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Abstract

Background: Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating
population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.

Methodology/Principal Findings: Since the final epidemic size, the proportion of individuals in a population who become
infected during an epidemic, is not the result of a binomial sampling process because infection events are not independent
of each other, we propose the use of an asymptotic distribution of the final size to compute approximate 95% confidence
intervals of the observed final size. This allows the comparison of the observed final sizes against predictions based on the
modeling study (R = 1.15, 1.40 and 1.90), which also yields simple formulae for determining sample sizes for future
seroepidemiological studies. We examine a total of eleven published seroepidemiological studies of H1N1-2009 that took
place after observing the peak incidence in a number of countries. Observed seropositive proportions in six studies appear
to be smaller than that predicted from R = 1.40; four of the six studies sampled serum less than one month after the
reported peak incidence. The comparison of the observed final sizes against R = 1.15 and 1.90 reveals that all eleven studies
appear not to be significantly deviating from the prediction with R = 1.15, but final sizes in nine studies indicate
overestimation if the value R = 1.90 is used.

Conclusions: Sample sizes of published seroepidemiological studies were too small to assess the validity of model
predictions except when R = 1.90 was used. We recommend the use of the proposed approach in determining the sample
size of post-epidemic seroepidemiological studies, calculating the 95% confidence interval of observed final size, and
conducting relevant hypothesis testing instead of the use of methods that rely on a binomial proportion.
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Introduction

Influenza A (H1N1-2009) caused the first influenza pandemic of

the twenty-first century [1]. A substantial fraction of the world

population has probably been infected already with this virus, but

a direct estimation of the infected fraction of the population is not

feasible by relying only on available epidemiological ‘case’ data

(e.g. surveillance data consisting of confirmed cases or influenza-

like illness cases). In particular, influenza is known to involve

asymptomatic infections [2], and disease severity tends to be self-

limiting among healthy individuals who often do not require

medical attention. Moreover, due to the non-specific nature of

symptoms, influenza-like illness is insufficient to confirm or

exclude the diagnosis of influenza [3]. Therefore, seroepidemio-

logical studies before and after an epidemic wave are crucial for

estimating the population attack rate (i.e. infected fraction of a

population) [4], here also referred to as the final size or the

proportion of infected individuals in a population at the end of an

epidemic. In addition, population-wide seroepidemiological sur-

veys are useful for monitoring epidemiological dynamics in real-

time, assessing effectiveness of certain interventions [5], and

determining prioritization strategies of vaccination during the

course of an epidemic (e.g. identifying subpopulations that should

be vaccinated at particular times during an ongoing epidemic)

[6,7].

Both serological and epidemiological modeling studies have

increased our understanding of the transmission dynamics of

H1N1-2009 from the beginning of the pandemic [4,8]. In

particular, the reproduction number, R, defined as the average

number of secondary cases generated by a single primary case
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throughout its entire course of infection [9], was estimated using

epidemiological data during the early stages of the pandemic. One

of the important features of R is its potential to provide early and

crude predictions of the expected final epidemic size [10]. For

instance, the frequently cited initial estimate for H1N1-2009 is

R = 1.40 [8], and the final size equation of any homogeneously

mixing model (with an initially fully susceptible population)

predicts that 51.1% of the population would experience infection

by the end of the epidemic (see next section). Nevertheless, several

seroepidemiological studies have suggested that the infected

fraction was likely to be smaller than 51.1% [11], a result that

has led researchers to speculate on additional (often unforeseen)

mechanisms or factors influencing the transmission dynamics.

Hence, seroepidemiological studies play a key role in validating

crude predictions based on R. Further, whenever the observed

(sample) final size is smaller than that based on R, the use of

seroepidemiological studies may provide indirect evidence of the

positive effect of particular public health interventions.

A glance at the literature shows that various seroepidemiological

studies published so far have adopted a binomial sampling process

to quantify the uncertainty of the ‘proportion’ of infected

individuals (e.g. [12,13]). Accordingly, the confidence intervals of

the proportion have also been derived from a binomial distribution

using exact or approximate methods [6,14,15]. Perhaps one of the

main reasons for widespread use of the binomial proportion in this

context can be attributed to a well-known and simple formula for

the sample size determination of the binomial proportion [16].

Nevertheless, it should be noted that H1N1-2009 is transmitted

from human to human, and the risk of infection in one individual

depends on other individuals in the same population unit. This

highlights the need to account for the so-called ‘‘dependent

happening’’ [17,18]. Moreover, an observed final size represents a

single stochastic realization among all possible sample paths of the

epidemic, indicating a need to explicitly account for demographic

stochasticity. These issues call for a formal framework for

determining the sample size of post-epidemic seroepidemiological

studies.

The purpose of the present study is to introduce an approximate

method for the computation of the uncertainty bound of the final

epidemic size, which also permits us to discuss simple methods for

sample size calculations. We reanalyze published datasets of post-

peak seroepidemiological studies of H1N1-2009 and explicitly test

if early estimates of R for H1N1-2009 indicated a biased estimate

of the final epidemic size.

Materials and Methods

Seroepidemiological data
As a way to motivate our study, we start by presenting summary

results of the seroepidemiological studies of H1N1-2009. Table 1

summarizes a total of eleven seroepidemiological studies that were

conducted after observing peak incidence of H1N1-2009 in

various populations [6,7,11–15,19–22]. If the epidemic curve

revealed a multimodal distribution with clearly distinct peaks, the

post-peak datasets can either be after the first wave (e.g. England

[14], but we restrict our interest to London and the West Midland,

because other areas were far less affected) or after the second wave

(e.g. USA [13]). The majority of studies sampled serum from

hospital laboratory, registered patients at clinics or blood donors,

except for a defined cohort population in Singapore [22] and a

Table 1. Post-peak seroepidemiological studies of pandemic influenza (H1N1-2009) among a general population.

Country Survey location Subjects{ Sample size{
Prop before
(%){

Prop after
(%){

Sampling
period{

After
peak1 Vac¥

Lab
method"

Australia [19] New South Wales Clinical chemistry
laboratories

1247 12.8 28.6 Aug–Sep 09 Yes No HI$40

Canada [15] British Columbia Patient service
center

1127 *7.5 46.0 May 10 Yes Yes HI$40 &
MN$32

China (1) [11] Beijing Blood donors and
Patients

710 *7.5 13.8 Nov–Dec 09 No Yes HI$40

China (2) [6] Hong Kong Blood donors,
pediatric cohort

2913 3.3 14.0 Nov–Dec 09 Yes No MN$40

Germany [7] Frankfurt Hospitalized adults 225 *7.5 12.0 Nov 09 No No HI$40

India [20] Pune School children &
general population

5047 0.9 15.5 Sep–Oct 09 No No HI$40

Japan [21] entire Japan Healthy individuals 6035 7.6 40.3 Jul–Sep 10 Yes Yes HI$40

New Zealand [12] Auckland region Registered patients 1147 11.9 30.3 Nov 09–Mar 10 Yes Yes HI$40

Singapore [22] Singapore Adult cohort 727 2.6 13.5 Oct 09 Yes No HI ($4
fold rise)

UK [14] England Patients accessing
health care

275 14.5 22.5 Sep 09 No No HI$32

USA [13] Pittsburgh Clinical laboratories 846 6.0 21.5 Nov 09 No Yes HI$40

{Subjects, sample size and sampling period refer to those after observing the peak incidence of H1N1-2009. For several studies examining pre-existing immunity, the
same or additional samples before the 2009 pandemic were investigated at different time periods, but are not included in this Table.
{Estimated proportions seropositive before and after observing an epidemic peak. When age-standardized estimate was given in the original study, we used it as the
population mean.

*Three studies did not estimate the proportion seropositive before the 2009 pandemic, and we assume that 7.5% of the population was initially immune based on a
crude average among other studies.
1After peak column represents if the sampling took place longer than 1 month after observing the highest incidence of cases.
¥Vaccination column represents if a population-wide vaccination campaign of H1N1-2009 took place prior to the sampling.
"Laboratory methods to determine seropositivity; HI, hemagglutination inbibition assay and MN, microneutralization assay.
doi:10.1371/journal.pone.0017908.t001

Sample Size for Post-Epidemic Serological Studies
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sample of study volunteers of the general Japanese population

[21]. Only the Japanese study has not been published in English;

the data are based on National Epidemiological Surveillance of

Vaccine-Preventable Diseases which are annually conducted to

understand the epidemiological dynamics of a number of

infectious diseases, involving at least 5,400 non-randomly sampled

individuals across all age-groups in each year and covering 24

prefectures (225 individuals per prefecture) among a total of 49

prefectures across Japan. Other published serological surveys were

not included in Table 1, because they were conducted before the

observed epidemic peak or because they focused on a confined

population (e.g. healthcare workers or military personnel) [5,23–

27], but a few of them have been discussed elsewhere [4].

The sample size of the eleven seroepidemiological studies, which

recorded post-peak seroprevalence, ranged from 225 to 6035

individuals. Eight studies examined seroprevalence before the first

wave, estimating the proportion of the population with pre-

existing immunity (Table 1). Where indicated, the sample size

estimation of those studies relied on a binomial proportion [12–

14,19]. The post-peak sampling period varied substantially with,

for example, six studies sampling the post-peak serum more than 1

month after the peak incidence. Five studies clearly stated that a

population-wide vaccination campaign against H1N1-2009 had

taken place prior to sampling. The laboratory method employed in

these studies was based on hemagglutination inhibition assays (HI)

or microneutralization assays (MN) with eight studies setting the

seropositive threshold level at HI$40. It is practically very difficult

to determine the end of an epidemic, and thus, we regard the

observed increase in seroprevalence (i.e. seroprevalence after the

peak minus that before the peak) as an estimate of the fraction of

infected individuals during the epidemic. We used the age-

standardized final size estimate for an entire population when

given in the original study instead of using crude estimates of the

seropositive fraction. The 2009 pandemic involved public health

interventions, heterogeneous transmission (e.g. age and spatial

heterogeneities) and seasonality, but, as the first step to stimulate a

relevant discussion on this subject, the present study adopts a

homogeneously mixing assumption without time-dependent dy-

namics. Specifically, we focus on the difference between the

observed final sizes for an entire population and the predictions of

final size yielded by the modeling approach. Thus, the data in

Table 1 are analyzed here under the assumption of a well-mixed

population. It should be noted that, in the absence of any time-

dependent factors, the final size is known to depend only on the

reproduction number R, under the homogeneous mixing assump-

tion [9,10].

Following the earliest studies in Mexico [8,28], the estimation of

R was conducted using the early epidemic growth data in different

locations across the world (yielding published estimates in 2009

[29–38], some reassessed [39]). The estimated R, in different

epidemic settings and subpopulations, ranged from ‘‘less than 1’’

[40] to greater than 2 [28,29,35]. The definition of R also varied

from study to study. One study, for example, incorporated the

impact of seasonal variations in the force of infection [33]. Among

these, the earliest estimate of R was derived from the early phase of

the pandemic during the Spring 2009 in Mexico using various

modeling methods [8]. Using a Bayesian method, the posterior

median of R (and the 95% credible intervals) was estimated at 1.40

(1.15, 1.90) [8]. Since the posterior median crudely represents

mid-point of estimates in other published studies, and because the

lower and upper bounds roughly correspond to the range of R in

other studies (with R,2), we focus on an estimate of R derived

from an exponential growth of cases in an outbreak in La Gloria,

Mexico. Thus, we not only assess the prediction based on R = 1.40,

but also on the lower and upper bounds of R. Note that the lower

bound (1.15) is smaller than the posterior median of R obtained

using other methods in the same study including a coalescent

population genetic analysis (R = 1.22). Given an estimate of R for

an initially fully susceptible population, and assuming that the

initial number of infectives is sufficiently smaller than the total

population size, the final epidemic size r satisfies

1{r~exp({R̂Rr), ð1Þ

which is referred to as the final size equation [10]. Both sides of

equation (1) represent the probability that an individual escapes

infection throughout the course of an epidemic. Since the presence

of pre-existing immunity has yet to be clarified at the beginning of

the 2009 pandemic, we use equation (1) to calculate the predicted

final epidemic size. Iteratively solving (1) for R being 1.15, 1.40

and 1.90, the final size r is 24.9%, 51.1% and 76.7%, respectively.

We test these forecasts against the observed final sizes given in

Table 1. For this reason, it is essential to compute uncertainty

bounds (e.g. 95% confidence interval) of the observed final sizes in

seroepidemiological studies.

Uncertainty bound for a binomial proportion
As a prelude to discussing the uncertainty bound of final size, we

first consider the confidence interval of a binomial proportion,

which has been widely used in published seroepidemiological

studies shown in Table 1. Let X be a binomial random variable for

sample size n, and let r = X/n be the sample proportion positive.

The most well-known, parsimonious, confidence interval of the

binomial proportion, employs a normal approximation to

binomial distribution, which is also referred to as the Wald

confidence interval. The 100(1-2a)% confidence interval for the

sample proportion r is written as

r̂r+za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r(1{r̂r)

n

r
, ð2Þ

where za denotes 1-a quantile of the standard normal distribution

(e.g. za<21.96 for a = 0.025). The ‘‘rules of thumb’’ suggest that

the normal approximation works well as long as nr.5 and n(1-

r).5, but the rules of thumb do not always work out well [41].

The computation of the Wilson score interval is a better

alternative, which is not computationally difficult and yields better

coverage of associated uncertainty [42,43]. Here, we focus on the

Wald confidence interval in the present study, because we extend

its principle to the computation of the 95% confidence interval of

the final epidemic size.

The idea behind the Wald confidence interval comes from

inverting the Wald test for r. Suppose that the null hypothesis

H0:r = r0 is tested where one wishes to detect a relevant

alternative H1:r?r0, where r0 is the proposed value of the

proportion. In the case of the prediction with R = 1.40, r0 might

be set at 0.511 (assuming that the final size follows a binomial

distribution). The Wald statistic to be compared to a normal

distribution is given by

r̂r{r0

s:e:(r̂r)
, ð3Þ

where s.e.(r̂r) is the standard error of r, approximated by the square

root term in (2).

The sample size estimation of a binomial proportion can also

employ (3). In fact, if we let m denote the margin of error, a

Sample Size for Post-Epidemic Serological Studies
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summary of sampling error that quantifies uncertainty, which

corresponds to half the width of a confidence interval for the

proportion r, then a desired margin of error of no more than m

means

zas:e:(r̂r)ƒm: ð4Þ

By squaring both sides and using the approximate standard error,

we have

z2
a

r̂r(1{r̂r)

n
ƒm2: ð5Þ

Solving equation (5) for n gives

n§

za

m

� �2

r̂r(1{r̂r), ð6Þ

a well-known formula for estimating the minimum sample size n

for a binomial proportion. Since the eventual r is unknown

before the actual survey, one may set r = 0.511 or use a

published seroprevalence estimate. It should be noted that

equation (6) does not explicitly account for Type II error (i.e.

power of the test) [44]. Hence, to incorporate the power in

calculating the sample size, one can alternatively employ the

following formula ([45]):

n§

za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r(1{r̂r)

p
zzb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r̂rzm)(1{r̂r{m)

p
m

 !2

: ð7Þ

Comparing (6) and (7), it is seen that the sample size n based on

(6) corresponds to the case for a power of 50% in (7) (i.e.

zb = z0.5 = 0).

Uncertainty bound for a final epidemic size
An explicit derivation of final size distribution, which employs a

recursive equation, has been carried out through the so-called

Sellke construction in a series of stochastic epidemic modeling

studies [46,47]. In addition, a number of stochastic modeling

studies in the context of large populations have examined the

asymptotic distribution of the final epidemic size via the central

limit theorem [48,49]. Within a stochastic modeling framework, it

is known that an outbreak declines to extinction without causing a

large epidemic with a probability of extinction p (small outbreaks

are referred to as minor epidemic). A major epidemic occurs with

probability 1-p. An approximate standard error of the final size of

the major epidemic based on the asymptotic convergence result of

the final size distribution is ([50,51]):

s:e:(r)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(1{r)zR2

s

m

� �2

r(1{r)2

N 1{R(1{r)½ �2

vuuuut , ð8Þ

where r now represents the observed final size and possibly the

unique positive solution to (1) in case of an initially fully susceptible

population. R is the reproduction number while m and s denote

the mean and standard deviation of the generation time (and thus,

s/m is the coefficient of variation (CV)), and N is the population

size. This approximation has been evaluated elsewhere [50,51]. If

a proportion q of the population is initially immune, the

reproduction number R estimated from an exponential growth

of cases in that population satisfies ([10]):

R~

{ ln 1{
r

1{q

� �
r

: ð9Þ

The estimated R (e.g. in the range of 1.15 to 1.90 in Mexico) is not

the basic reproduction number R0 in a fully susceptible population,

but satisfies R0 = R/(1-q) [9]. Using the estimator of R in (9), the

standard error in (8) can be rewritten as

s:e:(r)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3(1{r)z

s

m

� �2

r(1{r)2 ln2 1{
r

1{q

� �

N rz(1{r) ln 1{
r

1{q

� �� �2

vuuuuuut : ð10Þ

Given that q and the CV of the generation time are now known for

H1N1-2009, the Wald confidence interval can employ (10) for

computing the corresponding 95% confidence interval, for

hypothesis testing and for estimating the minimum sample size

required for post-epidemic seroepidemiological studies. One should

bear in mind that the error estimate is nevertheless conservative (i.e.

likely to be underestimated), because (i) the method is based on

normal approximation, (ii) we ignore time-dependent dynamics

including public health interventions, and (iii) we ignore heteroge-

neous transmission (see Discussion for (ii) and (iii)). N is the

population size in the above expressions. If we wish to replace N by

sample size n, the binomial sampling error of n has to be accounted

in the calculation of the variance. In the case of simple random

sampling, the resulting standard error is given by the sum of the

respective variance of two independent processes, i.e.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(N{n)

N3
zs:e:2(r; n)

r
ð11Þ

where n(N-n)/N3 is an approximate variance of the binomial

sampling error, and s.e.(r;n) is the standard error of final size when

the sampling error linked to n is ignored(i.e. what we replace N by n

in equation (10)). The introduction of sampling error also applies to

the standard error of the binomial proportion in (2), but this term is

usually ignored for very large N (because n(N-n)/N3 is then negligibly

small) under an assumption that the randomly selected individuals

sufficiently represent the entire population. Thus, we use only

s.e.(r;n) in the following analyses. If n involves non-negligible fraction

of N (e.g. .5%), one may use the above expression (11) or introduce

the so-called finite population correction factor (FPC) for the

calculation of the error [52].

Given an observed final size r, the 100(1-2a)% confidence

interval for r is calculated as

r̂r+za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r3(1{r̂r)z

s

m

� �2

r̂r(1{r̂r)2 ln2 1{
r̂r

1{q

� �

n r̂rz(1{r̂r) ln 1{
r̂r

1{q

� �� �2

vuuuuuut : ð12Þ

Suppose that we have an unbiased estimate of q and a known CV

of the generation time (e.g. from separate datasets). To compare

the observed final size r against the prediction based on R = 1.40,

r0 would be 0.511, with the Wald statistic compared to a normal

distribution given by

Sample Size for Post-Epidemic Serological Studies
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r̂r{r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r3(1{r̂r)z

s

m

� �2

r̂r(1{r̂r)2 ln2 1{
r̂r

1{q

� �

n r̂rz(1{r̂r) ln 1{
r̂r

1{q

� �� �2

vuuuuuut

: ð13Þ

Let n(r)~s:e:(r)
ffiffiffi
n
p

. The minimum sample size which explicitly

accounts for only Type I error is calculated from

n§

za

m

� �2

n(r̂r)2: ð14Þ

If we account for both Type I and II errors, we have

n§

zan(r̂r)zzbn(r̂rzm)

m

� �2

: ð15Þ

It should be noted that the method used to account for the power

(equation (15)) can only examine the range of r,1-q-m because the

approximate standard error of final size includes the logarithmic

function.

Application and illustration
To highlight the importance of explicitly accounting for the

variance of the final size distribution, the following two exercises

are performed. First, we examine post-peak seroepidemiological

studies of H1N1-2009, comparing the 95% confidence intervals

generated by two methods; binomial proportion and asymptotic

final size distribution. For this reason, when calculating the

uncertainty bounds, we regard the data as if they were generated

from a binomial process or the final epidemic size of a

homogeneously mixing population. For simplicity, we assume that

we have an unbiased estimate of the proportion of population with

pre-existing immunity based on the observed seropositive

proportion prior to the epidemic wave in Table 1. We consider

uncertainty of the observed final size, which corresponds to the

difference in infected fraction before and after observing the peak

incidence. Subsequently, we test the significance of the observed

final size against model predictions (i.e. 24.0%, 51.1% and 76.7%

based on R = 1.15, 1.40 and 1.90, respectively). The mean and

standard deviation of the generation time are fixed at 2.7 and 1.1

days, respectively (and so, the CV is 0.41) based on contact tracing

data in the Netherlands [40]. To address the uncertainty with

respect to the shape and scale of the generation time distribution,

we also consider hypothesis testing of two other scenarios in which

the CV is 0 (i.e. a constant generation time) and 1 (i.e.

exponentially distributed generation time).

Second, as sensitivity analysis of the selected empirical

illustrations, we present the desired minimum sample size of

final epidemic size by employing the approximate standard

error of the final size. Examining various margins of error

ranging from 0% to 50% with R being 1.15, 1.40 and 1.90 and

the CV of the generation time ranging from 0 to 1, the above

mentioned formulae (14) and (15) are used with significance

level at a = 0.05 and, for the latter formula, the power is set at

12b = 0.80. Moreover, for this sensitivity analysis the propor-

tion of the population with pre-existing immunity q is fixed at

7.5%, which corresponds to the mean based on eight published

studies in Table 1. Subsequently, we also examine the

sensitivity of the minimum sample size required as a function

of R and q.

Results

Confidence intervals
Table 2 summarizes the empirical results of eleven seroepidemi-

ological studies of H1N1-2009. The sample proportion infected

ranged from 4.5% to 38.5%. The smallest three final sizes resulted

from samples within 1 month after observing peak incidence, and the

largest three involved a population-wide vaccination campaign prior

to the survey. Whereas the 95% confidence interval of the binomial

proportion was narrow with the standard errors ranging from 0.6%

to 1.6%, the 95% confidence interval of final size was much broader

ranging from 6.6% to 76.9%, which led to include 0% within the

confidence limits of seropositive in nine studies, calling for ad-hoc

truncation (or calling for an alternative method of computation that

may include the F distribution). The broader uncertainty bound

from the model-based final size than the binomial proportion can be

analytically demonstrated as follows. First, the smallest standard

error in (12) is seen when the CV of the generation time is 0, i.e.,

r̂r+za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r3(1{r̂r)

n r̂rz(1{r̂r) ln 1{
r̂r

1{q

� �� �2

vuuut : ð16Þ

Because 0#r#1 and 0#q#1, we have

r̂r

r̂rz(1{r̂r) ln 1{
r̂r

1{q

� �§1: ð17Þ

Therefore, it is proven that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r3(1{r̂r)

n r̂rz(1{r̂r) ln 1{
r̂r

1{q

� �� �2

vuuut §

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r(1{r̂r)

n

r
: ð18Þ

The equality holds when r = 1.

Hypothesis testing
Assuming CV of the generation time at 0.41, six serological

studies appeared to have yielded significantly smaller final sizes

than that predicted by R = 1.40 (Table 2). Nevertheless, four of

the six studies sampled serum within 1 month after observing

peak incidence, and four of the remaining five studies with

insignificant result sampled serum longer than 1 month after the

peak (no significant association between the significant test result

and sampling within 1 month after the peak; p = 0.24, Fisher’s

exact test). Populations in four of the six studies with significantly

smaller final sizes were unvaccinated prior to sampling, and

three of the five studies with insignificant results involved

vaccination prior to the survey (p = 0.57, Fisher’s). Taken

together, five of the six studies with significantly smaller final

sizes sampled serum within 1 month after peak incidence or

examined unvaccinated population, while all the five remaining

studies with insignificant test results conducted sampling longer

than 1 month after the peak or the population involved

vaccination (p = 0.55, Fisher’s). When comparing observed final

sizes against R = 1.15, results of all studies were not found to be

significantly different. Eight studies indicated that the observed

final sizes were significantly smaller than that predicted by

R = 1.90. Varying the CV of the generation time from 0 to 1

with R = 1.40, the significance levels with CV = 0 did not vary

from those of CV = 0.41, but the results with CV = 1 indicate

Sample Size for Post-Epidemic Serological Studies
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that only three observed final sizes were significantly smaller

than that predicted by R = 1.40.

Sample size estimation
Figure 1 shows the minimum sample sizes required for post-

epidemic seroepidemiological studies to test the final size against

R = 1.15, 1.40 and 1.90 with CV being 0, 0.41 and 1. Whereas

median (and lower and upper quartiles) sample size of empirical

studies in Table 1 was 1127 (710, 2913), such sample sizes can only

explicitly prove a difference from the prediction of R = 1.90 at a

margin of error 5%. To argue the significant difference from

prediction based on R = 1.40 with the identical margin of error

and with varying CV of the generation time 0.41 (range: 0, 1), we

ideally need 8665 (range: 7215, 15947) individuals at the power of

50% and 16121 (13423, 29680) individuals at the power of 80%.

At the margin of error 10%, these numbers are reduced to 2167

(1804, 3987) and 3715 (3093, 6841), respectively. As R gets closer

to the lower uncertainty bound, and as the variance of the

generation time becomes larger relative to the mean, the

minimum sample size required increases.

Figure 2A examines the sensitivity of the minimum sample size to

the reproduction number R. Ignoring pre-existing immunity (q = 0),

R = 2 with the CV of the generation time 0.41 (0, 1) requires at least

201 (177, 320) individuals at power of 50% and 317 (281, 500)

individuals at power of 80%. As R is reduced and approaches the

critical level, much greater sample sizes are required. For instance,

the minimum sample size for R = 1.2 is more than 2-fold higher

than that required for R = 1.4. Figure 2B illustrates the relationship

between minimum sample size and the proportion of the population

with pre-existing immunity q (with fixed R = 1.40). Interestingly, the

minimum sample size hits the largest value around q = 0.20. For

example, q = 0.212 yielded the largest sample size with CV = 0. This

can be inspected by taking first and second derivatives of (16) with

respect to q (with the CV = 0), leading to:

qmax~1{
r̂r

1{exp
r̂r

r̂r{1

� � , ð19Þ

which is the most difficult situation in which the hypothesis testing

against the predicted final size requires us to collect an

unrealistically large number of blood samples. qmax leads the

denominator of the approximate standard error in (16) to be 0.

Discussion

We have introduced a framework to compute the uncertainty

bounds of the final epidemic size that employs the Wald

approximation, an approach motivated by the absence of a

readily available methodology to estimate the sample size of post-

epidemic seroepidemiological studies. Published seroepidemiolog-

ical studies of H1N1-2009 so far have computed the confidence

interval of the observed final size as if it were a binomial

proportion. However, the data generating process behind the

dynamics of infectious diseases involves dependence between

infected individuals [17], which does not lead to a binomial

proportion. Moreover, the observed final size represents a single

stochastic realization among all possible sample paths (i.e. all

Table 2. Uncertainty bounds and hypothesis testing of the post-peak seroepidemiological studies of influenza (H1N1-2009).

Country
Sample
size{

Prop
infected
(%){

95% CI of
binomial
prop (%){

95% CI
of final
size (%){

After
peak1 Vac¥ P-values$

R

1.40 1.15 1.90 1.40 1.40

CV

0.41 0.41 0.41 0 1

Australia [19] 1247 15.8 13.8, 17.9 0, 50.2 Yes No *0.02 0.30 *,0.01 *0.01 0.07

Canada [15] 1127 38.5 35.7, 41.4 16.5, 60.6 Yes Yes 0.13 0.89 *,0.01 0.11 0.21

China (1) [11] 710 6.3 4.5, 8.1 0, 46.8 No Yes *0.02 0.18 *,0.01 *0.01 0.05

China (2) [6] 2913 10.7 9.6, 11.8 0, 67.8 Yes No 0.08 0.31 *0.01 0.07 0.15

Germany [7] 225 4.5 1.8, 7.3 0, 56.0 No No *0.04 0.22 *,0.01 *0.03 0.09

India [20] 5047 14.6 13.6, 15.6 0, 30.1 No No *,0.01 0.10 *,0.01 *,0.01 *,0.01

Japan [21] 6035 32.7 31.5, 33.9 19.8, 45.6 Yes Yes *,0.01 0.88 *,0.01 *,0.01 *0.02

New Zealand [12] 1147 18.4 16.1, 20.6 0, 81.4 Yes Yes 0.15 0.42 *0.03 0.13 0.23

Singapore [22] 727 10.9 8.6, 13.1 0, 94.4 Yes No 0.17 0.37 0.06 0.15 0.24

UK [14] 275 8.0 4.8, 11.2 0, 35.3 No No *,0.01 0.11 *,0.01 *,0.01 *0.01

USA [13] 846 15.5 13.1, 17.9 0, 100.0 No Yes 0.32 0.45 0.21 0.31 0.37

{Sample size refers to the number of enrolled subjects to measure the seroprevalence after observing an epidemic peak. Proportion infected is given by the proportion
after observing peak minus the proportion before the peak in Table 1.
{95% confidence intervals (CI) show lower and upper confidence intervals of the proportion. The 95% CI of binomial proportion is derived from a normal approximation
to binomial distribution, while the 95% CI of final size is similarly derived from the Wald method employing asymptotic convergence result of final size distribution.

1After peak column represents if the sampling took place longer than 1 month after observing the highest incidence of cases.
¥Vaccination column represents if a population-wide vaccination campaign of H1N1-2009 took place prior to the sampling.
$p-values are based on two-sided Wald test employing the approximate standard error of final epidemic size.
R, the estimated reproduction number in Mexico against which we would like to test our hypothesis; CV, the coefficient of variation of the generation time. Significant
difference is indicated by * mark followed by p-value.
doi:10.1371/journal.pone.0017908.t002
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possible probabilistic trajectories of the epidemic), requiring us to

consider stochastic variations in the data. To account for these

issues, we employed the approximate standard error of the final

size given as a convergence result of a homogeneously mixing

stochastic epidemic model. The calculation of the standard error

was shown to be simple to compute (spreadsheet programs are

sufficient). By applying the proposed uncertainty bound of final

size to influenza (H1N1-2009), we have also shown that all the

seroepidemiological studies published to date did not necessarily

indicate an overestimation of prediction based on R = 1.40, and

moreover, all the observed final sizes did not reveal significant

deviation from prediction with the lower limit R = 1.15. Published

seroepidemiological studies agree that the upper bound R = 1.90

(and thus, other published estimates of R.2 [29,30]) was likely an

overestimation [39]. One may still speculate that R = 1.40 may well

be an overestimation (because all of the observed final sizes were

Figure 1. Minimum sample sizes required for post-epidemic seroepidemiological studies of final size as a function of the margin
error, the reproduction number, and the coefficient of variation of the generation time. (A & B) Sample size with three different
reproduction numbers as a function of the margin of error. (A) employs an estimation formula based Type I error alone (at a = 0.05), while (B)
accounts for both Type I and II errors (at a = 0.05 and 12b = 0.80). The margin of error represents random sampling error, around which the reported
percentage would include the true percentage. Since (A) is a special case of (B) (with b = 0.50), R = 1.40 in (A) is also shown as dotted line in (B). The
coefficient of variation (CV) of the generation time and the proportion of population with pre-existing immunity are fixed at 40.7% and 7.5%,
respectively. (C & D) Sample size with three different coefficients of variation as a function of the margin of error. (C) accounts for Type I error alone
(a = 0.05), while (D) accounts for both Type I and II errors (a = 0.05 and 12b = 0.80). The reproduction number and the proportion of population with
pre-existing immunity are fixed at 1.40 and 7.5%, respectively. CV = 0 corresponds to a constant generation time, whereas CV = 1 represents an
exponentially distributed generation time. In (B) and (D), several lines are truncated, due to impossibility to account for larger margins of error in the
estimation formula.
doi:10.1371/journal.pone.0017908.g001
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smaller than 51.1%), but the sample sizes of published seroepide-

miological studies turned out to be too small to answer this question.

Although formulae for variance of the final size distribution (i.e.

the square root of which we regarded as an approximate standard

error) has been known among stochastic modeling experts [50],

the present study extended its use to the computation of the 95%

confidence interval of the observed final size by replacing the

reproduction number by its estimator. This also led us to consider

a parsimonious Wald test and sample size estimation. What the

present study suggests for post-epidemic seroepidemiological

studies is to employ the proposed formula (12) to calculate the

95% confidence interval and (14) or (15) to help determine the

sample size for seroepidemiological surveys. For the latter, the

following simplification of (14) might be useful:

n§

n(r̂r)2

s:e:(r̂r)
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r3(1{r̂r)z

s

m

� �2

r̂r(1{r̂r)2 ln2 1{
r̂r

1{q

� �s

s:e:(r̂r) r̂rz(1{r̂r) ln 1{
r̂r

1{q

� �� � : ð20Þ

The standard error s.e.(r̂r) is calculated by using the specified

confidence interval (i.e. twice the margin of error) and the

confidence level (i.e. nominal coverage probability). For instance, if

the margin of error is 5% and the confidence level is 95%, the

standard error is 0.05/1.96 = 0.025. Similarly, the standard error

is 0.030 and 0.020 at the confidence levels of 90% and 99%,

respectively. It is worth stressing that the purpose of post-epidemic

seroepidemiological studies is not necessarily to test the observed

final size against a predicted value, but includes real-time

monitoring of an epidemic and various considerations of public

health interventions. As long as there is no better alternative

method for computing the uncertainty, the proposed approach

should also be used for those other purposes to calculate

conservative uncertainty bounds. The proposed method has a

potential for explicitly discussing a posteriori effectiveness of

interventions through the direct comparison of observed final sizes

in different settings. Hence, we believe that the proposed

calculation of the 95% confidence interval will greatly help

progressing this area of research. It should also be noted that the

use of the proposed uncertainty bounds plays an important role

especially for influenza transmission with R,2 (Figure 2A).

Our illustration of the proposed method posed four technical

challenges for the computation of the uncertainty bound of final

size; (i) the coefficient of variation of the generation time has to be

known, (ii) the proportion of pre-existing immunity before an

epidemic critically influences the bounds, (iii) sampling of several

seroepidemiological studies took place shortly after an epidemic

peak and (iv) vaccination and other public health interventions

during the course of an epidemic can modify the observed final

size. As for (i), the present study demonstrates a critical need to

estimate the variance of the generation time in addition to the

mean. That is, the distribution of the generation time plays a key

role not only in estimating R [53,54] but also in characterizing the

variance of final epidemic size. With respect to (ii), although we did

not include seroepidemiological studies prior to the 2009

pandemic [24,25,27], we have shown that such a survey of q is a

key to determine the sample size after the epidemic [55]. In

addition to the estimation of q itself, it should be noted that our

method adopted an assumption that the pre-existing immunity

offered a complete protection from infection (i.e. all-or-nothing

protection). If the pre-existing immunity is imperfect and described

by the so-called leaky protection (e.g. partial reductions in

susceptibility per contact and in infectiousness upon infection),

those quantifications will be required in addition to the estimation

of the proportion of the initially immune population. Issues (iii)

and (iv) pose further technical challenges to precisely estimate

uncertainty bounds of seroprevalence in empirical studies. Given

Figure 2. Sensitivity of minimum sample size for post-epidemic seroepidemiological studies to the reproduction number and the
proportion of population with pre-existing immunity. (A). The minimum sample size with three different coefficients of variation (CVs) as a
function of the reproduction number. (B). The minimum sample size with three CVs as a function of the proportion of population with pre-existing
immunity. In (A), the proportion of population with pre-existing immunity is fixed at 0, and the estimates correspond to the margin of error of 10%
and Type I and II errors at a = 0.05 and 12b = 0.50, respectively. In (B), the reproduction number is fixed at 1.40, and the estimates correspond to the
margin of error of 10% and Type I and II errors at a = 0.05 and 12b = 0.50, respectively.
doi:10.1371/journal.pone.0017908.g002
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that the observation of incidence is given in every discrete time

unit, a possible way forward may be to employ a parsimonious

discrete time stochastic model (e.g. branching process or chain

binomial model) [56], which may well enable us to draw the 95%

confidence interval in a given reporting interval by conditioning

the distribution to previous reporting intervals. Proposing simple

methods to address these issues is part of our future studies.

Our method relied on the homogeneous mixing assumption and

ignored time dependent factors that include seasonality and public

health interventions. In this sense, the proposed uncertainty is

regarded as an underestimate, because the time-dependent

variations in the transmission potential can increase the variance

of the final size distribution, and also because heterogeneous

transmission (e.g. age-dependent mixing) can also increase

variance (e.g. an epidemic with extremely high assortativity could

generate multimodal final size distribution for an entire population

[57]). If an intervention is focused only on a portion of cases or if

disease-induced deaths occur in non-negligible order, not only the

variance but also the formulae for the final size relation (our

equation (1)) have to be reassessed [58–60]. Moreover, in the

presence of strong seasonality, a deterministic modeling study has

demonstrated a very limited predictive performance of R alone in

anticipating the final epidemic size [61,62]. Given that seroepi-

demiological studies tend to stratify population by age-group (to

capture the age-dependency of the risk of infection), and

considering that the final size of age-structured models can be

different from that of homogeneous population [63], further work

could at least incorporate heterogeneous mixing by employing the

existing similar convergence result of the final size distribution

using a multitype epidemic model (e.g. age-structured model). An

elegant formula for the asymptotic final size distribution of

multitype epidemic models has been derived by Ball and Clancy

[64], yielding a variance matrix (which is similar to but a little

more complicated than that discussed in the present study).

Nevertheless, it should be noted that the elements of the next-

generation matrix (or the reproduction matrix) would be included

as the solution of the final size equation for multitype models

[64,65], and those cannot be simply replaced by the estimator of R

using final size (i.e. as was done in the present study using

homogeneous model), and thus, the computation of 95%

confidence interval may well require full quantification of the

next-generation matrix (in addition to observation of final sizes for

each type).

Each of the abovementioned issues should be addressed in the

future, ideally in the context of empirical applications. Until that

time, rather than relying on a binomial proportion, we

recommend the use of the approach introduced in this study if

the goal is to determine the sample size of post-epidemic

seroepidemiological studies, to calculate the 95% confidence

interval of observed final size, or to conduct relevant hypothesis

testing.
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