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Abstract

In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing
vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic
network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-
molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain,
a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological
agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental
workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein
targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on
physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of
antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3
facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant
growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian
cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial
growth at 13 mM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the
biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as
starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/
in vitro approach had an overall 15% success rate in terms of active versus tested compounds over an elapsed time period
of 32 weeks, from pathogen strain identification to selection and validation of novel antimicrobial compounds.
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Introduction

The threat of emergent, highly infectious, drug-resistant

pathogens, whether through genetic engineering of bioterrorism

agents or evolution and adaptation of naturally occurring strains,

demands capabilities to rapidly screen and identify potential novel

antimicrobials for a given pathogen. Francisella tularensis, the

causative agent of tularemia, is classified by the Centers for

Disease Control and Prevention (CDC) as a category A select

agent, and its role as a biological weapon is known to have been

investigated in the United States, the former Soviet Union, and

Japan [1]. Strains of F. tularensis [2] are among the most virulent

known, requiring only 10 organisms to infect a human intrave-

nously and ,10–50 organisms through inhalation [3]. Currently,

there is no Food and Drug Administration (FDA)-approved small-

molecule inhibitor that specifically targets this pathogen, and

treatment of tularemia is typically limited to a few antibiotics, such

as fluoroquinolones [1]. Although several experimental live-

attenuated vaccines [4–6] are under development, no vaccine

for F. tularensis is currently available.

Traditional antibiotic development is characterized by long

development times and high costs. For example, a recent review

[7] outlining antibacterial discovery efforts at the pharmaceutical

company GlaxoSmithKline revealed that 67 high-throughput

screening campaigns over the course of six years, at a cost of
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approximately $1 m a campaign, produced a total of only five lead

compounds. Although the time course of a potential outbreak can

have tremendous range – from days and weeks in a local outbreak,

to months and years in an emerging outbreak abroad – it is clear

that traditional approaches are ill-suited to rapidly identify novel

drug targets or antimicrobial compounds. There has been

extensive work in recent years to identify alternative approaches

to drug discovery that leverage bioinformatics and computational

biology to identify novel antimicrobials [8]. Here, we demonstrate

how a combined computational and experimental approach based

on metabolic network modeling, ligand- and structure-based drug

design, physiological modeling, and whole bacterial cell-based

assays successfully identified novel antimicrobial compounds in a

highly abbreviated time period.

Metabolic genome-scale models of bacteria have provided a

computational framework for in silico simulations to evaluate how

metabolic enzymes affect the growth and fitness of an organism

under a wide variety of conditions [9–12]. The potential for

certain metabolic enzymes to be drug targets can be evaluated by

simulating the effect of removing the enzyme from the network (in

silico knockouts) on the organism’s overall metabolism and growth.

Furthermore, the effect of a known enzyme inhibitor on

metabolism can be explicitly modeled, such as in simulating

drug-dose dependent growth inhibition [13]. These modeling

frameworks can also be used to identify synergistic effects that arise

from combination therapies that inhibit multiple metabolic

enzymes simultaneously [14]. Furthermore, the influence of a

specific environment on a bacterial organism, such as in a

nutrient-rich medium or a nutrient-poor host environment, can be

modeled using condition-specific metabolic networks [15–18]. The

feasibility of antimicrobial compound discovery from analysis of

metabolic networks has recently been demonstrated for a range of

non-model organisms [19–24].

In this study, the target organism was the fully virulent F.

tularensis subspecies tularensis Schu S4 strain, and we implemented a

metabolic target identification based on an existing metabolic

network reconstructed from the closely related avirulent F.

tularensis live vaccine strain (LVS) [17]. We applied a systematic

multidisciplinary approach to select a small set of enzymes as drug

targets, screened ,20,000 small-molecule compounds to identify

putative inhibitors against these targets using ligand- and

structure-based drug design, filtered a subset of top-scoring

compounds based on desirable pharmacological properties, and

experimentally validated a final set of 40 candidate compounds for

antimicrobial activity against F. tularensis in a whole bacterial cell-

based assay. Our discovery pipeline used, by design, a multi-target

approach – by targeting multiple enzymes in parallel, we aimed to

mitigate the risk that any one enzyme was either unsuitable or

ineffective as an antimicrobial drug target. Our combined effort

took an aggregated time of 32 weeks and produced six active

compounds from a set of 40 tested compounds, with an effective

success rate of 15%, which demonstrates the effectiveness of our

integrated computational/experimental approach.

Results

We carried out a staggered workflow that combined drug target

identification, target selection, in silico drug screening, and cell-

based experimental validation. Figure 1 shows our overall

combined in silico and in vitro approach, approximate timelines,

and results in terms of identified pathogen targets and selected

small-molecule inhibitors. First, we constructed a metabolic

network model for F. tularensis and used it to identify 124 potential

metabolic drug targets. Second, we used a target selection scheme

to select a subset of 10 drug targets that were predicted to be

amenable to small-molecule based inhibition, shown to be essential

for growth in other bacteria, and least likely to be associated with

adverse effects in humans. Third, we carried out homology

modeling and X-ray crystallography to determine the structures of

the selected drug targets for subsequent ligand docking. Fourth, we

carried out both chemical similarity (ligand-based) and ligand

docking-based (structure-based) virtual screening to identify

putative small-molecule inhibitors for each target. Fifth, we

carried out in silico pharmacokinetic (PK) assessment of potential

inhibitors identified in screening and selected a set of 40

compounds for purchasing and testing. Finally, we used in vitro

assays measuring F. tularensis growth as well as mammalian cell

cytotoxicity to identify non-toxic compounds that showed signif-

icant antimicrobial activity.

Metabolic Target Identification
To create an initial set of candidate drug targets that are

likely to affect the growth and viability of the pathogen, we used

a genome-scale metabolic model that captures the contribution

of each metabolic enzyme toward sustaining biomass accumu-

lation and, hence, growth. In the present analysis, we relied on

a genome-scale metabolic model for F. tularensis LVS [17],

which has recently been augmented and updated with

experimental data from F. tularensis Schu S4 (K. Amemiya, D.

A. Rozak, and S. Daefler, unpublished data). We mapped the

LVS metabolic pathways to the Schu S4 strain using existing

sequence data and tagged enzymes that abolished accumulation

of critical metabolites in the flux-balance model as ‘‘essential.’’

We identified the essential genes as outlined in MATERIALS AND

METHODS, and the final output of this procedure was the

identification of 124 potential drug targets annotated according

to the F. tularensis subspecies tularensis Schu S4 nomenclature.

The complete list is provided in Table S1.

Target Selection
There are certain methodological assumptions inherent in the

overall metabolic network analysis that may incorrectly prioritize a

given drug target. First, the selection of a subset of genes deemed

to be essential for bacterial survival overlooks non-essential genes

that may nonetheless be good drug targets. These include

virulence factors or other genes that promote infectivity or

neutralize protective host immune responses. Second, certain

genes that are essential in one environment may be non-essential

in another. For example, while most bacteria rely on essential

amino acid synthesis in media lacking such metabolites, many are

capable of scavenging these amino acids under certain conditions

from within the host, thus attenuating the lethality of inhibitors

targeting these synthesis pathways. Finally, a reliance on

knowledge-based database methods to prioritize drug targets

may bias discovery efforts away from novel drugs or drug targets

unless one takes care to ensure an adequate mix of novel and

known drug targets in the final target selections.

As detailed in MATERIALS AND METHODS, we applied bioinfor-

matics analyses to predict whether the enzymes predicted from the

metabolic network analysis were druggable. Our assessment of a

druggable enzyme was based on the following criteria: 1) the

enzyme is amenable to inhibition by small molecules, 2) drugs

targeting the enzyme will be efficacious and have broad

antimicrobial activity, 3) the enzymes must be structurally

characterized so that future structure-based drug design efforts

are possible, and 4) targeting the enzymes with drugs will result in

minimal human side effects. Table 1 shows the 31 targets

Rapid Drug Discovery against F. tularensis
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(including the three targets for which we developed the crystal

structure in this project) from the initial set of 124 enzyme targets

that satisfied at least one of the above criteria to some degree.

Protein Structure Determination
For the 31 identified putative targets shown in Table 1, seven

targets were already associated with well-resolved and complete, or

almost complete, protein structures in the Protein Data Bank

(PDB) [25] that we could use directly for structure-based drug

design. We constructed and expressed full-length or slightly

shortened recombinant proteins for the remaining targets to

optimize protein crystallization without removing any functionally

important regions. As detailed in MATERIALS AND METHODS, three

proteins [3-deoxy-D-arabino-heptulosonate-7-phosphate synthase

(aroG), nicotinate-nucleotide pyrophosphorylase (nadC), and D-

sedoheptulose 7-phosphate isomerase (lpcA)] were readily crystal-

lized, and their structure was determined using molecular

replacement. Coordinates were deposited in the PDB as 3TQK,

3TQV, and 3TRJ for aroG, nadC, and lpcA, respectively.

Figure 2A shows aroG (FTT0963c), a phospho-2-dehydro-3-

deoxyheptonate aldolase that catalyzes the first step in the

chorismate biosynthesis pathway that uses phosphoenolpyruvate

(PEP) as one of its substrates. Our version of this protein is a

truncated construct [we expressed residues 14–354 (of 370 total

residues)], with the missing residues far from the active site and

unlikely to influence the function of the enzyme. In the structure,

an acetate molecule from the crystallization solution occupies the

PEP binding site. The R and Rfree values for this structure are

0.189 and 0.227, respectively, at a resolution of 2.3 Å.

Figure 2B shows nadC (FTT1468c), a nicotinate-nucleotide

pyrophosphorylase. The structure revealed two phosphate mole-

cules bound to the active site. One phosphate molecule is in an

identical position to the superpositioned 59 phosphate moiety from

the reaction product analog 59-phosphoribosyl-1-(b-methylene)-

pyrophosphate bound to another nicotinate-nucleotide pyropho-

sphorylase [PDB code 1QPR [26])]. The other phosphate

molecule is in close proximity to a second product analog,

phthalic acid, found in the same superpositioned enzyme. The R

and Rfree values for this structure are 0.217 and 0.279, respectively,

at a resolution of 2.6 Å.

Figure 2C shows lpcA (FTT1681c), a sedoheptulose-7-phos-

phate isomerase that catalyzes the isomerization of D-sedoheptu-

lose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate.

This is the first committed step toward the formation of ADP-

heptose, a component of bacterial lipopolysaccharides. This

structure of the unliganded state revealed a quaternary arrange-

ment of subunits similar to structures reported in the PDB of other

sedoheptulose-7-phosphate isomerases [27]. The R and Rfree

values for this structure are 0.229 and 0.281, respectively, at a

resolution of 2.8 Å. As a critical enzyme in the biosynthesis of

lipopolysaccharides, lpcA is of significant interest for current and

future antibiotic development.

For the remaining structures for which we were not able to

obtain crystal structures in a timely manner, we built homology

models, as detailed in MATERIALS AND METHODS. All structures were

prepared as full atomistic models for use in target evaluation and

ligand docking.

Final Target Selection and in silico Small-molecule
Screening

Although structural models were available for all 31 targets, we

decided against a high-throughput virtual screen strategy against

all targets and instead assessed each target based on likelihood of

success. The selection was biased toward targets that passed the

largest number of criteria for druggability, but was not restricted

by it. Given computational and experimental limitations on the

number of targets and compounds we could screen, we selected a

diverse set of 10 candidate targets across a range of metabolic

pathways. Our selected targets, as shown in Table 2, included the

three enzymes we were able to crystallize (aroG, nadC, and lpcA),

four protein homology model structures [shikimate kinase (aroK),

pantetheine-phosphate adenylyltransferase (coaD), chorismate

synthase (aroC), and 6,7-dimethyl-8-ribityllumazine synthase

(ribH)], and three existing PDB crystal structures [enoyl-(acyl

carrier protein) reductase (fabI), NAD synthetase (nadE), and 2-

amino-4-hydroxy-6-hydroxymethyldihydropteridine pyropho-

sphokinase (folK)].

To identify potential inhibitory compounds, we 1) selected

compounds in DrugBank [28] and BRENDA [29] databases that

were active against that enzyme class, 2) searched the literature for

Figure 1. Summary of workflow, timelines, and outcomes. An overview of the major phases of the drug discovery pipelines from target
identification, structure determination, in silico screening, in silico pharmacological characterization and experimental validation. The overall timeline
and the number of targets and inhibitors at each phase are shown as well.
doi:10.1371/journal.pone.0063369.g001
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compound and chemical series that have been tagged as potential

inhibitors, and 3) in the case when no literature support was

available, we used the substrate and product to get small-molecule

exemplars that had the proper size and atomic groups to interact

with the enzyme active site. We then used these compounds to

perform a ligand-based search of 57 million compounds that are

commercially available from ChemNavigator (www.

chemnavigator.com). We identified the 2,000 closest compounds

to each set of initial compounds for each target. From these

focused screening libraries, we carried out structure-based small-

molecule docking using Schrödinger’s Glide software as well as

three-dimensional shape-based ligand screening using the Open-

Eye ROCS and OMEGA programs, for each target, as

appropriate (see MATERIALS AND METHODS for further details on

library construction and screening). We selected top-ranked

compounds from both screening approaches for further consider-

ation.

We aimed to identify 20 compounds per target, with equal

weight given to docked compounds with good docking poses and

compounds that had high shape and chemical similarity. After

removing the compounds that we deemed chemically too similar

to one another in each target set, we narrowed our search of

20,000 molecules to 190 compounds with putative efficacy against

F. tularensis.

Table 1. Evaluation for selecting druggable targets.

Gene Locus Gene Name Known Chemistries
Essential in Other
Organisms PDB Sequence Similarity PDB

Human Target
E Value Criteria Sum*

FTT0782 fabI 35 10 100 3NRC – 4

FTT1208 rpiA 16 5 100 3KWM – 4

FTT1249 nadE 6 3 100 3FIU – 4

FTT0489c trxB 9 6 66 1CL0 – 4

FTT0963c aroG 8 2 – This work – 3

FTT0473 accC 13 10 67 2GPW 86102120 3

FTT0149c metK 8 10 66 1RG9 36102114 3

FTT0374c pyrG 22 10 59 2AD5 26102132 3

FTT1155c aroK 2 6 59 1KAG – 3

FTT0372c accD 0 10 58 2F9Y – 3

FTT1161 adk 7 10 56 1AKE 3610257 3

FTT0581 coaD 8 7 48 1VLH – 3

FTT1478c kdsB 5 9 48 3OAM – 3

FTT0559c cmk 10 10 47 1CKE – 3

FTT1468c nadC 8 1 – This work 5610235 2

FTT1681c lpcA 0 2 – This work – 2

FTT1369c tktA 2 9 99 3KOM 9610243 2

FTT0942c folK 0 1 99 3MCN – 2

FTT1721c purF 4 3 56 1ECG 7610267 2

FTT1377 fabF 13 10 55 2GFW 2610284 2

FTT0387 glmU 4 10 50 2V0L – 2

FTT0876c aroC 2 4 47 1UM0 – 2

FTT1154 aroB 2 3 43 3OKF – 2

FTT0894 purCD 6 5 32 2YS7 6610255 2

FTT0893 purM 3 1 100 3QTY 3610270 1

FTT0416 glgA 2 1 53 2R4T – 1

FTT0789 trpE 0 2 50 1I1Q – 1

FTT1674 ribH 3 0 45 1ZIS – 1

FTT1681c purB 3 2 40 1C3U – 1

FTT1027c yrbI 0 0 39 3N1U – 1

FTT1672 ribB 0 0 34 1KZL – 1

The gene locus tags correspond to the genes in Francisella tularensis subspecies tularensis Schu S4. Known Chemistries column refers to the number of inhibitors found
in DrugBank [28] and in BRENDA [29] that can be associated with the enzyme. The Database of Essential Genes [54] was used to survey in how many other organisms
this gene was annotated as essential for growth. The Protein Data Bank (PDB) [25] column refers to the most closely related protein structure available. We also added in
the targets for which no initial homology model existed but, through the course of this work, we developed the corresponding X-ray crystallographic structure. These
are referred to as ‘‘This work’’ in the PDB column. The human target E value reflects the presence of any human proteins homologous to the bacterial protein, and an
absence of any detectable homolog is indicated by ‘‘2.’’ The Criteria Sum column refers to the overall assessment of whether a protein target is suitable for drug
development, with the highest number indicating the highest likelihood of being able to develop drugs against the particular target. *Criteria Sum is the number of
criteria passed out of four total criteria (see Materials and Methods).
doi:10.1371/journal.pone.0063369.t001
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In Silico PK Assessment
A primary cause of failure in translating promising lead

compounds into clinically effective drug candidates is poor PK

properties, which lead to insufficient distribution and availability of

the compound for treatment. To address this, we implemented a

PK parameter filter to make an up-front prediction of the PK

properties of each compound and deselect from further consid-

eration compounds whose PK values deviated beyond the typical

ranges associated with approved drugs [30]. We used a whole-

body physiological-based PK (PBPK) model [31] to determine the

volume of distribution (Vd; in l/kg), clearance (CL; in

ml?min21?kg21), mean residence time (MRT; in h), and half-life

(TK; in h) for the compounds that were identified as possible

inhibitors. Although quantities calculated by means of PBPK

models are macroscopic parameters and are qualitative in nature,

they can provide a general indication of whether a compound is

likely to pass future pharmacological hurdles.

Figure 3 shows the distribution of these parameters across the 10

targets. The parameters are color coded from desirable (green) to

undesirable (red) based on the distribution of values among FDA-

approved drugs. All 190 selected compounds, their structures, and

calculated PK parameters are shown in Table S2. The PK

parameters varied considerably among the selected compounds,

and we considered a compound eligible if at most one parameter

was outside the desirable range. We based our final selection of

compounds on computed PK parameters, compound availability,

and a price of no more than $10/mg while ensuring that a diverse

range of compounds would be tested. The compounds were

roughly spread equally among the 10 selected targets, and in the

timeframe of the study, we successfully acquired and tested 40

Figure 2. Crystal structures determined in this work. Crystal structures for aroG (A), nadC (B), and lpcA (C) color coded according to their
secondary structure elements, with the active site region used in structure-based virtual screening shown as a gray surface.
doi:10.1371/journal.pone.0063369.g002

Table 2. Target selection and initial compound pools.

Gene Name EC Number Protein Name or Function Structure Known Chemistries

fabI 1.3.1.9 Enoyl-(acyl carrier protein) reductase (NADH) 3NRC 35

nadE 6.3.1.5 NAD+ synthase 3FIU 6

aroG 2.5.1.54 3-Deoxy-7-phosphoheptulonate synthase Determined 3TQK 8

aroK 2.7.1.71 Shikimate kinase 58% model 1KAG_A 2

coaD 2.7.7.3 Pantetheine-phosphate adenylyltransferase 49% model 1VLJ_B 8

nadC 2.4.2.19 Nicotinate-nucleotide diphosphorylase (carboxylating) Determined 3TQV 8

lpcA 5.3.1.28 D-Sedoheptulose 7-phosphate isomerase Determined 3TRJ 0

folK 2.5.1.15; 2.7.6.3 Dihydropteroate synthase 99% model 3MCN_B 0

aroC 4.2.3.5 Chorismate synthase 57% model 1UM0_A 2

ribH NA 6,7-Dimethyl-8-ribityllumazine synthase 46% model 1VSW_A 3

The metabolic gene targets, their enzyme classification (EC) numbers, and corresponding protein names or functions are shown. The protein structures were derived
from three different sources and annotated in the Structure column according to the following criteria 1) if the structure was previously deposited in the PDB, the
corresponding PDB code is given; 2) if the structure was determined by X-ray crystallography in the course of this work, it is indicated as ‘‘determined’’ and the PDB
code is given; or 3) if it was derived from a homology model the nearest structure’s sequence identity is given as a percentage followed by the primary template used
for modeling. The number of known inhibitors we could associate with the protein structure through literature searches is shown in the Known Chemistries column. NA,
not available.
doi:10.1371/journal.pone.0063369.t002

Rapid Drug Discovery against F. tularensis
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compounds from the larger initial set of 190 selected compounds

(Table 3).

Growth Kinetic Assays, Minimum Inhibitory
Concentrations, and Cytotoxicity

We made an initial qualitative assessment of the ability of each

compound to inhibit cellular growth before proceeding with

additional quantitative experimental tests. Thus, as detailed in

MATERIALS AND METHODS, all 40 compounds were evaluated for

their ability to affect the growth of F. tularensis Schu S4 in

Chamberlain’s medium [32] at 37uC. Among the compounds

tested in Table 3, six compounds (compounds 5, 12, 13, 14, 24, and

35) showed activity against the bacteria. The associated growth

curves for these compounds are shown in Figure S1. Analysis of

the 48-h growth curves showed that the largest difference between

the control conditions of no added compound compared with

different amounts of added compound occurred at roughly 32 h.

The growth at this time point was roughly reduced by at least 40%

at the largest amount of compound added (20 mg/ml). Addition-

ally, two of the compounds, compounds 14 and 35, completely

abolished bacterial growth at this concentration. The other

compounds did not affect bacterial growth under these conditions

for a range of possible reasons ranging from the lack of efficacy

against their putative target, an inability to reach their target, or

simply that the target enzyme was not essential under these

laboratory conditions.

Based on these results, we evaluated the six compounds for a

minimum inhibitory concentration (MIC), i.e., the concentration

at which the compound prevents the bacteria from growing, using

a preliminary 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT) cytotoxicity assay, as described in MATERIALS AND

METHODS. We used fully virulent F. tularensis Schu S4, and all

experiments were carried out in biosafety level 3 facilities. Figure 4

shows the chemical structures of each compound and the results of

both assays. The computed pharmacological parameters of all

compounds (Table S2) were within normally acceptable ranges for

future pharmaceutical optimization [30]. Compounds 14 and 35

showed the lowest MICs, consistent with the growth curve assay

results (Table 3).

A preliminary assessment of the compounds revealed a mixed

range of potency, toxicity, and novelty with respect to antibacterial

scaffolds. Three of the compounds (compounds 5, 13, and 24) had

MIC values .125 mg/ml and could only be considered weakly

potent at roughly ,400 mM. Compound 35, a putative nadE

inhibitor, was fairly potent but lacked novelty since compounds

with similar scaffolds have been discovered to be active against

Bacillus anthracis [33]. Likewise, compound 12, a putative coaD

inhibitor, was previously identified in a high-throughput screening

study on Escherichia coli coaD [34]. However, compound 14, also a

putative coaD inhibitor, was both a novel compound and the most

potent inhibitor identified in the study.

Discussion

Aspects of Rapid Drug Discovery
Although ‘‘rapid’’ is typically anathema to good science, the

ability to kickstart drug development against novel and genetically

modified strains of potential biothreats, such as F. tularensis,

represents an interesting test case of the scientific community’s

ability to quickly produce lead compounds for further develop-

ment and optimization. In the drug-discovery pipeline presented

here, we used in silico components that use theoretical and

knowledge-based approaches to leverage existing chemo- and

bioinformatics information to quickly pare down large screening

libraries before time-consuming experimental validation. We

found that by simultaneously targeting multiple carefully selected

targets we could mitigate the risk of failure of any one target. We

also found that enriching and focusing screening libraries with

compounds that are chemically similar to those that have been

previously identified to inhibit related enzymes was an efficient

way of increasing our success rate. Finally, we found that by using

in silico methods such as homology modeling and enzyme

classification prediction, we could expand our list of potential

targets beyond those that have been previously crystallized or

screened.

The first step in our approach was to identify potential drug

targets using a genome-scale metabolic network model of the

target F. tularensis strain. The identification of essential metabolic

enzymes has an accuracy range of 60–90% depending on the

organism, level of metabolic network detail, and growth conditions

[35]. With this a priori target validation accuracy, the likelihood of

including a truly essential gene as a target among even a small

number of selected enzymes is good. The caveat is that only

metabolic enzyme targets are considered. In this study, we adapted

an existing metabolic model for a related pathogen, the F. tularensis

LVS, to F. tularensis Schu S4 with minimal effort and generated

124 putative metabolic drug targets within two weeks. Although

Figure 3. Distribution of calculated pharmacokinetic parameters. Predicted PK parameters for each of the set of 190 candidate compounds
are shown. Each column represents one compound, and compounds are grouped according to their target. PK parameter values are represented by a
color spectrum ranging from ‘‘undesirable’’ (red) to ‘‘desirable’’ limits (green), defined by the respective 10 and 90 percentile values among the set of
Federal Drug Administration-approved drugs for each parameter. For volume of distribution (Vd), the limits were ,0.25 l/kg (red) and .3.30 l/kg
(green). For clearance (CL), the limits were .4.5 ml?min21?kg21 (red) and ,1.30 ml?min21?kg21 (green). For mean residence time (MRT), the limits
were ,1.0 h (red) and .14.0 h (green). Finally, for half-life (TK), the limits were ,1.5 h (red) and .13.0 h (green). The 40 compounds selected for
experimental testing are highlighted (). The putative protein targets are shown in Table 2.
doi:10.1371/journal.pone.0063369.g003
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there is limited data in the literature on essential genes in F.

tularensis, a systematic study of the related Francisella novicida

identified 51 of the 124 putative drug targets as essential [36].

Table 4 shows a summary of the time elements, activities, and

outcomes of each step in the study.

Target selection based on the existence of known small

molecules active against similar enzymes, availability of structures,

and lack of human homologs to reduce the potential for unwanted

toxicity took another week. The success of generating crystal

structures against some of these targets was greatly helped by the

availability of genomic DNA, express primer service, and robotics

Table 3. Growth inhibition property of tested compounds.

Target ID Compound SMILES Code
Growth
Inhibition

aroC 1 [n]2(c3nc(nc(c3nc2)NC4CC4)N)[C@@H]1C[C@@H](C = C1)CO No

2 [P]( =O)([O-])([O-])OCN1C( =O)NC(C1=O)(c3ccccc3)c2ccccc2.O.O No

3 [s]1c2c(cc1C(N(O)C( =O)N)C)cccc2 No

4 FC(F)(F)c1n[n](c(c1)c3ccc(cc3)C)c2ccc(cc2)[S]( =O)( =O)N No

5 [n]4(cncc4)c1ccc(cc1)\C = C2\Oc3c(ccc(c3)O)C\2 =O Yes

aroG 6 NC(Cc1[o]nc(c1)C)C( =O)O No

7 [s]1c(ccc1CC(N)C( =O)O)Br No

8 O([C@H]1[C@@H](C =CC( = C1)C( =O)O)O)C( = C)C( =O)O No

aroK 9 Brc1cc(ccc1)N2NC( =O)\C( = C\c3[o]c(cc3)c4c(cccc4)C( =O)O)\C2 =O No

10 Fc1ccc(cc1)N2NC( =O)\C( = C\c3[o]c(cc3)c4ccc(cc4)C( =O)N)\C2 =O No

11 S1\C( = C\c2cc(c(cc2)OCc3c(cccc3)COc4c(cc(cc4)C =O)OC)OC)\C( =O)NC1= S No

coaD 12 [n]21ncc(c2Nc3c(cccc3)C1 =O)C =O Yes

13 [n]21nc(c(c2Nc3c(cccc3)C1 =O)C =O)C Yes

14 Clc1ccc(cc1)C( =O)[n]2nc(cc2Nc3ccccc3)C Yes

fabI 15 N2(C( =O)c3c(cccc3)C2 =O)Cc1c(cccc1)N No

16 Fc1c(ccc(c1)C#N)Oc2c(cccc2)O No

17 Fc1c(ccc(c1)C( =O)N)Oc2c(cccc2)O No

18 [n]2(c3c(cc2C)cccc3)CC( =O)NCc1c(nccc1)N(C)C No

folk 19 N(Cc2nc3c(nc(nc3O)N)nc2)c1ccc(cc1)C( =O)O No

20 N(Cc2nc3c(nc(nc3N)N)nc2)c1ccc(cc1)C( =O)[O-] No

21 [nH]1cnc(c1C( =O)N)C( =O)N No

lpcA 22 [N+]( = O)([O-])c1ccc(cc1)NC2OC(C(C(C2O)O)O)CO No

23 O1C(C(C(C(C1CO)O)O)O)Oc2cc(c(cc2)C)C No

24 Clc1c(ccc(c1)Cl)OC2OC(C(C(C2O)O)O)CO Yes

25 N(C2OC(C(C(C2O)O)O)CO)c1ccc(cc1)OCC No

26 N(C2OC(C(C(C2O)O)O)CO)c1ccccc1 No

27 Brc1ccc(cc1)N[C@@H]2OC[C@H]([C@@H]([C@H]2O)O)O No

28 [n]2(cnc(c2O)C( =O)N)[C@@H]1O[C@@H]([C@H]([C@H]1O)O)CO No

29 N(C2OCC(C(C2O)O)O)c1ccc(cc1)C No

30 [n]2(cnc(c2N)C( =O)N)[C@@H]1O[C@@H](C(C1O)O)CO No

nadC 31 n1c2c(cc(c1C( =O)OCC)C( =O)OCC)C( =O)CCC2 No

32 NC( =O)COc1c(nccc1)C( =O)O No

nadE 33 O1[C@@H](CC( =O)c3c1cc(cc3O)O)c2cc(c(cc2)OC)O No

34 [n]1(c2nc(nc(c2nc1)O)N)COCCOC( =O)[C@@H](N)C(C)C No

35 [N+]( = O)([O-])c1cc(c(cc1)O)\C =N\c2cc(ccc2)O Yes

36 Fc1ccc(cc1)NC( =O)C[n]2c3c(c(c2)\C =C\c4nc(nc(c4[N+]( = O)[O-])O)O)cccc3 No

37 S1[C@H]2N([C@H](C1(C)C)C( =O)[O-])C( =O)[C@H]2NC( =O)COc3ccccc3 No

ribH 38 N2(NC( = CC2(O)c3cc(ccc3)OC)CC)C( =O)c1ccccc1 No

39 N2(NC( = CC2(O)c3ccccc3)C)C( =O)c1ccncc1 No

40 N2(NC( = CC2(O)c3ccc(cc3)OC)C)C( =O)c1ccccc1 No

The compounds that were successfully acquired were initially tested for growth inhibition as detailed in MATERIALS AND METHODS. The compounds are arranged according to
their putative targets (see Table 2), and the SMILES code is given for each compound. Compounds that exhibited growth inhibition in this assay were passed on for an
evaluation of their minimum inhibitory concentration (MIC) and cytotoxicity. ID, identifier.
doi:10.1371/journal.pone.0063369.t003
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to clone, express, and purify the proteins and to screen

crystallization conditions. All 10 enzyme structures derived from

new crystal structures, homology modeling, or the PDB were

ready for analysis within two weeks of the initial target selection.

Genetic studies to validate that these 10 enzyme targets are

essential to growth for F. tularensis was outside the scope of this

study. However, we targeted 10 metabolic enzymes in parallel, to

mitigate the risk that any one enzyme is non-essential or unsuitable

as an antimicrobial drug target.

The in silico selection, analysis, and compound identification of

potential small-molecule inhibitors from an initial set of 20,000

compounds to a focused target set of 190 compounds took an

additional five weeks. Two additional weeks were spent on an in

silico PK evaluation of these compounds in a whole-body PBPK

model, which allowed us to narrow the compounds to roughly five

compounds/target with varying structural diversity and acceptable

PK properties.

We received the first set of compounds three weeks after the

order was placed and the last set of compounds 8 weeks later, for a

total compound acquisition time of 11 weeks for the entire set of

40 selected compounds. The experimental work with the pathogen

in biosafety level 3 facilities began as soon as we received the first

compounds and was completed 11 weeks later. Compound

availability and acquisition was the major bottleneck in our

pipeline. We used the online service ChemNavigator, which

connects a wide range of compound suppliers and distributors.

The ordering, processing, and delivery times, while significantly

shorter than they would be if we had individually ordered each

compound, proved to be substantial. Furthermore, there was

significant attrition with respect to compound availability –

approximately 30–40% of requested compounds were either

unavailable or extremely expensive. Access to an in-house

compound library may significantly decrease compound acquisi-

tion time.

In summary, we were able to identify six compounds exhibiting

inhibition in whole bacterial cell-based growth assays out of 40

tested compounds against the fully virulent strain within 32 weeks

of the start of the project. Three of these compounds (compounds 12,

14, and 35; Figure 4) had good MIC values and low toxicity and

represent good starting points for further lead optimization and

Figure 4. Potency and toxicity of identified antimicrobials against F. tularensis. Compound ID, chemical structure, putative target, minimum
inhibitory concentration (MIC), and toxicity for each of the active antimicrobials identified in this study.
doi:10.1371/journal.pone.0063369.g004

Table 4. Elements and results of the rapid countermeasure discovery project.

Week Project Activities Targets Inhibitors

1–2 Francisella tularensis Schu S4 metabolic enzyme targets 124 –

3 Selection of high-likelihood druggable targets 31 –

4–5 Protein structure determination/modeling 31 –

6–10 In silico compound evaluation 10 2,000610

11–13 In silico pharmacology evaluation 10 190

14–29 Final selection and procurement of compounds 10 40

18–32 Cell-based efficacy and toxicity assays 5 6

Final set of cell-based, low-toxicity, inhibitory compounds 2 3

doi:10.1371/journal.pone.0063369.t004
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animal testing to establish their in vivo properties. The project

further generated three new crystal structures, one of which [lpcA

(FTT1681c)] could be an important novel antibiotic target for

future inhibitor development.

Identified Targets and their Inhibitors
The targets chosen for this study were identified from a

metabolic network reconstruction, originally based on the LVS of

the pathogen [17]. The identification of essential genes from a

network-based analysis of the ability of the pathogen to grow with

or without a specific enzyme has limited accuracy based on

extensive model system evaluations. However, it was inherent in

our analysis that 1) only the enzymes and reactions included in the

model were tested and 2) adaptive responses to different

environmental conditions were not modeled in our approach.

We mitigated these risks by considering multiple (ten) targets. This

proved important because only inhibitors for roughly half the

metabolic targets (four) affected bacterial growth in vivo.

The six compounds shown in Figure 4 were selected based on

predicted inhibition of nadE, coaD, aroC, and lpcA, enzymes that

are important in several distinct metabolic pathways. From a drug

development perspective, these enzymatic targets and their

associated compounds have different advantages and drawbacks.

Importantly, none of these compounds had previously been

reported active against any F. tularensis species. The following

enzymes are putative targets of these lead compounds – in vitro

validation of inhibition of their enzymatic activity will be a critical

next step in their development as candidate antimicrobials.

Finally, although there was no indication of resistance to these

antimicrobials arising after 48 hours, this is something we can

explore more extensively in follow-up work.

nadE inhibition. NH3-dependent NAD+ synthetase (nadE),

catalyzes the production of the cofactor NAD+, an ubiquitous

component of cell metabolism [37]. Reduction of NAD+ levels

impacts a multitude of biological processes in the cell. Compound 35,

identified through ligand-based screening, targets this enzyme with

an overall MIC of 32 mg/ml and is composed of a phenol group

and a 4-nitrophenol group separated by an ethylidenemethana-

mine group. This compound also has activity against B. anthracis

Sterne with an enzymatic IC50 of 2.5 mM and a MIC of .387 mM

[33]. The computed human PK parameters of this compound

were in good to moderate ranges compared with other FDA-

approved drugs. Furthermore, the compound was found to be

non-toxic at the tested 20 mg/ml dose. The potency against F.

tularensis of this relatively low-molecular-weight compound

(249.3 g/mol) renders it a good starting point for further

optimization and design.

coaD inhibition. Phosphopanethiene phosphatase (coaD)

reversibly transfers an adenylyl group from ATP to 49-phospho-

pantetheine, yielding dephospho-coenzyme A and pyrophosphate

[38]. The reaction is the penultimate step of the biosynthesis of

coenzyme A, another cofactor with multiple functional roles in the

cell. We found that three compounds, compounds 12, 13, and 14, all

identified through ligand-based screening, had MICs of 63, .125,

and 4 mg/ml, respectively. The computed PK parameters were in

good to moderate ranges, and all three compounds were non-

toxic. These scaffolds are similar to compounds identified by

Miller et al. [34] in a high-throughput screen against E. coli nadE.

Based on potency, PK parameters, and toxicity, these three

putative coaD inhibitors represent good starting points for further

lead optimization.

aroC inhibition. Chorismate synthase (aroC) catalyzes the

conversion of 5-O-(1-carboxyvinyl)-3-phosphoshikimate to chor-

ismate, an important intermediate in the production of the

aromatic amino acids phenylalanine, tyrosine, and tryptophan

[39]. Compound 5, identified through ligand-based screening, had a

MIC of .125 mM and is composed of a hydroxyl-benzofuran and

a phenyl-imidazole connected by propene. A similar compound

was found to be active against Streptococcus pneumonia chorismate

synthase inhibitor [40]. Although the computed PK parameters

were in the good to moderate ranges and the compound was non-

toxic, its relatively high molecular weight and relatively low

potency precludes it from being a good lead candidate for further

optimization. Furthermore, a drawback of inhibitors of essential

amino acid synthesis pathways is that a given pathogen may have

mechanisms to acquire these amino acids directly from the host

environment.

lpcA inhibition. Sedoheptulose 7-phosphate isomerase (lpcA)

catalyzes the conversion of sedoheptulose 7-phosphate to D-

glycero-a-D-manno-heptose 7-phosphate and D-glycero-b-D-

manno-heptose 7-phosphate [27]. Both products are important

metabolite intermediates in F. tularensis lipopolysaccharide biosyn-

thesis, components integral to assembling a functional outer

membrane. Compound 24, identified through structure-based ligand

docking (a dichlorobenzene joined to a tetrahydropyran via a

methoxymethane linker), was presumed to be active against this

target, with a MIC of .125 mg/ml. A survey of bioactivities

against other pathogens using ChEMBL [41] and PubChem [42]

turned up no other recorded activity of this compound. It was non-

toxic, but its Vd was predicted to be poor. However, given its low

molecular weight and ligand efficiency (efficacy vs. molecular

weight), further steps could be taken to substitute some of the polar

groups, thereby making the molecule more easily accessible to

tissues and increasing its Vd.

Conclusions
The present work represents an effort to systematically use a

genome-scale metabolic network model to rapidly identify

druggable targets, perform in silico evaluations of targets, and

identify small molecules that show efficacy against the pathogen.

Although the target list was necessarily limited to the predefined

set of enzymes that were included in the network, the network

modeling allowed us to identify which of these enzymes were likely

critical in sustaining bacterial growth. Metabolic enzymes are

among the more traditional antibiotic targets, rendering the

organism less competent for growth and more susceptible to attack

by host immune defense systems.

Given that the metabolic network was incomplete in describing

all possible reactions and adaptations that the organisms may

execute, we mitigated the risk of failure by simultaneously

evaluating multiple targets. Targets were also assessed upfront

for their likelihood of being druggable in terms of existence of

known compounds associated with similar enzymes and lack of

homology to human proteins to reduce the potential for toxicity.

We performed a combined ligand- and structure-based drug

discovery effort using a combination of known crystal structures,

homology models, and crystal structures developed in the project

to identify 190 putative compound/target associations among 10

targets. Selections based partially on computed PK parameters

further limited the set we initially assessed for ability to affect

in vitro pathogen cell growth. The growth inhibition assay weeded

out compounds that could not reach their targets, failed to inhibit

truly non-essential enzymes, or compounds that just were not

efficacious enough. This allowed us to focus our experimental

evaluation on just a handful of compounds, i.e., quantitatively

evaluate each compound’s potency in a biosafety level 3 facility.

Thus, within a time span of roughly 30 weeks we identified six

compounds that impacted growth of F. tularensis subspecies
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tularensis Schu S4 out of 40 tested compounds, which represented

an overall 15% success rate. The identified small-molecule

compounds will now form the basis for further optimization and

animal work.

Materials and Methods

Metabolic Network Modeling and Identification of
Essential Genes

We adapted a previously developed network model for F.

tularensis LVS strain for use for F. tularensis Schu S4 by identifying

and accounting for genetic differences between the two strains. At

the time of this effort, the F. tularensis Schu S4 sequences in

GenBank were not fully annotated, and we opted to insert mapped

differences between the raw Schu S4 sequences and the LVS

metabolic genes into the fully annotated LVS reference genome.

The GenBank files for the Schu S4 strain were used to obtain

coordinates for genes that contained possible genetic variations

compared with the LVS strain. MUMmer 3.18 [43] was used to

find single-nucleotide polymorphisms (SNPs), and show-snps [43]

was then used to list their coordinates in the genome. A Perl script

was used to take each gene containing SNPs and/or indels out of

the LVS reference genome and replace the appropriate nucleo-

tides with the ones in the Schu S4 strain. Indels were either deleted

or inserted. These new genes were then aligned back to the LVS

genome with NUCmer [44] to check that the SNPs were correct.

The genes were then translated into amino acid sequences and

aligned with the genes in the LVS reference genome using

ClustalW [45]. Using this approach, we identified four genes

(FTT0196c, FTT1456c, FTT1377, and FTT1373) that showed

significant differences between the LVS and Schu S4 strains, and

we adjusted the metabolic model accordingly.

Models were analyzed for single lethal (essential) gene knockouts

by traditional flux-balance analysis as implemented using the

COBRA toolbox [46]. This was achieved by calculating the

maximum rates of biomass production for each single gene

knockout compared with wild-type strains one gene at a time. The

gene and corresponding reaction deletions were implemented

using linear programming algorithms following the work of

Suthers et al. [47]. The entire computational procedure was

carried out in MATLAB to input the stoichiometric matrix,

metabolites, reactions, and gene-protein reactions of the model.

Target Selection Strategy
The four criteria for selecting drug targets among the 124

essential metabolic protein enzymes shown in Table S1 were

implemented as follows: for criterion 1, we first determined if

enzymes were related to other targets for which drugs or other

small molecules had successfully been discovered. The sequence of

each target was used as a query to run NCBI BLASTP [48]

searches of DrugBank [28,49–51] to find related sequences with

associated drug molecules. DrugBank protein sequences were

deemed significantly related to the query sequence if they had an E

value of ,10220 (a measure of statistical significance) and a

hitScore of .99.9 (a measure of alignment quality of query

sequence to reference sequence). As an additional step, we

assigned an enzyme classification (EC) number to each target

sequence by running a BLASTP search of the UniProtKB/Swiss-

Prot database [52] to obtain Swiss-Prot gene identifiers associated

with each query sequence. We used an E value cutoff of 1023 in

this case. We then used the Swiss-Prot gene identifiers to search

the ENZYME database [53] to obtain EC numbers. Using the EC

numbers as queries, we searched BRENDA [29] to obtain

inhibitors associated with the EC. We considered criterion 1

satisfied if five or more inhibitors were found in DrugBank and/or

BRENDA.

For criterion 2, we carried out BLASTP searches of the query

sequence against the Database of Essential Genes (DEG) [54]. We

used an E value cutoff of 10220 and stored the 10 closest hits. Both

the sequence identity of the hits as well as the number of unique

hits in the DEG database served as indicators of potential efficacy

and broad-spectrum character of drugs used to target the enzyme.

We considered criterion 2 satisfied if at least two organisms in DEG

had the gene listed as essential.

For criterion 3, we queried each target sequence against a

BLASTP database made up of all the protein sequences in the

PDB, a database of experimentally determined protein structures

[25]. The existence of known structures for similar proteins to a

target protein suggests both that the target protein is amenable to

experimental structure determination methods and that adequate

homologs exist for computational modeling. An E value cutoff of

1027 was used, and only the top hit was recorded along with its

corresponding protein name, E value, and sequence identity (in %)

with the query sequence. A hit was considered low, medium, or

high quality if it had a sequence identity of ,30%, 30–50%, and

50–100%, respectively, to the query sequence. We noted the

hitScore and E value of the highest quality hit for each target

sequence as the criterion for assessing the degree of structural

characterization of a given target. We considered criterion 3 satisfied

if a PDB structure with sequence identity of .55% was found.

Drugs designed to inhibit essential proteins in a bacterial

pathogen may also inhibit homologous proteins in humans,

causing adverse or toxic side effects. To avoid this, we prioritized

targets that had no close human homologs. Thus, for criterion 4, we

queried each target sequence against the NCBI human RefSeq

online BLASTP database. In this case, we used an E value cutoff

of 10220, and we retained the top five hits. We considered criterion

4 satisfied if no hit was found in the human genome.

All BLASTP searches were written into protocols within

Accelrys Pipeline Pilot (accelrys.com/products/pipeline-pilot).

Unless otherwise specified, all BLASTP databases were generated

locally using FormatDB, part of the NCBI BLASTP software

package.

Protein Structure Determination
Protein crystallography. Among a selected subset of 31

protein targets (Table S2), we used X-ray crystallography or

homology modeling to characterize the structure of 24 targets that

did not have existing structures of the F. tularensis protein in the

PDB. We first attempted experimental structure determination of

all 24 proteins using high-throughput X-ray crystallography. Upon

inspection of the target protein sequences, we truncated two

sequences to remove unstructured NH2- or COOH-terminal

regions likely to interfere with crystallization. These truncations

affected aroG (FTT0963c), which was shortened from amino acids

1–370 to 14–354, and amidophosphoribosyltransferase [purF

(FTT1721c)], which was shortened from amino acids 1–496 to

1–482. We obtained genomic DNA for cloning from BEI

Resources (www.beiresources.org) and template DNA from a

clone collection held at Arizona State University. We cloned 24

targets by PCR from the genomic DNA and/or clone collection

and inserted into three expression vectors designed to produce the

target protein with NH2-terminal 10 x His, maltose-binding

protein, or glutathione-S-transferase fusion tags. Given the small

number of targets, we skipped small-scale expression trials and

moved directly into large-scale expression in E. coli; 20 of the 24

targets produced enough protein to prepare crystallization trials

within 4 days after we received the primers. Three proteins (aroG,
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nadC, and lpcA) crystallized rapidly, with initial crystals appearing

in 1–2 days. We were able to optimize the crystallization

conditions and produce diffraction-quality crystals within days

thanks to this rapid crystallization. We collected data sets on all

three targets using our in-house X-ray source. Preliminary analysis

showed that the three structures could be solved readily by

molecular replacement. We used automatic tracing using ARP/

wARP [55], and manual rebuilding, and refinement was finished

within one week of receiving the primers.

Homology modeling. For constructing models of protein

that have sequence homology to known structures, we used the

Amino acid Sequence to Tertiary Structure (AS2TS) protein

modeling program to predict the tertiary structure of the targets

shown in Table 1 [56], based on their respective protein

sequences. In brief, for each protein sequence, the AS2TS system

performs PSIBLAST to search the PDB for templates and

produces a set of priority models, each selected based on different

criterion (e.g., sequence identity or E value). The templates are

then analyzed and refined. For example, if amino acids are missing

from any of the template structures, Local-Global Alignment

(LGA) [57] comparisons and secondary-structure prediction using

PSIPRED [58] are used to replace the missing amino acids by

grafting suitable structural fragments from identified similar

structures or the library of structural motifs. We constructed the

backbone structures consisting of the main chain atoms of the

proteins using the refined templates. We filled in missing loop

regions using structural predictions based on alternate templates.

Side-chain atom placements for residues identical to those in the

template were directly used in the models, and the remaining side

chains were calculated using SCWRL [59]. We extracted

functional identifiers (i.e., EC numbers and Gene Ontology terms)

from identified PDB template descriptions as annotation informa-

tion to assist in target selection.

In Silico Identification of Possible Inhibitors
We performed a literature search on each of the enzymes shown

in Table 2 to collect small-molecule exemplars for each target. We

used DrugBank [28], BRENDA [29], and literature to search for

compounds associated with each target and used them to retrieve

similar compounds from ChemNavigator (www.chemnavigator.

com), a database of 57 million commercially available compounds.

We used Pipeline Pilot built-in functional circular substructure

fingerprints, termed ‘‘FCFP_4,’’ which are based on circular

substructure fragments having a maximum diameter of four

bonds, to represent the molecules and calculate Tanimoto

coefficients to assess similarity of the ChemNavigator compounds

to the query compounds [60]. For folK, we used the knowledge of

its substrates and products to select an initial molecular exemplar

that could interact with the enzyme, whereas for lpcA, we used the

virtual screening result of Umamaheswari et al. [61] against lpcA

as a source of exemplar inhibitors. For each target from the results

of the ChemNavigator search, we identified the 2,000 closest

compounds to our collected set of DrugBank, BRENDA, and

literature compounds. For each of these 2,000 compound libraries,

we expanded each compound’s conformations and generated a

single low-energy three-dimensional structure of each of the

exemplars collected using the OMEGA program (www.eyesopen.

com) [62,63]. Using these low-energy structures as queries, we ran

the ROCS [64] shape comparison application on each compound

library and retained the top 10 hit molecules for each target shown

in Table 2. These compounds roughly represent the ligand-based

drug design approach. In addition, we used the small-molecule

docking program GLIDE [65–67] in SP mode to dock the 2,000

compound library to ascertain whether the compounds could

favorably interact with the active sites of the enzymes themselves.

We retained the top-scoring molecules from GLIDE for each

target shown in Table 2. Finally, we combined the most shape-

similar compounds and the best binders to retain 190 unique

compounds for all targets. These compounds were, thus, predicted

to be active against the pathogen either based on complementarity

to the binding pockets (GLIDE docking) or based on similarity to

compounds known to inhibit related targets (ROCS similarity to

small-molecule exemplars).

PBPK Modeling
We used whole-body PBPK model BioDMET [31] software to

calculate PK parameters (Vd, CL, MRT, and TK) for the

molecules that were postulated to have a possible interaction with

the selected enzyme targets. BioDMET uses ordinary differential

equations to describe how drugs are absorbed, distributed,

metabolized, and excreted by the human body at macroscopic

and molecular scales. Each major organ in the body is modeled,

accounting for the circulation flows of arterial and venous blood

and lymph. Physical-chemical properties of a molecule, such as its

molecular weight, chemical structure, and charge, affect its

permeability and clearance characteristics according to the

physics-based equations in the BioDMET model.

For each molecule, we computed the partition [log(P)] and

distribution [log(D)] coefficients for pH values ranging from 2 to

11 using the Chemaxon version 5.3 partitioning plugin (www.

chemaxon.com). We computed estimates for a molecule’s plasma

protein binding and liver microsomal clearance from in-house

quantitative structure-activity relationship models and the

SMILES string for each molecule. We used these input

parameters, along with the molecular weight for each molecule,

as input to the BioDMET software (version 3) and performed a

standardized simulation run for each molecule. We ran each

simulation using a single intravenous injection of 1 g of the

molecule administered over 10 s in a 71-kg 40-yr-old man with a

body mass index of 24 kg/m2. We measured the computed

concentration (in mg/ml) of the injected molecule in the plasma at

15-, 30-, 60-, 120-, 180-, 240-, 300-, 360-, 720-, and 1440-min

time points. These simulated data were used to compute the values

of Vd, CL, MRT, and TK for each molecule.

In Vitro Assays
All experimental work used the fully virulent F. tularensis

subspecies tularensis Schu S4 pathogen (Department of Defense

Unified Culture Collection strain FRAN016) in properly accred-

ited biosafety level 3 facilities at United States Army Medical

Research Institute of Infectious Diseases.

Liquid growth kinetics. We tested each compound at

concentrations of 0.31, 0.53, 1.25, 5.00, 10.00, and 20.00 mg/

ml. For each concentration, we measured activity against bacterial

samples in 30-min increments for 48 h after the addition of the

compound. Briefly, scrapings from F. tularensis Schu S4 in 25%

glycerol stock were streaked onto a chocolate agar plate and

incubated at 37uC for 2 days until clearly formed colonies

appeared. A single colony from the chocolate agar plate was used

to inoculate 3 ml Chamberlain’s medium [32], which was

incubated overnight in a 50-ml conical tube at 37uC at

250 rpm. The overnight culture was diluted to 0.1 optical density

at 600 nm (OD600) in fresh Chamberlain’s medium, and 250-ml

aliquots were dispensed onto a 96-well plate arrayed with 5-ml

samples of the appropriately diluted compound. Next, 200-ml

aliquots of the compound-treated inoculum were transferred to the

wells of a Bioscreen C honeycomb plate. Plates were sealed and

monitored on the Bioscreen C growth curve machine (Growth
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Curves USA) for 48 h with moderate continuous shaking and

OD600 scans every 30 min.
MIC. Compounds showing activity in the growth curve

experiments were subsequently evaluated in MIC and cytotoxicity

assays. In the MIC assay, serial dilutions of the compound were

made in Mueller-Hinton II cation-adjusted broth (MHB; Becton

Dickenson) growth medium [68]. A modified microdilution

method of National Committee for Clinical Laboratory Standards

guidelines was followed [Methods for Dilution of Antimicrobial

Susceptibility Tests for Bacteria That Grow Aerobically (5th ed.) 2000,

approved standard M7-A5, National Committee for Clinical

Laboratory Standards]. Cultures of F. tularensis Schu S4 were

grown for 2 days at 37uC on Remel chocolate agar plates

(ThermoFisher Scientific). Fresh growth from a plate was used to

inoculate MHB containing BBL IsoVitaleX (BD Diagnostics) as

recommended by the manufacturer. The optical density of the

bacterial suspension was adjusted to 16106 colony-forming units/

ml, and 0.05 ml of the adjusted bacterial suspension was added to

each well in triplicate in Nunc 268200 round-bottom 96-well

plates (Fisher Scientific). Plates were incubated for 44–48 h at

37uC. After incubation, plates were analyzed for growth at

600 nm and individually visualized to verify growth or lack of

growth to identify the end point. MIC was determined as the

lowest concentration of the compound that completely inhibited

bacterial growth.
Cytotoxicity assay. We monitored cytotoxicity using a

modified MTT assay [69] and mouse leukemic monocyte

macrophage RAW 264.7 cells. This assay measured the reducing

potential of the cells using a colorimetric reaction. Reductase

enzymes in viable cells will reduce the MTT reagent to a colored

formazan product. Into a 96-well flat-bottom plate (Costar no.

3596, Fisher Scientific), 0.2 ml of RAW 264.7 cells at 2.56105

cells/ml in Dulbecco’s modified Eagle medium (DMEM; Gibco

Invitrogen) containing 10% fetal calf serum (FBS), penicillin

(100 U/ml), and streptomycin (100 mg/ml) were added, and cells

were incubated overnight at 37uC with 5% CO2. After an

overnight incubation, cells were rinsed twice with PBS, and 0.2 ml

of DMEM without FBS and antibiotics were added, and cells

incubated for 1 h at 37uC with 5% CO2. DMEM was removed,

and 0.1 ml of fresh DMEM without FBS and antibiotics but

containing dilutions of the test compound were added. Cells were

then incubated overnight at 37uC with 5% CO2. After an

overnight incubation (,20 h), the medium was removed, 0.1 ml of

DMEM with MTT (0.08 ml DMEM plus 0.02 ml MTT at 5 mg/

ml) were added to each well, and cells were incubated for 2 h at

37uC plus 5% CO2. After incubation, 0.1 ml of a solubilizing

solution containing 0.2 g/ml of sodium dodecyl sulfate (Sigma-

Aldrich) in 50% dimethylformamide (pH 4.6) was added to

dissolve the formazan. The absorbance of the colored solution

was measured at 570 nm with a reference at 690 nm. The

apoptotic molecule staurosporine [70] was used at 10 mM (Sigma-

Aldrich) as a positive control in the MTT assay. Stock solutions

were prepared at 10 mM in DMSO and diluted in DMEM and

used at a final concentration of 10 mM.

Supporting Information

Figure S1 Growth curves for the six active compounds.

(PDF)

Table S1 Essential metabolic genes. The F. tularensis

subspecies tularensis Schu S4 nomenclature was used for the gene

association.

(PDF)

Table S2 PBPK results. Column 1 shows the ChemNavigator

structure identifier, column 2 shows the molecular SMILES code,

column 3 shows a picture of the molecule, column 4 shows the

volume of distribution (Vd; in l/kg), column 5 shows the clearance

(CL; in ml?min21?kg21), column 6 shows the mean residence time

(MRT; in h), column 7 shows the half-life (TK; in h), and column 8

shows the putative targets(s).

(PDF)
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