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Abstract

Background: DNase I is an enzyme which cuts duplex DNA at a rate that depends strongly upon its chromatin environment.
In combination with high-throughput sequencing (HTS) technology, it can be used to infer genome-wide landscapes of
open chromatin regions. Using this technology, systematic identification of hundreds of thousands of DNase I
hypersensitive sites (DHS) per cell type has been possible, and this in turn has helped to precisely delineate genomic
regulatory compartments. However, to date there has been relatively little investigation into possible biases affecting this
data.

Results: We report a significant degree of sequence preference spanning sites cut by DNase I in a number of published data
sets. The two major protocols in current use each show a different pattern, but for a given protocol the pattern of sequence
specificity seems to be quite consistent. The patterns are substantially different from biases seen in other types of HTS data
sets, and in some cases the most constrained position lies outside the sequenced fragment, implying that this constraint
must relate to the digestion process rather than events occurring during library preparation or sequencing.

Conclusions: DNase I is a sequence-specific enzyme, with a specificity that may depend on experimental conditions. This
sequence specificity is not taken into account by existing pipelines for identifying open chromatin regions. Care must be
taken when interpreting DNase I results, especially when looking at the precise locations of the reads. Future studies may be
able to improve the sensitivity and precision of chromatin state measurement by compensating for sequence bias.
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Background

The development of animals from zygotes to adults and the

differentiation of cells into tissues and organs depends on intricate

programs of cell-type and stage-specific transcriptional regulation.

This is accomplished by complex interactions between DNA

sequence and transcription factors (TFs) at regulatory elements

including enhancers, promoters, silencers, and insulators. Equally

importantly, nucleosome positioning, histone modifications and

DNA methylation can modify the function of these elements, for

instance by modulating the accessibility of the DNA to TFs.

Therefore, to understand regulatory mechanisms, it is important

to be able to assess chromatin state.

DNase I is an endonuclease which digests double-stranded

DNA. It is expressed widely in humans and other animals and

naturally functions as a waste-management nuclease [1]. It may

also play a role in the destruction of DNA during some forms of

cell death [1]. But it can also be used in the laboratory as a probe

for protein-DNA interactions. DNase hypersensitivity assays use

DNase I to digest preparations of whole chromatin, with certain

regions – corresponding to open chromatin – digested with much

greater efficiency. A complementary technique, called footprint-

ing, relies on the protective effects of proteins binding DNA to

identify transcription factor binding sites, potentially at base-pair

resolution [2]. This paper focuses on hypersensitivity assays,

although we expect DNase I used in footprinting experiments to

behave similarly.

Hypersensitivity assays were originally developed in the 1970s,

using Southern blots as the readout to measure the DNase

sensitivity of targeted regions [3]. While these experiments offered

some important early insights into gene regulation, the assays were

labour-intensive and low throughput. More recently, the tech-

nique has been scaled up, firstly to parallel assays of many genomic

regions on a microarray [4,5], and then to truly genome-wide

studies using high-throughput sequencing platforms for readout

[6–10].

A typical DNase-seq experiment comprises the extraction of

chromatin from cells under mild conditions, digestion using a

carefully controlled amount of DNase I, then – following removal

of protein – a size-selection step (for instance, using a sucrose

gradient) to pick short fragments, i.e. those derived from regions

where two cuts have occurred in fairly close proximity. These

fragments are end-repaired (DNase I sometimes leaves a 1bp
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overhang), linked to sequencing adaptors, amplified and se-

quenced, generating short sequence tags which identify one end of

a selected fragment. After mapping to the genome sequence, tools

such as Hotspot [8,11] or F-Seq [12] are used to identify regions

with many such tags, and consequently a high density of DNase I

cut sites.

Sequencing technologies do not behave like idealized models

and, over the past few years, several groups have reported

sequence composition bias in the reads observed from ChIP-seq

and RNA-seq experiments and they have presented different

models for normalization of such data[13–15]. To the best of our

knowledge there has not been any report of sequence bias in

DNase-seq data.

In this study, we show significant sequence composition bias in

DNase-seq reads and based on our analysis we show that, contrary

to previous reports [4,5], the DNase I enzyme has a substantial

degree of sequence preference. We carried out this investigation

after observing a strong sequence composition bias close to the

boundaries of ENCODE open chromatin region data sets [6]. Our

work demonstrates that deriving open chromatin regions from

current DNase-seq data, and presumably related DNase-array and

DNase-chip technologies, requires extra care. It is necessary for

processing algorithms to take sequence bias into account to avoid

misinterpretations, for example, reporting false positive open

chromatin region calls.

Results

Sequence Specificity of DNase I Enzyme
While sequencing platforms used to assay experiments such as

DNase-seq would ideally detect and report all fragments with

equal efficiency, in practice they often show a degree of

compositional bias, typically taking the form of under-representing

fragments with the most extreme (highest or lowest) G+C content

[14]. Therefore, it is of interest to investigate compositional biases

seen in DNase-seq reads.

We studied potential compositional biases in five sets of DNase-

seq reads corresponding to GM12878, H1-hESC, K562, HSMM

and HeLa-S3 cell lines from both the University of Washington

(UW) and Duke University (Duke). These data have been

generated as part of the ENCODE project [6,16]. More details

about the accessibility of these data can be seen in Table 1, in

which the reader can also see information about other data sets

that were used to support our argument. For each of these five cell

lines from each of the sources, we extracted all read mapping

positions on chromosome 22 (GRCh37/hg19 coordinates) and

their corresponding sequences plus 10bps of flanking sequences

and built position-weight matrix models of the consensus. In all of

the UW libraries we studied (Figure 1:w1–w5), and many of the

Duke libraries (Figure 1: d1–d5), the sequence bias across the

bodies of the reads was relatively minor. Some, but not all of the

Duke libraries showed a significant G+C enrichment across the

body of the read (Figure S2), which seems consistent with some of

the more extreme amplification biases previously reported [14].

However, we observed a strong specific sequence preference

around the 59 end of the DNase-seq tags. This is noteworthy

because the constrained region spans the 59 end of the tag, and in

the majority of the UW libraries, the most constrained position lies

outside the sequenced tag. This implies that at least a substantial

fraction of the bias we see in these reads could not have been

introduced during adaptor-ligation, library amplification or

sequencing, since the bases outside the sequenced tag would not

have been present at those stages.

The robustness of these sequence patterns was evaluated by

performing the same analysis for at least one additional replicate

from each of the GM12878, K562, HSMM and HeLa-S3 cell

lines. The sequence pattern was very consistent across all the UW

DNase-seq data sets we considered. The degree of constraint

varied a little, but was considerably weaker for H1-hESC

compared to the other samples. There were no replicates available

for H1-hESC so it is not clear whether there is a biological

difference between cell lines leading to a weaker constraint for H1-

hESC or if it is due to a technical problem with this particular

sample.

The Duke data sets show a broadly similar degree of constraint

close to the cut site, but the exact sequence is somewhat different.

There is also a small amount of additional constraint at the 39 end

of the tag. One possible explanation could be different conditions

for the DNase I digestion step. However, the Duke protocol [17]

differs from the UW protocol in that, rather than size-selecting

short fragments lying between two DNase I cut sites, it uses a

second nuclease to make additional cuts. Specifically, one of the

two sequencing adaptors is ligated to the DNase I-cut ends, then

the offset-cutting restriction endonuclease MmeI is used to

generate short tags to which the second sequencing adaptor can

be ligated. While the main recognition sequence for MmeI is

present in the first sequencing adaptor, it is possible that there is

some additional sequence preference at positions around either the

recognition site or the cut site, and this, in addition to DNase I

bias, is driving the patterns seen at the boundaries of the Duke

reads.

In order to investigate if the observed bias is lab or protocol

dependent, we investigated three more data sets (See Table 1 rows

named as ‘‘Supporting Data’’) generated in different labs but

following established protocols. The first set we considered comes

from [18](Figure S1:I-III). The underlying protocol used to

generate DNase I data in this study is a slight modification of

the UW protocol with one difference being that short read tags

produced are of length 49bp (13bp longer than UW data). The

LNCaP cell line data set (both LNCaP data sets) from this study

showed a similar bias to that observed in the UW data.

The other two data sets we looked at were LNCaP from [19]

and HepG2 cell lines [20] (Figure S1:IV-V). These studies both

used the Duke protocol and showed a similar pattern of sequence

bias to that observed in the Duke data. To the best of our

knowledge, all currently published data sets follow one of these two

protocols. As a control we inspected ChIP-seq reads from the same

cell lines (for two examples see Figure 1:w6–w7) and saw no

comparable sequence preference around the 59 end of the tags,

offering further evidence that the bias is not a feature of the

generic library preparation, sequencing, or read-mapping pro-

cesses. From this we conclude that all existing DNase I short read

tag data sets are likely to suffer from one or the other pattern of

bias.

Given the precise alignment of the preferred sequence motif to

the sequence tag ends, it seems unlikely that this motif is a general

feature of open chromatin (see Figure S3). We therefore conclude

that this sequence motif represents a sequence preference inherent

to the DNase I enzyme itself, at least under the conditions used to

digest chromatin for DNase-seq experiments. This was not seen in

previous reports on DNase I digestion of open chromatin [4,5],

although we note that those reports looked only at the gross

distribution of signal across broad regions of the genome, rather

than the sequences of the individual tags.

Sequence Specificity of DNaseI Enzyme
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Measuring and Filtering Read-level Bias
In order to gauge the level of bias in each tag, we constructed

two position weight matrix (PWM) models, M and B, to represent

the biased and background sequence patterns respectively, for

each sample. The M model was generated from positions 25 to

+9 (with respect to the 59 end of tags) of the genome sequence

relative to the mapped sequence tags as shown in Figure 1,

capturing the majority of the constraint observed. The B model

was constructed similarly, but from flanking sequences offset

100bp from the position of each tag. The two PWMs were then

applied to each sequence tag (T) to generate a bias score

S(T)~log2

p(T DM)

p(T DB)
(i.e. the log ratio of the probability of T

being drawn from the biased and background models respectively).

The higher the score, the better the fit to the M PWM model and

the more biased the tag. See the ‘‘Position weight matrix models’’

section in Methods for more details.

In our analysis of these five cell types (as described in Table 1 as

Main Data), we consistently observed a substantial bias towards

positive bias scores. This was quite different to the distribution

seen for ChIP-seq reads from the same cell types, which showed a

distribution of bias scores towards negative scores (Figure 2). While

the range of scores seen is quite similar, the DNase-seq reads are

strongly enriched towards the upper end of the scale. We therefore

suggest that the probability of DNase I cutting chromatin in a

given location depends on both the openness of the chromatin and

the sequence at the individual site.

We then investigated whether calling regions of open chromatin

from DNase-seq data could be improved by filtering the set of tags

used to generate a set of DHS. From Figure 3, we can surmise that

tags with the highest bias scores are substantially over-represented.

By reducing the range of bias scores in the data set, we can get

closer to a situation whereby the number of DNase-seq tags in a

region depends solely on the local chromatin state. In order to find

out to what extent removing the bias tags improves the signal

detection at the DHS level, we filtered the bias tags with different

thresholds (see Methods). We then ran the F-Seq algorithm [12]

and obtained a DHS set from each filtered tag set. We measured

the overlap of the DHS set with the union of ChIP-seq peak calls

from a panel of 13 sets of transcription factors. This set of 13 TFs

consists of common TFs in K562, GM12878 and HeLa-S3 and

their ChIP-seq data are available (see ‘‘How filtering bias tags

improves signal detection’’ in Methods). We take this set as a proxy

for active regulatory elements in the genome. Note that ChIP-seq

data of these TFs were not available for HSMM and H1-hESC

and therefore they were excluded from this overlap analysis. Given

the distribution of bias scores, a threshold of 5 means the entire set

of DNase-seq tags are included. Thresholds of less than 21 were

not used because the resulting filtered tag sets were too small for F-

Seq to generate meaningful DHS sets.

Figure 1. Sequence around the 59 ends of DNase-seq reads shows substantial bias. Consensus sequence composition around the 59 ends
which are shown as sequence logos representing position-weight matrices. Panels w1–w5 are depicting the pattern from DNase-seq data from UW.
Panels w6 and w7 are histone modification ChIP-seq data which are considered as control sets. Panels d1–d5 are illustrating DNase-seq from Duke
data. The boxed regions (25 to +9) were used as position-weight matrices when scoring reads for subsequent analyses. The horizontal boxes, shaded
in grey, represent the tag regions that were sequenced in a given experiment.
doi:10.1371/journal.pone.0069853.g001

Table 1. Data used in this study.

Cell Line Protocol GEO File Name Reference

Main Data GM12878 UW GSE29692 wgEncodeUwDnaseGm12878AlnRep1.bam [6,16]

Duke GSE32970 wgEncodeOpenChromDnaseGm12878AlnRep1.bam [6,16]

H1-hESC UW GSE29692 wgEncodeUwDnaseH1hescAlnRep1.bam [6,16]

Duke GSE32970 wgEncodeOpenChromDnaseH1hescAlnRep1.bam [6,16]

K562 UW GSE29692 wgEncodeUwDnaseK562AlnRep1.bam [6,16]

Duke GSE32970 wgEncodeOpenChromDnaseK562AlnRep1.bam [6,16]

HSMM UW GSE29692 wgEncodeUwDnaseHsmmAlnRep1.bam [6,16]

Duke GSE32970 wgEncodeOpenChromDnaseHsmmAlnRep1.bam [6,16]

HeLa-S3 UW GSE29692 wgEncodeUwDnaseHelas3AlnRep1.bam [6,16]

Duke GSE32970 wgEncodeOpenChromDnaseHelas3AlnRep1.bam [6,16]

Supporting Data LNCaP UW-like GSM822388 GSM822388-lncap-dht-dnasei-new.bed.gz [18]

Duke-like GSM816637 Duke-DnaseSeq-LNCaP [19]

MCF-7 UW-like GSM822389 GSM822389-mcf-7-v-dnasei-new.bed.gz [18]

UW GSE29692 wgEncodeUwDnaseMcf7AlnRep1.bam [6,16]

HepG2 Duke-like GSM748507 GSM748507-HepG2-DukeDNaseSeq-align-rep1.bed.gz [20]

Control Data GM12878-H3K4me3 UW GSE35583 wgEncodeUwHistoneGm12878H3k4me3StdAlnRep1.bam [6]

K562-H3K4me3 UW GSM945165 wgEncodeUwHistoneK562H3k04me3StdZnf2c10c5AlnRep1.bam [6]

This table describes the data used for this study. The main data includes five cell lines from both University of Washington (UW) and Duke University (Duke). Bias from
this data has been illustrated in Figure 1 panels w1–w5 and d1–d5. The supporting data rows describes data from four more experiments that either followed the UW or
Duke protocols. The bias of these data is illustrated in Figure S1 panels I-III and IV-V. The control data is built from two ChIP-Seq histone modification data sets. We
illustrated results of our analysis based on these two data sets in Figure 1 w6–w7. In the protocol column, those data generated in UW and Duke are denoted as UW and
Duke respectively, but those which are a slight modification of these protocols are denoted as UW-like and Duke-like. The file names column shows the name of the files
that we obtained from the ENCODE repository at UCSC and used in this study.
doi:10.1371/journal.pone.0069853.t001
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The result of this analysis is illustrated in Figure 4. In this

analysis we started with a threshold equal to the greatest bias score

for each cell line then lowered it progressively with a step size of

20.5. We obtained a set of DHS at each threshold and assessed

them by measuring the base-level precision and recall compared to

the panel of transcription factors (red solid curve in Figure 4). The

overlap in this analysis was measured using the F0:5 score (see

Methods). As we can see from Figure 4, removing the highest

scoring (most over-represented) tags improves the F-score for the

UW data. In order to evaluate to what extent this improvement is

due to DNase I sequence specificity rather than an effect of the

number of reads removed from each set, we performed a second

round of analysis in which rather than removing tags with a score

above a specific threshold, we removed the same number of tags at

random. The result of this analysis is shown by the blue dashed

curves in Figure 4. We can see that by removing the most biased

tags from the UW data we achieve better F-scores than can be

achieved by removing tags at random. We also see that by filtering

more tags, the discriminant score drops again, probably because so

many tags have been excluded that this leads to a greater loss of

sensitivity in F-Seq DHS-calling performance than from the

further reduction of sequence bias.

These results however do not seem to apply to the Duke data

(Figure 4 lower panel) in which the F-score when removing biased

tags behaves no better than when removing tags at random. This

figure also shows that the F-score for the Duke data is considerably

lower than that for the UW data, regardless of threshold. It is not

very clear to us why the overlap in the Duke data is lower and/or

why removing bias tags does not seem to help. However, as

discussed earlier, the bias in the Duke data may be due to a

combination of effects from both DNase I and MmeI making our

model incapable of discrimination.

Discussion

Despite the great contribution of high throughput sequencing

technologies to our understanding of transcriptional regulation,

substantial challenges remain in applying optimal strategies to

analyse and understand these data. Different experimental data

sets require careful characterization of the biases present to ensure

analysis methods are tuned to take best advantage of the data.

Since its discovery over 30 years ago, DNase I has made a major

contribution to our understanding of chromatin state and

regulatory elements. Over this period, its structure and molecular

mechanism have attracted a great deal of research [21–25]. One

of the key conclusions of these studies is that the cleavage rate of

the enzyme is strongly correlated to the width of the minor groove

and the stiffness of the DNA. However, to the best of our

knowledge, the enzyme’s sequence specificity when cutting

genomic targets has not been systematically studied. While two

previous studies [4,5] have claimed that the enzyme has no

intrinsic sequence specificity, we do not believe that this represents

a comprehensive analysis. Firstly, the reader can only see a

screenshot of a part of the genome in [4] but no statistics over the

entire genome or an entire chromosome are reported. Secondly

any sequence specificity might depend on some other experimen-

tal parameter such as temperature, digestion time, concentration

of DNase I, salt or buffer composition. Our results show that while

the preferred sequence around the DNase cut-site is very

consistent for a given protocol, the exact degree of bias varies

from sample to sample.

FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory

Elements) [20] is another currently used strategy for the detection

of open chromatin regions. As the reader can see from Figure S5,

the sequence pattern we have described here is not found in

FAIRE data because the DNase I enzyme is not used in those

experiments. Therefore it is natural to ask whether FAIRE might

be an alternative source of unbiased data. However, a recent study

by Song et. al. [20] shows rather that FAIRE and DNase I are

complementary to each other as FAIRE tends to detect a better

signal at distal regulatory elements whereas DNase I tends to

behave better in promoter regions.

Given that there is no obvious substitute for DNase I data and

the bias we demonstrated it is important that improved analysis

methods are developed. The strategy we present for reducing the

bias in DNase-seq data sets, by discarding reads derived from the

most nearly-optimal cleavage sites, is clearly suboptimal since even

the highest-scoring reads are still much more likely to come from

regulatory elements and therefore indicate open chromatin – by

Figure 2. Bias scores for DNase-seq and control reads. Distributions of bias scores (log ratio of M vs. B motif scores) for DNase I data from five
cell lines analysed in this study(blue) are compared with Histone ChIP-seq as a control set(red).
doi:10.1371/journal.pone.0069853.g002
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discarding them, we lose information. However, it serves as a

proof-of-concept that software tools aware of DNase bias may be

able to generate more accurate sets of DHS calls than existing

tools that just rely on read density. One plausible strategy would be

to consider the probability – based on sequence – of observing a

cut at each position in the genome and using this as the prior for a

Bayesian model of the DNase-seq data set.

The NIH Roadmap Epigenomics Consortium [26,27] has

recently proposed to assess the quality of ChIP-Seq and DNase I

data and to provide each data set with a quality flag. However, the

proposed metrics are based only on the signal-to-noise ratio, i.e.

the fraction of short read tags that overlap the enriched regions

defined by peak calling algorithms. We suggest that while this kind

of assessment is important, it may not be sufficient to fully

understand the quality of a sequencing data set.

Methods

Position Weight Matrix Models
We calculated two position weight matrices (PWM) as follows:

PWM M was calculated from a real tag set and called the biased

model. The most likely positions for bias are in the range [-5,9] on

the 59 prime side of the tag, so the biased model only considers

these 15-mer sequences (note that our coordinate system contains

a zero location). In order to estimate the background, PWM B was

calculated by shifting real tags 100pb in the 59 direction. This

Figure 3. Reads with high motif scores are substantially over-represented. Chromosome-wide motif scores and read depth are calculated
at each base pair. The binned motif scores for each cell line (x-axis), mean and standard errors(bars at each point) of read depths at each position (y-
axis). An estimation of the expectation is illustrated as the black points which is the result of the same analysis but over a set of randomly picked tags.
See Bias scores vs. read depths in Methods for more details.
doi:10.1371/journal.pone.0069853.g003

Sequence Specificity of DNaseI Enzyme

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e69853



model was called the background model. Several alternative shifts

were tried and the results remained invariant (see Figure S4). One

may learn the background model by randomly choosing fixed

length tags from the chromosome, however as can be seen from

Figure S4 the difference is negligible. In this study we chose to use

shifted tags to maintain a chromosomal distribution similar that of

the real tags.

PWMs were made based on:

log2

nijzpi

(Nz1)pi

ð1Þ

where N is the number of sequences, pi is the expected frequency

of fA,C,G,Tg and nij is the frequency of nucleotide i at position j.

In this study the expected frequencies for fA,C,G,Tg were taken

to be 0:24,0:26,0:26,0:24 respectively, which is the frequency of

nucleotides in the DHSs of the five cell lines studied. Each tag T

was then assigned a bias score defined as the log ratio of the

probability of that tag being drawn from the biased model to the

probability of that tag being drawn from the background model.

In other words:

S(T)~ log2

p(T DM)

p(T DB)
ð2Þ

Effect of Filtering Bias Tags on Signal Detection
In order to quantify the occupancy level of DHSs at various bias

scores with other TFs, we collected a set of 13 TFs for which narrow

peak data were available for at least three cell lines GM12878, K562

and HeLa-S3. This set consists of c-Fos, CORESTSC30189, ELK,

JunD, MAX, MAZAB85725, NF-YA, NF-YB, NRF1, POL2,

RAD21, SMC3, TBP, and USF2. The narrow peaks of these

TFs were downloaded from http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs. The union

of the narrow peaks of these 13 TFs was considered as the gold

standard set. The precision was defined as Pre~
TP

TPzFN
and

similarly the recall defined as Rec~
TP

TPzFP
. The overlap and/or

discriminant score was defined as:

Fb~(1zb2)
Pre:Rec

b2PrezRec
ð3Þ

We note that the recall scores will be conservative estimates since

not every regulatory region will be bound by one of the factors in

this panel. For this reason we have set b~0:5.

Figure 4. Filtering biased tags improves discrimination. Top panel: Discriminant ability (F0:5 scores) for DHS calls using subsets of the DNase-
seq tags (removing tags above each bias score) from UW for three cell lines compared with a union of 13 TFs(blue curve). The red dashed curve is to
illustrate if the number of tags removed at each score, has any effect on discriminant scores. For this, the same number of tags at each score are
removed and the discriminant scores are measured (red dashed curve). Bottom panel: Illustration of results of the same analysis but for the Duke
data.
doi:10.1371/journal.pone.0069853.g004

Sequence Specificity of DNaseI Enzyme
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We calculated the bias scores of K562, GM12878 and HeLa-S3

DNase-seq reads as described previously. These scores ranged

from 27 to 5. Starting from the maximum bias score of each set

i.e. the complete set and finishing at threshold 21, we iteratively

ran the F-Seq algorithm, obtained a set of DHS calls and then

reduced the threshold by 0.5 units to exclude the next most high-

scoring tags. For thresholds less than 21, there were insufficient

tags to get meaningful results from F-Seq, therefore thresholds less

than 21 were excluded from our analysis.

Bias Scores Versus Read Depths
For each of the five cells lines a PWM was constructed as

described above. One PWM was also constructed using randomly

picked tags(the same number as the real tags) to reflect the

background expectation. Then, for each of these PWMs the

chromosome was scanned and a motif score calculated for each

position for each of the strands. The maximum of these two scores

was considered as the motif score at the given position. The read

depth at each position was also counted. The motif scores were

binned (with a bin width of 0.5 bits), and the mean and standard

error of the read depth for sites within each bin were calculated.

Raw data used for this study is available at http://genome.ucsc.

edu/ENCODE/downloads.html under the options ‘‘UW DNaseI

HS’’ and ‘‘Duke DNaseI HS’’, and ‘‘SYDH TFBS’’ for the

transcription factors. For more details of the data sets used the

reader is referred to Table 1.

Supporting Information

Figure S1 Sequence around the 59 ends of DNase-seq
reads from other labs. Additional data sets following the

analysis described in Figure 1.

(TIF)

Figure S2 Variation in GC content. Variation in GC

content across 5 cell lines for the UW and Duke data sets.

(TIF)

Figure S3 Enrichment of motifs in open chromatin
regions. Illustrated here are motif scores in DHSs regions (red)

and in the same number of randomly picked sequences(blue). As

we can see, the distributions for each cell line are almost identical

suggesting that motifs are not substantially enriched in open

chromatin.

(TIF)

Figure S4 Effect of shifting parameter. Different shifting

lengths were applied to show that the background model is not

strongly dependent on shifting lengths. The shifting lengths

applied were 40, 60, 80, 100, 200bp and also the last histogram

illustrates the scores from randomly picked tags rather than

shifting. As we can see the distribution of scores are very similar.

(TIF)

Figure S5 No sequence pattern in FAIRE data. Illustrated

here is the alignment of short read tags (plus 10bp offset from each

end) from FAIRE data for GM12878 cell line. This figure

illustrates only short read tags over chromosome 22. This data set

is available in http://hgdownload.cse.ucsc.edu/goldenPath/

hg19/encodeDCC/wgEncodeOpenChromFaire/.

(TIF)
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