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Abstract

Background: The case fatality ratio (CFR), the ratio of deaths from an infectious disease to the number of cases, provides an
assessment of virulence. Calculation of the ratio of the cumulative number of deaths to cases during the course of an
epidemic tends to result in a biased CFR. The present study develops a simple method to obtain an unbiased estimate of
confirmed CFR (cCFR), using only the confirmed cases as the denominator, at an early stage of epidemic, even when there
have been only a few deaths.

Methodology/Principal Findings: Our method adjusts the biased cCFR by a factor of underestimation which is informed by
the time from symptom onset to death. We first examine the approach by analyzing an outbreak of severe acute respiratory
syndrome in Hong Kong (2003) with known unbiased cCFR estimate, and then investigate published epidemiological
datasets of novel swine-origin influenza A (H1N1) virus infection in the USA and Canada (2009). Because observation of a
few deaths alone does not permit estimating the distribution of the time from onset to death, the uncertainty is addressed
by means of sensitivity analysis. The maximum likelihood estimate of the unbiased cCFR for influenza may lie in the range of
0.16–4.48% within the assumed parameter space for a factor of underestimation. The estimates for influenza suggest that
the virulence is comparable to the early estimate in Mexico. Even when there have been no deaths, our model permits
estimating a conservative upper bound of the cCFR.

Conclusions: Although one has to keep in mind that the cCFR for an entire population is vulnerable to its variations among
sub-populations and underdiagnosis, our method is useful for assessing virulence at the early stage of an epidemic and for
informing policy makers and the public.
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Introduction

When an emerging influenza virus appears in humans, an early

concern is whether the virus has the potential to cause a

devastating pandemic, i.e., the global spread of an infection killing

a substantial number of people. To assess the pandemic potential,

two critical aspects need to be studied: the transmission potential

and the clinical severity of the infection [1–3]. It is widely known

in epidemiology that the former aspect, the transmission potential,

can be quantified by the reproduction number, i.e., the average

number of secondary cases generated by a single primary case

[1,4], by characterizing the heterogeneous patterns of transmission

(e.g. age-specificity) [5], and by measuring other epidemiological

quantities such as household secondary attack rate. There are two

different approaches to assessing the latter aspect of a pandemic,

the virulence of infection. One is to explore specific genetic

markers of the virus that are known to be associated with severe

influenza (e.g. the PB1 gene) [6], although the absence of a known

marker, as was for example the case in a novel swine-origin

influenza A (H1N1) virus (S-OIV), does not necessarily indicate

that the virus is benign [7]. Another is an epidemiological

approach to quantification of the case fatality ratio (CFR), the

conditional probability of death given infection (or disease; see

below).

The CFR in general is vaguely defined as the ratio of deaths to

cases, whose denominator should ideally be the total number of

infections, but is frequently taken to be only the diagnosed cases

due to the impossibility of counting all infected individuals.

Because in the early phase of an outbreak information is often

limited to confirmed cases, we concentrate on confirmed cases

only, and refer to the CFR as the confirmed CFR (cCFR) for

clarity. As the world has experienced a global spread of S-OIV

since April 2009, methods have been sought for the real-time

assessment of virulence by measuring the cCFR which is a

representative of the epidemiological measurements of virulence

[2,3]. Nevertheless, a much-used crude estimate of the cCFR, i.e.
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the ratio of the cumulative number of deaths to cases at calendar

time t, tends to yield a biased (and mostly underestimated) cCFR

due to the time-delay from onset to death [8]; similar estimates of

such a biased cCFR for severe acute respiratory syndrome (SARS)

have shown how such estimates can vary substantially as an

epidemic progresses, stabilizing only in the later stages of the

outbreak [8,9]. In the following we will use the terms biased and

unbiased cCFR when we refer to this particular source of bias.

Improving an early epidemiological assessment of an unbiased

cCFR is therefore crucial for the initial determination of virulence,

shaping the level and choices of public health intervention, and

providing advice to the general public [10]. To obtain an estimate

of the cCFR, the lesson from the SARS outbreak is that a

statistical technique is required that corrects the underestimation,

e.g. a technique addressing censoring [8,11,12]. Nevertheless, in

the case of novel S-OIV, an early unbiased estimation of the cCFR

has appeared particularly challenging. Initial reports from the

government of Mexico suggested a virulent infection, whereas in

other countries the same virus was perceived as mild [13]. In the

USA and Canada there were no deaths attributed to the virus in

the first 10 days following a declaration of a public health

emergency by the World Health Organization. Even under similar

circumstances at the early stage of the global pandemic, public

health officials, policy makers and the general public want to know

the virulence of an emerging infectious agent. That is, a simple

method for assessing cCFR is called for, even when only a few

deaths have been reported, or even when there has been no report

of deaths. Except for another unbiased cCFR estimate in Mexico

(0.4%, range 0.3–1.5%) [1], this early assessment has been

missing. In the USA, a technical discussion has taken place on the

crude measurement of the biased cCFR using the cumulative

numbers of deaths and confirmed cases so far [10].

In line with this, an epidemiological method and its practical

guide for early assessment of virulence are called for. The present

study aims at developing a simple method to assess the virulence of

an emerging influenza virus at the early stage of the epidemic,

even when there have been only a few deaths or none at all. The

method takes into account the time from the onset of symptoms to

death, while differing from previously published statistical methods

which employ censoring techniques [8,11]. As an example, we give

an early prediction of the cCFR of S-OIV infection in the USA

and Canada, and show that the unbiased cCFR, as estimated by

our method at the early stage of the epidemic in these countries,

was in fact comparable to that estimated for Mexico [1]. Our

unbiased estimation of the cCFR does not address all sources of

error in data (e.g. underdiagnosis of infected individuals) and we

summarize the relevant issues in the discussion.

Materials and Methods

Theoretical background
We assess the virulence of S-OIV by measuring the risk of

death, expressed as the cCFR. The cCFR is interpreted as the

conditional probability of death given confirmed diagnosis [14].

Since the data of S-OIV infection we use in the present study are

only confirmed cases, we have replaced ‘‘infection’’ in the

denominator of CFR by confirmed diagnosis of infection (see

Discussion). Accordingly, an unbiased estimator of cCFR would be

the proportion of deaths among confirmed cases at the end of an

epidemic. Although one could instead assess the virulence by

measuring the proportion of hospitalized cases among a total

number of confirmed cases, criteria for hospital admission are not

universal, being influenced by isolation policies and in some

regions by cultural and social differences.

In the following, the notation used to represent the three

different statistical measurements of cCFR is: (i) bt, which is a

crude, biased estimate of the cCFR calculated at time t; (ii) p,

which is an unbiased cCFR to be estimated in the present study,

and is the unknown parameter that governed the outbreaks; and

(iii) pt, a random variable, which yields an estimator of p (see

below) and is regarded as the realized value in one particular

outbreak. First, bt, a crude and biased estimate of cCFR, calculated

at time t, is given by the ratio of the cumulative number of deaths

Dt to the cumulative number of confirmed cases Ct:

bt~
Dt

Ct :

ð1Þ

During the outbreak of severe acute respiratory syndrome (SARS)

in 2002–03, it was shown that this estimator, bt, considerably

underestimates the cCFR [8]. This is easily demonstrated by

relating Ct and Dt to the incidence function ct (i.e. the number of

new confirmed cases on day t), and the conditional probability

density function fs of the time from onset to death, given death.

First, Ct is the cumulative number of confirmed cases up to time t:

Ct~
Xt

i~0

ci: ð2Þ

Second, Dt is the cumulative number of deaths up to time t:

Dt~pt

Xt

i~0

X?
j~0

ci{j fj : ð3Þ

As we mentioned above, pt is the realized proportion of confirmed

cases to die from the infection, and is a random variable, which

would be an unbiased estimator for p. Therefore, bt can be

rewritten as

bt~pt

Pt
i~0

P?
j~0

ci{j fj

Pt
i~0

ci

:

ð4Þ

As can be observed in equation (4), the estimator bt is smaller than

the realized pt, because the time delay from onset to death,

expressed in the double summation in the numerator, results in the

numerator being smaller than the denominator (note that fs is a

probability distribution). Therefore we refer to bt as the biased

estimator of the cCFR: it gives a biased estimate, calculated on day

t, of the cCFR [8,11]. When we observe the entire course of an

epidemic (i.e. tR‘), bt tends to pt and becomes an unbiased

estimator. The aim is to obtain an unbiased estimator ‘‘well

before’’ observing the entire course of the outbreak.

Statistical estimation
An adjustment of the estimator bt by a factor of underestimation

is achieved by rearranging equation (4):

pt~bt

Pt
i~0

ci

Pt
i~0

P?
j~0

ci{j fj

:

ð5Þ

We use pt as the unbiased estimator of p, which is informed by

three pieces of information: the cumulative number of deaths Dt;

Early Assessment of Virulence
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the incidence ct; and the distribution of the time from onset to

death fs. The former two are observed during the course of an

epidemic. When there are a few deaths or none at all, an

assumption has to be made for fs, e.g. from literature based on

previous outbreaks (see below for detailed descriptions of fs). We

call the multiplicative factor in equation (4) the factor of

underestimation, ut, defined by

ut~

Pt
i~0

P?
j~0

ci{j fj

Pt
i~0

ci

:

ð6Þ

The estimator pt can be written as pt = bt/ut.

Figure 1 depicts the concept of the sampling scheme. The

cumulative number of cases Ct is regarded as the total population

size. Of these, only a proportion ut has been at risk for dying by

time t, whereas the outcome for the remaining proportion 1 - ut is

still unobserved. Among the utCt cases that have been at risk, Dt

have died and utCt – Dt have survived the infection. This is a

sample from a binomial distribution with sample size utCt and

probability p:

Pr X~Dtð Þ~
utCt

Dt

� �
pDt 1{pð ÞutCt{Dt : ð7Þ

An alternative way of deriving this probability is by first

considering the total number, y, of people in the sample Ct that

will ultimately die from infection, which is binomially distributed

with sample size n = Ct and probability p. However, because of the

time delay from onset to death, we do not observe this outcome by

time t: only for a proportion ut is the outcome observed. Hence our

observation is a hypergeometric sample from a population of size

Ct, with sample size utCt, and number of deaths y [15,16]:

Pr X~Dtð Þ

~
XCt{utCtzDt

y~Dt

Ct

y

 !
py 1{pð ÞCt{y

y

Dt

 !
Ct{y

utCt{Dt

 !

Ct

utCt

 !
8>>>><
>>>>:

9>>>>=
>>>>;
ð8Þ

which is equivalent to equation (7). We can use equation (7) as a

likelihood function to obtain the maximum likelihood estimate of

pt:

L pt; Ct,Dt,utð Þ~
utCt

Dt

� �
pt

Dt 1{ptð ÞutCt{Dt : ð9Þ

The 95% confidence interval of pt is derived from the profile

likelihood. Further technical details, especially where an exponen-

tial growth of incidence is observed, are given in the Supporting

Information S1.

Quantitative illustrations
For calculation of the factor of underestimation ut, two pieces of

information are needed: the incidence function ct and the

distribution of time from onset to death fs. For ct, we use the

published dates of onset among confirmed cases, while fs is

assumed known.

We analyze empirical datasets of two different infectious

diseases: SARS in Hong Kong (2003) and S-OIV infection in

the USA and Canada (2009). First, we examine a simplified

version of our method by using only deaths and cases from an

early stage of the SARS epidemic, and compare our estimate

against the eventual stable estimate at the end of the epidemic. For

simplicity, we employ an exponential distribution for the

distribution of the time from onset to death, F(s), with a mean of

35.9 days [11], and fs is subsequently calculated as the daily

increase in F(s), i.e., fs = F(s)2F(s21). Second, we use the most

recent published datasets of S-OIV epidemics in which the dates of

illness onset for confirmed cases are known [17,18]. The latest

such reports for the USA and Canada were at May 1 and June 10,

2009, respectively. In the USA, there were 399 confirmed cases by

May 1, with 394 known dates of onset (Figure 2A). Among 399

confirmed cases, 2 cases resulted in death by May 1. In Canada,

there were 2978 confirmed cases, with 2004 known dates of onset

by June 10, among which 4 cases died by June 10 (Figure 2B). The

biased cCFR estimates, bt in these countries were 0.50% ( = 2/399)

and 0.13% ( = 4/2978), respectively. The six deaths are insufficient

to determine the distribution of time from onset to death for these

countries. We therefore employ a gamma distribution for F(s) (to

calculate fs), with reference to historical data for H1N1 [19], with a

mean length of 9 days and a variance of 39.7 days2 (coefficient of

variation 70%, shape parameter 2.04) [20]. To address the

uncertainty, we examine the sensitivity of our unbiased cCFR

estimate to different means (6–14 days) and variances (9–159

days2). See Supporting Information S2 for further technical details.

For the unbiased cCFR, we use 399 and 2978 cases,

respectively, as our Ct in equation (9) for the USA and Canada.

Figure 1. The population and sampling process for estimating
the unbiased confirmed case fatality ratio during the course of
an outbreak. At time t we know the cumulative number of confirmed
cases and deaths, Ct and Dt, and wish to estimate the unbiased case
fatality ratio p, by way of the factor of underestimation ut. If we knew ut

we could specify the size of the population no longer at risk (utCt,
shaded), although we do not know which surviving individuals belong to
this group. A proportion p of those in the group still at risk (size (1- ut)Ct,
unshaded) is expected to die. Because each case no longer at risk had an
independent probability of dying, p, the number of deaths, Dt, is a sample
from a binomial distribution with n = utCt, and pt = p.
doi:10.1371/journal.pone.0006852.g001
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Similarly, Dt is 2 and 4 deaths, respectively. Nevertheless, since the

adjustment of underestimation requires dates of symptom onset,

we use 394 and 2004 cases for computing ut. Although this has

little impact on the estimate for the USA, the cCFR in Canada is

likely to be underestimated by our estimator, because the majority

of the 974 cases whose dates of onset have yet to be clarified, may

have experienced their symptom onset close to the latest time

point of observation. We subsequently compare cCFR estimates

between the USA and Canada by means of Fisher’s exact test. For

the hypothesis testing, the number of deaths, Dt, as well as the

number of those survived, calculated as utCt2Dt, is compared

between two countries.

Results

SARS: the case of exponential growth phase
The factor of underestimation u during the exponential growth

phase is independent of time t and given by

u~M {rð Þ ð10Þ

where M(-r) is the moment generating-function of f(s), given the

exponential growth rate r which is estimated via a pure birth

process (see Supporting Information S3). That is, when f(s) is the

density of an exponential distribution with mean T, we have

u = M(2r) = 1/(1+rT).

Figures 3A and 3B show the cumulative numbers of cases and

deaths of SARS, and Figure 3C the observed (biased) cCFR

estimates as a function of time, i.e. the ratio of the cumulative

number of cases to deaths at time t. Due to the delay from onset of

symptoms to death, the biased estimate of cCFR at time t

underestimates the realized cCFR at the end of an outbreak (i.e.

302/1755 = 17.2 %). Nevertheless, even by only using the observed

data for the period 19 March to 2 April, equation (10) yields an

appropriate prediction (Figure 3D), e.g. the unbiased cCFR at 27

Mar is 18.1 % (95% CI: 10.5, 28.1). An overestimation is seen in the

very early stages of the epidemic, but the 95% confidence limits in

the later stages include the realized cCFR (i.e. 17.2 %).

Influenza (H1N1) in 2009: the case of a few deaths
When only a few deaths have been reported at the early stage of

an epidemic, the unbiased cCFR estimate is given by minimizing

the negative logarithm of the likelihood (see equation (9)). Given 2

and 4 deaths in the USA and Canada, respectively, and employing

a gamma-distributed time from onset-to-death, the unbiased

estimates of the cCFR are 1.23% (95% confidence interval (CI):

0.21, 3.76 %) and 0.18% (95% CI: 0.05, 0.41%) in the USA and

Canada, respectively. The estimate in the USA appears signifi-

cantly higher than that in Canada (Fisher’s exact test; p,0.01).

The uncertainty bounds on the unbiased cCFR estimates in both

countries overlap with that estimated for Mexico [1]. Sensitivity

analysis suggests that the expected values may lie in the range of

0.81–4.48% and 0.16–0.22% in the USA and Canada, respec-

tively (Figure 4).

Influenza (H1N1): the case of no death
Even when there has been no observation of death by time t, it

would be useful for policy makers to understand the implication of

no deaths for interpreting virulence in a conservative way. When

Dt = 0 equation (7) simplifies to:

Pr X~0ð Þ~ 1{pð ÞutCt ð11Þ

which would result in an unbiased cCFR estimate of 0. Because

sampling a finite number of cases during the course of an outbreak

cannot prove that infection never results in death, a more useful

result would be the maximum cCFR with a certain level of

confidence if no deaths are observed after Ct cases. To obtain this

result, we rearrange equation (11) to obtain

pmax~1{a
1

utCt ð12Þ

where pmax is the maximum cCFR given Ct cases and no deaths, at

a confidence level of 1-a, e.g. 95% if a = 0.05. Equation (12) is

useful for obtaining a conservative estimate of virulence (i.e. upper

bound of possible cCFR estimates) when no deaths have been

reported by time t. In particular, during the early exponential

growth phase the factor of underestimation, u, is independent of t.

Assuming that the exponential growth phase of influenza

continued until April 21 and 24, 2009, respectively, in the USA

and Canada, r in these countries is estimated at 0.183 (95% CI:

0.133, 0.245) per day and 0.300 (95% CI: 0.241, 0.367) per day,

Figure 2. Temporal distribution of the date of onset for an H1N1 influenza epidemic in the USA and Canada, 2009. Epidemic curves of
confirmed cases of human infection with swine-origin influenza A (H1N1) virus (S-OIV) with known date of onset in (A) the USA (n = 394) and (B)
Canada (n = 2004). The vertical dashed line is the date on which the Centers for Disease Control and Prevention identified S-OIV. The World Health
Organization increased the pandemic alert level from 3 to 4 on April 27 (black arrow) and then to 5 on April 29 (gray arrow). It should be noted that
confirmed cases include substantial numbers of imported cases from abroad. In Canada, a few cases whose dates of onset were unable to be traced
are also included according to their dates when a specimen was collected (the exact number of such cases is not known). Assuming that their impact
on our estimation procedure is negligibly small, we regard all cases in B as representing the dates of onset.
doi:10.1371/journal.pone.0006852.g002
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respectively (see Supporting Information S3). The resulting pmax in

the USA and Canada (based on 42 and 91 cases and no deaths) is

shown in Figure 5. These upper bounds are examined for

confidence levels at 95% and 99%. If the mean and variance of the

time from onset to death are 9 days and 39.7 days2, and we

employ a gamma distribution, pmax is estimated at 21.2% and

30.7% at a = 0.05 and 0.01 in the USA. Similarly, pmax in Canada

is estimated at 16.8% and 24.6% at a = 0.05 and 0.01,

respectively.

Discussion

We propose a new epidemiological method for assessing the

virulence of an emerging infectious disease at the early stage of an

epidemic. The results with the Hong Kong SARS dataset prove

the usefulness of this method that corrects the biased cCFR

estimator which is simply the ratio of cumulative deaths to cases.

Early in the epidemic, the ultimately realized cCFR is within the

confidence interval obtained by our method. The proposed

method is particularly useful when an epidemic curve of confirmed

cases is the only data available (i.e. when individual data from

onset to death are not available, especially, during the early stage

of the epidemic).

Our estimates suggest that the virulence of S-OIV H1N1

infection is comparable to the virulence observed in past influenza

pandemics of the 20th century (,2.0 % for the 1918–19 pandemic

and,0.5 % for the 1957–58 pandemic [21]). Although our

estimates may not be as high as 2.0%, and even though the

unbiased cCFR estimate for the USA is a likely overestimation (see

below), we should emphasize that antiviral treatment and other

medical interventions have been instituted from the beginning of

this pandemic. Our results show that the few observations of death

in the USA and Canada give us no reason to believe that the

unbiased cCFR, and therefore the virulence of the novel pandemic

strain, is smaller in the USA and Canada than in Mexico.

Nevertheless, given that the CFR of seasonal influenza is equal to

or less than 0.1% [10], our estimates (with the lower bound of

cCFR close to the 0.1%) do not offer conclusive results to indicate

that the S-OIV is more virulent than seasonal influenza, but do

point in that direction.

It should be noted that our method only adjusts underestimation

due to time delay from onset to death, and other epidemiological

characteristics associated with unbiased estimation of the cCFR

have yet to be addressed. In the present study, we estimated the

cCFR as the proportion of deaths among confirmed cases. This

definition was chosen, because of our aim to use the minimally

available data, and so we were not able to estimate the proportion

of deaths among all symptomatic cases, and not able to estimate

the proportion of deaths among all those infected (symptomatic

and asymptomatic). The issue of defining the correct denominator

population can never be completely resolved, but it is essential to

realize how the obtained estimate relates to other situations [8]. By

only using confirmed cases, it is clear that all cases will be missed

that do not seek medical treatment or are not notified, as well as all

cases that are asymptomatic. This means that our cCFR estimate

is higher than the proportion of deaths among infecteds, and may

be considered an overestimate. However, when relating our

estimate to previous pandemics, it should also be realized that the

current pandemic is the first where many confirmatory diagnoses

of influenza have been recorded using RT-PCR techniques,

allowing improved precision of cCFR estimates over those for

previous influenza epidemics. Whereas the use of RT-PCR in the

current pandemic may yield a smaller denominator (and thus an

overestimate of CFR compared to previous pandemics), other

pandemics could have involved substantial numbers of false-

positive cases in the denominator. Developing a method which

permits comparable assessment of virulence is ongoing.

Figure 3. Early determination of the unbiased confirmed case
fatality ratio of severe acute respiratory syndrome (SARS) in
Hong Kong, 2003. (A & B) Cumulative numbers of confirmed cases
and deaths. The increase in death is delayed in observation because of
the time delay from onset to death. (C) Observed biased confirmed case
fatality ratio (cCFR) estimates as a function of time (thick line) calculated
as the ratio of the cumulative number of confirmed cases to deaths at
time t. The estimate at the end of an outbreak (i.e. 302/1755 = 17.2 %) is
the realized cCFR by the end of the epidemic. The horizontal
continuous line and dotted lines show the expected value and the
95% confidence intervals of the predicted unbiased cCFR estimate
(based on our method) only by using the observed data until 27 Mar
2003 (estimated at 18.1 % (95% CI: 10.5, 28.1). The 95% confidence
interval was derived from profile likelihood. (D) The comparisons
between the realized cCFR (horizontal grey line), the unbiased cCFRs
based on observations by calendar time t, and the biased cCFR
estimates, bt, given by the ratio of deaths to cases. Each prediction was
obtained by using the exponential growth rate r up to time t and the
cumulative numbers of deaths and cases at time t, and the mean time
from onset-to-death of 35.9 days [11] which is assumed to follow an
exponential distribution. Overestimation is seen in the early stages of
the epidemic, but the 95% confidence limits in the later stages include
the realized cCFR.
doi:10.1371/journal.pone.0006852.g003
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Figure 6 shows the time course of biased cCFR estimates in the

USA and Canada based on the reporting date of confirmed cases

and deaths to the World Health Organization. Note that the

estimates in Figure 6C are different from our bt due to

unavailability of the date of onset, although they give an

approximate indication of the time-course of the biased cCFR.

It is striking to see that the biased cCFR during the very early stage

(i.e. from late April to mid-May) showed a declining trend

following a single spike. The biased cCFR estimates at later time

points show a slight increase as a function of time, which is

consistent with our knowledge of underestimation of the cCFR [8].

The early spike may be explained by a time-varying coverage of

confirmed diagnoses which could have increased as a function of

time (i.e. cases in the very beginning of the epidemic were less

likely to be confirmed). Other plausible explanations include (1)

demographic stochasticity, (2) effective treatment, and (3) hetero-

geneous risk of death among subpopulations. As for (1), because

the number of deaths in the USA and Canada was very small

during the early stage, the spike may reflect (unpredictable)

probabilistic variations in the number of deaths among a small

number of confirmed cases. If that is the case, our unbiased cCFR

estimate for the USA (with data until May 1) may be too high, not

because of a systematic bias but just by chance. In relation to

factor (2), it is plausible that cases diagnosed in later stages of the

epidemic receive treatment at an early stage of illness (or even

before symptom onset). With respect to (3), the risk of dying is

likely to be different for different subpopulations [8,10,22,23]. It

should be noted that the composition of sub-populations (e.g. age-

groups and those with a specific underlying disease) is likely to vary

as a function of time, and a cCFR estimate for the entire

population, such as ours, is influenced by this variation. These

points need to be addressed in future studies.

To fully clarify the virulence and its epidemiological character-

istics (e.g. variable risks by age and underlying diseases), two

Figure 4. Sensitivity of the unbiased confirmed case fatality ratio of an influenza virus (H1N1) infection to different means and
coefficients of variation of the time from onset to death in the USA and Canada, 2009. The contours show the maximum likelihood
estimate of the unbiased confirmed case fatality ratio as a function of the mean and coefficient of variation of the time from onset-to-death in (A) the
USA and (B) Canada. The estimates are based on observation by May 1 and June 10, respectively, with 2 and 4 deaths among a total of 399 and 2978
confirmed cases, respectively. A gamma distribution is employed for the time from onset to death, f(s). Both the quantitative and qualitative patterns
of the USA differ from those of Canada, because the epidemic curve in the USA include more cases who developed the disease recently than those in
Canada. It should be noted that the contour gray scales are different in (A) and (B).
doi:10.1371/journal.pone.0006852.g004

Figure 5. Upper bound of the confirmed case fatality ratio when there is no report of death. Upper bound of the cCFR (confirmed case
fatality ratio) estimates in (A) the USA and (B) Canada, given no deaths by April 21 and April 24, 2009, respectively (based on 42 and 91 cases). The
upper bounds are examined for significance levels at 95% and 99% to find at least 1 death. Gamma and exponential distributions were employed to
model the distribution of time from onset to death.
doi:10.1371/journal.pone.0006852.g005
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lessons for surveillance and data sharing should be noted. First,

rather than updating the data based on date of reporting, it is

critically important to summarize the data according to the date of

onset both at local and global levels. Knowing the date of

symptom onset is a key to applying our proposed estimation

framework to empirical observation. Second, epidemiological data

should be updated in a precise reporting interval at least during

the early stage of an epidemic (so that the data permit estimation

of the unbiased cCFR). Given that mean time from onset to death

is around 9 days, weekly data do not enable us to make our explicit

adjustment. Optimal reporting for the early cCFR estimation may

be incorporated into official pandemic response plans. Moreover,

in addition to using death as an outcome of virulence, the

usefulness of other epidemiological measurements of severe

manifestation (e.g. the number of admissions to intensive care

unit) needs to be explored.

Despite a need to further clarify heterogeneous risks of death for

the S-OIV pandemic, early assessment of virulence by means of our

unbiased cCFR estimator is useful for informing policy makers and

the general public about the potential severity of an infectious

disease (of course, one needs to ensure an understanding of the

above mentioned bias among non-experts). We have shown that

underestimation can be adjusted in a very simple manner, and our

approach enabled us to obtain an unbiased cCFR estimate by only

minimizing a binomial deviance. These methods are particularly

useful when there have been only a few deaths or even no death at

all by time t during the course of an epidemic. Uncertainties

surrounding the unbiased estimate of cCFR based on a few deaths

can partly be addressed by sensitivity analysis of the estimate to

different lengths of time from onset to death. An observation of zero

deaths in a given country (or a specific setting) should not be deemed

a signature of a ‘‘benign’’ virus without observing a substantial

number of cases. We have shown that a conservative upper bound

of cCFR is a more useful interpretation of the observed number of

cases without death. In this way, given that we have some prior

knowledge or a few observations of death which permit us to assume

F(s) is known, epidemiologists and biostatisticians in each country or

locality can directly apply our method to assess the virulence of an

infection at the early stage of any emerging infectious disease.

During the final stages of revision, it came to our attention that

an epidemiological study on cCFR of S-OIV with similar

techniques and statistical philosophy has been published online

[24], indicating that the preliminary estimate of cCFR for a

combination of the USA, Canada and Mexico is 0.5% and

emphasizing a need to accurately capture the cases for the

denominator.
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