest risk thresholds, expansion

creates more edge than infill and may translate into greater

challenges for firefighter protection.

Although we did not create separate scenarios for high or low

growth, the results at different time steps can be substituted to

envision the potential outcome of developing more or fewer

houses. In the short term, the total fire risk is projected to increase

proportionately as more land is developed. However, given the

inverse relationship between housing density and fire risk, it is

possible that this trend could reverse if housing growth eventually

resulted in expansive high-density development.

Land use planning is one of a range of options available for

reducing fire risk, and the best outcome will likely be achieved

through a combination of strategies that include homeowner

actions, improvements in fire-safe building codes, and advanced

fire suppression tactics. Although we isolated the effect of land use

planning policy in the three development scenarios, the fire risk

model nevertheless showed that the pattern and location of

structures in this study area were the most important out of a suite

of factors influencing structure loss. We used a correlative

approach that did not incorporate mechanisms or feedbacks, but

our models clearly illustrated differences in the cumulative effects

of individual planning decisions. The relationship between spatial

pattern of development and fire risk is likely related to the

intermixing of development and wildland vegetation [29,59]; thus,

these results likely apply to a wide range of fire-prone ecosystems

with large proportions of human-caused ignitions. Nevertheless,

because fire risk is highly variable over space and time, and due to

a range of human and biophysical variables [60], we recommend

planners develop their own models for the best understanding of

where the most fire-prone areas are in their region [19].

With projections of substantial global change in climate and

human development, we recommend that land use planning

should be considered as an important component to fire risk

management, potentially to become as successful as the prevention

of building on flood plains [61]. History has shown us that

preventing fires is impossible in areas where large wildfires are a

natural ecological process [4,9]. As Roger Kennedy put it, ‘‘the

Figure 5. Projected landscape fire risk, reflecting the proba-
bility of burning in a wildfire averaged across all residential
structures on the current landscape and in three development
scenarios of infill, expansion, and leapfrog for year 2030.
doi:10.1371/journal.pone.0071708.g005

Figure 6. Proportion of residential structures that are located in areas of high fire risk defined using thresholds from the fire risk
model of 0.05, 0.25, and 0.5 for current structures and for structures simulated under infill, expansion, and leapfrog growth
policies.
doi:10.1371/journal.pone.0071708.g006
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problem isn’t fires; the problem is people in the wrong places

[62].’’
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