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Abstract

The Guilt-by-Association (GBA) principle, according to which genes with similar expression profiles are functionally
associated, is widely applied for functional analyses using large heterogeneous collections of transcriptomics data. However,
the use of such large collections could hamper GBA functional analysis for genes whose expression is condition specific. In
these cases a smaller set of condition related experiments should instead be used, but identifying such functionally relevant
experiments from large collections based on literature knowledge alone is an impractical task. We begin this paper by
analyzing, both from a mathematical and a biological point of view, why only condition specific experiments should be used
in GBA functional analysis. We are able to show that this phenomenon is independent of the functional categorization
scheme and of the organisms being analyzed. We then present a semi-supervised algorithm that can select functionally
relevant experiments from large collections of transcriptomics experiments. Our algorithm is able to select experiments
relevant to a given GO term, MIPS FunCat term or even KEGG pathways. We extensively test our algorithm on large dataset
collections for yeast and Arabidopsis. We demonstrate that: using the selected experiments there is a statistically significant
improvement in correlation between genes in the functional category of interest; the selected experiments improve GBA-
based gene function prediction; the effectiveness of the selected experiments increases with annotation specificity; our
algorithm can be successfully applied to GBA-based pathway reconstruction. Importantly, the set of experiments selected
by the algorithm reflects the existing literature knowledge about the experiments. [A MATLAB implementation of the
algorithm and all the data used in this paper can be downloaded from the paper website: http://www.paccanarolab.org/
papers/CorrGene/].
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Introduction

In the past decade, efforts for elucidating gene function have

gained new impetus with the emergence of large scale transcrip-

tomics and protein-protein interaction experiments. These data-

sets are mined to identify groups of genes sharing similar features,

which implies that they may share similar functions – this principle

has often been called Guilt-By-Association (GBA) [1–4]. Amongst

the various high-throughput data types available, transcriptional

profiling is currently the most abundant. Relying on the concept of

GBA, numerous strategies have been developed to extract

functional information from transcriptomics data including

clustering-based techniques and co-expression network analyses.

GBA-based analyses often begin with the calculation of similarity

between gene expression profiles using a metric such as Pearson’s

correlation. Often, this has been performed over large heteroge-

neous collections of experiments. One reason behind this

approach is that correlating gene profiles over a larger number

of experiments would result in more robust correlations as weak

expression signatures are combined over many datasets. In fact,

the significance of the correlation between vectors is likely to

increase with the size of the vectors.

The analysis of large collections of microarray datasets has been

useful to reveal the transcriptional responses of genes expressed

similarly through a range of experimental conditions [5].

However, it may not be optimal for revealing the function of

genes whose expression is condition-specific [6] and some authors

have suggested that in these cases a smaller set of condition-related

experiments should instead be used [7].

To set the stage for our work, we analyze this fact by looking at

the distribution of the statistically significant correlation coeffi-

cients for the genes in the GO Biological Process ‘‘Response to

Jasmonic acid stimulus’’ in the model plant Arabidopsis thaliana.

Figure 1 compares the distribution obtained using a large

heterogeneous collection of 44 experiments (756 microarrays)

(Fig. 1a) with the distribution obtained using a smaller set of

2 experiments (24 microarrays) which were manually selected

according to literature knowledge relevant to ‘‘Response to

Jasmonic acid’’ (Fig. 1b) – experimental details are given in the

Methods section.
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We observe that the two distributions are strikingly different:

when using all the experiments, only 18.6% of the gene pairs show

an absolute correlation above 0.5, while using only the selected

experiments, 81.1% of the gene pairs have an absolute correlation

above 0.5. The inclusion of all the experiments in the calculation

of correlation leads to significantly lower correlations overall, thus

limiting the effectiveness of GBA. In fact, if the correlation among

genes in a functional category is close to zero, the genes that may

belong to that category cannot be inferred based on correlation

with genes already annotated to that category. Importantly, we

obtained similar results using most GO categories, across different

functional classification systems (e.g. MIPS) and across organisms.

In a given experiment, one possible reason for low correlation

among genes in the same functional category could be that the

functional process to which these genes belong has not been

activated under those experimental conditions. Thus, in the

absence of signal, we would just be correlating experimental noise.

In fact, if two genes belong to a process which has been activated

in the experiments, they would likely be highly correlated in spite

of the (unavoidable) experimental noise. However, if the process

had not been activated the experimental noise would still be

recorded, thus resulting in poor correlation between the genes. We

analyzed this phenomena in depth using artificial data – see

Supplementary Information S1.

Poor correlation could also result from biological phenomena

such as cross-talk in the regulatory pathways. When two genes

belong to the same pathway, but one of them also functions in a

different one, the two genes can be seen as highly or poorly

correlated depending on the pathways being activated. One such

example would be phytochrome and cryptochrome-mediated

signalling in Arabidopsis thaliana where the effects exerted by

different proportion of blue, red or far red light in white light is

dependent upon the condition used [8]. In experiments studying

hypocotyl elongation, under short exposures to blue light in a red

light background, the activity of the CRY1 gene and PHYB gene is

found to be correlated. However, during prolonged exposure to

blue light, the activity of CRY1 and PHYB are seen to be

independent. Therefore, although CRY1 and PHYB participate in

the same biological process, any correlation between them would

be condition-specific.

Importantly, such phenomena could have a profound effect on

functional analyses as the correlation signal dilutes quickly.

Therefore, when analysing large collections of microarrays, the

inclusion of datasets in which genes appear not to be correlated,

will result in low overall correlations even for genes that belong to

the same biological process. We performed an in-depth analysis of

the rate at which correlation dilutes using artificial data – see

Supplementary Information S2.

The remarkable difference between Figure 1A and Figure 1B

reflects the findings of Adler et al. [7] that acknowledged the

pitfalls of using large microarray collections in co-expression

analyses and suggested selecting the relevant datasets based on

literature knowledge. However, identifying experiments based on

literature knowledge alone is a non-trivial task as the literature

knowledge relevant to a functional category of interest is seldom

exhaustive. Further, the relevance of an experiment to a certain

biological process may not be immediately obvious and experi-

ments which are deemed irrelevant by a researcher could in fact

withhold significant information regarding the biological process

of interest as well as cross-talk between pathways.

In this paper, we present a novel algorithm for systematically

selecting from large collections those experiments which are

relevant to a given functional category or pathway. Importantly,

the algorithm is able to identify relevant experiments not obvious

by searching the literature on the experiment. Our results show

that using experiments selected by the algorithm leads to

substantially improved correlation between genes in the same

functional category compared to using large heterogeneous

collections of experiments. As a consequence, we also demonstrate

that using correlation obtained with the selected experiments leads

to substantial improvements in GBA-based function prediction

independently of the species and of the functional classification

schemes adopted. Finally, we show how our algorithm can

improve GBA-based pathway reconstruction.

It is important to note here that the fundamental ideas behind

our algorithm are not specific to microarray data. Emerging gene

expression measurement technologies such as RNA-seq will

eventually lead to the availability of large collections of data.

Our algorithm can equally well be used to select experiments from

large RNA-seq experiment collections.

Figure 1. Correlation coefficients between genes in a given GO category depend on the experiments being used. Distribution of
correlation coefficients for genes in the GO category GO:009753 ‘‘Response to Jasmonic Acid stimulus’’ calculated using (A) an heterogeneous
collection of 44 experiments and (B) a manually selected set of two experiments, which were deemed to be functionally relevant to jasmonic acid
response based upon literature knowledge. Only statistically significant correlation coefficients (p-value,0.05) were considered in order to account
for the different vector lengths.
doi:10.1371/journal.pone.0039681.g001

Transcriptomics Experiment Selection for GBA
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Results

Given a functional category of interest such as GO Biological

Process term or a biochemical pathway and a set of microarray

experiments our task is to select a subset of experiments that is

optimal at differentiating the genes in that functional category

from the remaining ones – which we shall call background genes.

Since the chosen subset of experiments should be constituted by

experiments that most perturb the genes in the functional category

of interest, we shall refer to these experiments as the relevant

experiments.

Our idea is to choose a feature that, if an experiment is relevant,

would be able to discriminate between the genes in the category of

interest and the background genes. The set of relevant experi-

ments can then be found by maximizing the discriminatory ability

of such a feature. The feature we chose is Pearson’s correlation

coefficient and we used a t-test to measure its discriminatory ability

– whether the mean of the correlation coefficients for the genes of

interest is significantly higher than that of the background.

Clearly, an exhaustive search of the space of possible subsets of

experiments is computationally intractable for large microarray

datasets (the number of possible subsets of a set of n experiments is

2n). Therefore, a ‘brute force’ approach that analyzes every

possible combination of experiments would not be feasible for

typical microarray collections containing a large number of

experiments. For example, the set of 44 Arabidopsis microarray

experiments that we have used in this work would require

analyzing over 17,000 billion combinations. Therefore, this paper

presents an efficient greedy heuristic which was able to select a set

of experiments with high discriminatory ability while retaining a

quadratic complexity. Here we give an informal description of the

procedure while the pseudo-code of the algorithm is presented in

Figure 2.

Our analysis assumes that we are given a certain functional

category and a set of n microarray experiments, each comprising

several time-points or conditions. The procedure begins by

performing a t-test for every experiment in the microarray

collection assessing whether the correlation between gene pairs

where both genes in the pair belong to the functional category of

interest (denoted by A in Figure 3) is greater than correlation

between gene pairs where only one gene belongs to the functional

category of interest (denoted by B in Figure 3). Note that we do not

consider correlations where neither genes in the pair belong to the

functional category (the rationale for this is discussed in

Supplementary Information S3.

We then select a fixed number of seed experiments with the best

p-values from the t-tests. The algorithm builds experiment lists

iteratively starting from these seed experiments. For a given list, at

each iteration, an experiment is selected at random among those

not already contained in the list and this experiment is tentatively

added to the existing list. As before, a t-test is then performed to

check whether this expanded list of experiments exhibits a

distribution of correlations between gene pairs where both genes

belong to the functional category of interest (A in Figure 3) which

is greater than correlation between gene pairs where only one gene

belongs to the functional category of interest (B in Figure 3). If the

p-value is smaller than a pre-defined threshold, the experiment is

permanently added to the list; otherwise it is removed. This

iterative procedure terminates when all experiments have been

considered for every seed experiment for every list. Once the lists

have all been created, the list with the overall final best p-value is

kept as the optimal list of experiments that the algorithm returns.

Finally, it should be pointed out that a t-test requires that the

values being tested be independent samples from a Gaussian

distribution. In our case, the values being tested are the pair-wise

correlations in a set of genes. Unfortunately, such correlations are

neither independent nor Gaussian. Thus, the p-values computed

by our algorithm are not guaranteed to be accurate. Nevertheless,

they are still very useful for choosing experiments. This issue is

more fully discussed in the Discussion section.

Although this algorithm cannot guarantee that the selected set

of experiments is optimal, in practice we found that this heuristic

selected sets of experiments with high discriminatory ability while

providing computational tractability. Indicating with n the number

of experiments in the dataset and with K the number of seed

experiments, the number of t-tests our algorithm needs to consider

Figure 2. Pseudo-code of the experiment selection algorithm. The t-tests are performed between two sets of correlations obtained from two
classes of gene pairs: gene pairs where both genes belong to the functional category of interest (panel A in Figure 3); and gene pairs where one gene
belongs to the functional category of interest and the other one to the background (panel B in Figure 3).
doi:10.1371/journal.pone.0039681.g002

Transcriptomics Experiment Selection for GBA
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at most is given by:

nzK � ½(n{1)z(n{2)z:::z1�~K=2 � n � (n{1)zn~O(n2)

This quadratic complexity allowed us to complete one run of

the algorithm for any of the experiments presented here in a few

minutes on a regular desktop machine.

The algorithm has only two parameters: the significance level of

the t-tests (denoted by L in the pseudocode) and the number of

seed experiments (K). When testing our algorithm we set the

significance level to the standard value of 0.05. Importantly, we

found that our algorithm is quite insensitive to the number of seed

experiments – in the experiment presented in the sequel, in which

we tested the procedure on different species and different sets of

microarray experiments, a value of K = 25615 gave similar

results.

Compared to large collections of microarrays, smaller subsets of

experiments may lead to higher correlation values purely because

of the shorter length of the vectors. In all our analyses we account

for this bias by filtering the correlation by a p-value threshold. This

ensured that only statistically significant correlations are consid-

ered.

We tested our algorithm on publicly available microarray data

collections. Here we present results obtained using 44 individual

experiments in Arabidopsis thaliana from the NASCAarray collection

[9] and 31 individual experiments in Saccharomyces cerevisiae from

the M3D collection [10]. A full list and details of the microarray

experiments can be found in Supplementary Information S4. Our

experiments on both yeast and Arabidopsis prove that our

procedure is also species-independent. To prove that our selection

procedure is independent of the functional classification system

adopted, we applied our algorithm for selecting experiments

relevant for GO Biological Process terms and MIPS FunCat

terms.

In the following sections, we will prove the effectiveness of our

procedure by showing that the selected sets of experiments: result

in higher correlations between genes in the same functional

category; improve the performance of GBA-based gene function

prediction; provide a discriminatory ability for a given functional

term which increases with the term specificity; lead to a better

reconstruction of gene regulatory networks. Furthermore, in the

discussion we shall highlight how the selected experiments can also

be explained in terms of the literature.

(a) Selected experiments improve overall correlation
between genes in the same functional category

As discussed earlier, for effective gene expression-based

functional analyses, it is essential that genes belonging to the same

functional category exhibit high correlation. However, we

observed that this is not necessarily true when large microarray

collections are used for calculating the correlation (Fig. 1). The

experiments selected by our algorithm uncover significantly higher

correlation. For genes which belong to the same functional

category, we compared the distribution of correlation coefficients

obtained using the experiments selected by the algorithm with the

distribution obtained using all the experiments in the collection.

Figure 4 shows representative histograms of the distributions for

both Arabidopsis and yeast GO terms. As expected, the

correlation distribution obtained from using all experiments is

populated with low correlations with only a greatly reduced

population with higher correlation values. However, when

experiments selected by the algorithm are used, the distribution

is enriched with higher positive and negative correlations. We

performed a t-test between the distributions of the absolute values

of the correlations in order to check whether the distribution

obtained using selected experiments is greater than when all

experiments are used. The low t-test p-values (Figure 4) confirm

that the distribution obtained with selected experiments is

significantly higher than when all experiments are used.

(b) Quantifying the effectiveness of the selected
experiments at improving the correlation in a functional
category

In order to evaluate the effectiveness of the selected experi-

ments, we formulated a classification problem where pairs of genes

are classified into two classes: the first class contains the pairs were

both genes belong to the category of interest; the second class

contains those pairs in which one gene belongs to the category of

interest while the other one belongs to the background set. This

classification is performed using the Pearson correlation between

the genes in the pair as the only feature. This allowed us to

compare the effect of using the selected experiments vs. using all

experiments by comparing the performance of the classifiers –

since the classifiers use only correlation to distinguish between the

two types of gene pairs, comparing them allows us to assess the

quality of the correlations.

Receiver Operating Characteristic (ROC) curves are widely

used in the machine learning literature for comparing classifiers.

They are the plot of the True Positive Rate (TPR) against the False

Figure 3. Correlation matrices used in the algorithm. A graphical depiction of the correlation matrix for gene pairs where both genes belong
to the functional category of interest (A) and the correlation matrix for gene pairs where one gene belongs to the functional category of interest and
the other one to the background (B). Note that elements on the main diagonal of A are equal to one, and that A is symmetric (as indicated by the
dashed line). t-tests in our algorithm are calculated between the sets of correlations in A and B (for A we use the upper triangular part only).
doi:10.1371/journal.pone.0039681.g003

Transcriptomics Experiment Selection for GBA
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Positive Rate (FPR) for different values of the classifier decision

threshold. The greater the area under the ROC curve (AUC), the

better is the performance of the classifier.

For calculating the ROC curves, gene pairs in which both genes

belong to the functional category of interest were considered the

Positive Set; and gene pairs, in which only one gene belongs to the

functional category of interest, were considered the Negative Set.

To evaluate the performance of the selected experiments, we

performed a 10-fold cross-validation: genes were first randomly

divided into 10 parts and at each round, 9 parts were used for

training and one for testing. At each round, our algorithm was

used to select the experiments using only the training set and these

were then used for calculating the ROC curves for the testing set.

Figure 5A shows the average ROC curves for four different GO

functional categories, two from Arabidopsis and two from yeast

(the procedure for averaging ROC curves can be found in [11]).

We can see that the ROC curves for selected experiments (shown

in green) have a greater AUC compared to all experiments (shown

in red). Following common practice, we also present the average

(1-AUC) for both selected and non-selected datasets over the 10-

folds (Fig. 4B). The average ROC curves and their corresponding

(1-AUC) for further twelve examples of different GO functional

categories can be found in Supplementary Information S5.

We can see that the average (1-AUC) is remarkably lower for

the selected set of experiments. Moreover, we performed a t-test

between the ten (1-AUC) values from the 10-fold cross-validation

obtained using the selected experiments and those obtained using

all experiments – p values are also reported in Figure 5. This

proves the clear difference in performance between classifiers that

use all experiments and classifiers that use experiments selected by

the algorithm and, consequently, the improved quality of the

correlations obtained when selecting experiments.

The superior performance of the selected set of experiments was

observed for both Arabidopsis and yeast GO Biological Process

terms (Fig. 5A, Fig. 5B). Importantly, we were able to show that

this effect is true also for MIPS FunCat terms, thus indicating that

our procedure is effective independently of the functional

categorization adopted. Figure 5C shows the average ROC curves

and their corresponding (1-AUC) together with their p values for 2

MIPS functional categories – further twelve examples of MIPS

Figure 4. Experiments selected by the algorithm improves correlations between gene pairs. Distribution of correlation coefficients for
genes in different GO BP terms when using the experiments selected by our algorithm (green) and when using all the experiments (red). Each
quadrant shows a different GO BP term, two terms are for Arabidopsis and two for yeast. The p-values of the t-test between each pair of distributions
indicate that the distributions of correlations for the selected experiments are significantly greater than the corresponding distributions for all
experiments.
doi:10.1371/journal.pone.0039681.g004
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categories can be found in Supplementary Information S5. In

general we found that for MIPS FunCat terms the difference in

performance between the selected experiments and all experi-

ments was smaller compared to GO Biological Process terms. This

could be due to the broad functional classification found in MIPS

FunCat when compared to GO (we discuss the relation between

specificity of annotation and performance of the selected set of

experiments in the following section (d)).

(c) Selected experiments improve GBA-based gene
function prediction

A central goal of GBA-based analysis of transcriptomics data is

to predict gene function. Therefore an important test of the

efficacy of our method is to check whether the correlations

obtained by the selected experiments are a better feature for

predicting gene function than the correlations obtained using the

entire set of experiments.

We framed this problem as a classification problem between two

classes of genes: those in the category of interest and those in the

background. This classification is performed using very simple

GBA-inspired classifiers that use only the Pearson correlation

between the genes. The simplest possible classifier of this kind is

one that classifies a gene using the sum of the correlations between

that gene and the genes in the training set that belong to the

category of interest: if this sum is above a certain threshold, it

classifies the gene as belonging to the category of interest;

otherwise it assigns it to the background.

Figure 5. ROC curve analyses quantify the effectiveness of the experiment selection algorithm. ROC curve analysis for evaluating the
effectiveness of the selected experiments at improving the correlation between genes in the same functional category (further examples for both the
GO and MIPS functional categorizations are presented in Supplementary Information S6). (A) Average ROC curves from 10-fold cross validation
obtained using all experiments (red) and the experiments selected by our algorithm (green) for four different GO functional categories, two from
Arabidopsis and two from yeast. (B) Averaged (1-AUC) scores from ten-fold cross validations – the lower the value of (1-AUC), the better the
performance of the classifier. (C) Average (1-AUC) and average ROC curves for two MIPS FunCat terms for Arabidopsis. p values for the t-test between
the ten (1-AUC) values from the ten-fold cross-validation obtained using the selected experiments and those obtained using all experiments are
reported in blue for both (B) and (C).
doi:10.1371/journal.pone.0039681.g005

Transcriptomics Experiment Selection for GBA
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As before, to evaluate the performance of the classifiers we

performed a 10-fold cross-validation and calculated the average

ROC curves. Our aim is to compare the performance of classifiers

that employ correlations from the selected experiments with the

performance of classifiers that employ correlations from the entire

set of experiments. Figure 6A shows the average ROC curves for

four different GO functional categories, two from Arabidopsis and

two from yeast – the categories are the same ones that we used in

Fig. 5. We can see that the ROC curves for selected experiments

(shown in green) have a greater AUC compared to all experiments

(shown in red). The (1-AUC) for both selected and non-selected

datasets over the 10-folds is shown in Figure 6B, together with the

p values obtained by the t-test of the (1-AUC) values obtained in

the 10-fold cross-validation. As before, this proves the clear

difference in performance between classifiers that use all exper-

iments and classifiers that use experiments selected by the

algorithm and, consequently, the improved quality of the

correlations obtained when selecting experiments. The average

ROC curves and their corresponding (1-AUC) for further twelve

examples of different GO functional categories can be found in

Supplementary Information S6. Results for yeast also show the

same effect (Fig. 6A, Fig. 6B).

We also repeated our experiments for MIPS FunCat terms

obtaining consistent results (see figure 6C – further twelve

examples of MIPS categories can be found in Supplementary

Information S7). Again, this indicates that our experiment

selection procedure is effective at improving GBA-based gene

function prediction independently of the functional categorization

adopted.

(d) The effectiveness of the selected experiments
increases with annotation specificity

Another way to prove the effectiveness of our experiment

selection procedure is to show that the performance of the selected

experiments for the classification task outlined in section (b),

increases as the functional category becomes more specific. This is

based on the fact that the overall correlation among genes in a

functional category is expected to increase as the category becomes

more specific. Consequently, a set of relevant experiments should

be more effective in differentiating genes belonging to the

functional category of interest from all other functional categories.

To evaluate this, we measured the effectiveness of the selected

experiments at every level of specificity of annotation starting from

a leaf node up to the root node.

For the GO BP term GO:0009861 ‘‘Jasmonic acid and ethylene

dependent systemic resistance’’, we ran our algorithm for terms

found at each level of the tree leading up to the root term. The

effectiveness of the selected experiments was evaluated using the

classification problem framework outlined in section (b). The

performance of the classifier was evaluated by plotting ROC

curves and the average (1-AUC) score in 10-fold cross-validation

was recorded. Here, we expect that if the performance of the

selected experiments were the same as using all experiments then

the difference in their average (1-AUC) scores would be zero. This

difference for every term in the hierarchy from GO:0009861 up to

the root node is shown in Figure 7. From the figure, it is clear that

the effectiveness of the selected experiments is dependent on the

specificity of the functional annotation.

(e) Selecting relevant experiments: Implications on
Pathway reconstruction

An important application of the GBA principle is the

elucidation of putative members of biological pathways. Identify-

ing experiments relevant to the pathway of interest can be crucial

for pathway reconstruction methods where the objective is to

identify potential members of a pathway. The same reasoning we

applied earlier for selecting experiments relevant to specific

functional categories can also be applied for selecting experiments

relevant to given biological pathways. In this case, the background

set is constituted by all the genes belonging to pathways different

from the pathway of interest, and the set of relevant experiments

are the ones which best discriminate genes in the pathway of

interest from the background. The results we present here show

that the selected experiments can uncover greater correlation

among genes belonging to the biological pathway and that this

correlation is a better predictor of the membership of a gene in the

pathway of interest.

To begin with, we obtained the ‘‘Alpha linolenic acid metabolic

pathway’’ (KEGG ID: ath00592) from the KEGG Pathway

Database [12]. Alpha linolenic acid is a precursor of a class of fatty

acid derived regulators called the Jasmonates. The biosynthetic

derivative of alpha linolenic acid Jasmonic acid (JA) is known to be

an important mediator of defence response and other stress related

signalling in plants [13,14]. The KEGG annotation of the pathway

in A.thaliana consists of 30 genes of which 26 were found in our

microarray collection. To demonstrate that the correlation

obtained from the selected set of experiments is a better predictor

of pathway membership, we framed this as a classification problem

similar to the one presented in Section (c). We applied the same

GBA-based classifier presented in section (c) to classify genes as

either members of the pathway of interest or of the background. As

before, the performance of the classifier was evaluated by 10-fold

cross-validation and average ROC curves were calculated over the

ten folds. We compared the performance of the classifier when

using correlations from the selected experiments and all experi-

ments in the collection. The average ROC curves (Figure 8) and

the average (1-AUC) bar plots (Figure 8) clearly show that the

classifier using correlations from the selected set outperforms the

classifier using correlations from all experiments in the collection.

This result clearly highlights the potential of the experiment

selection algorithm in pathway modelling and reconstruction

approaches.

Discussion

In this paper, we discussed the significance of using only

relevant transcriptomics datasets in GBA-based functional analy-

ses. The idea of identifying relevant experiments reflects the

discussion by Adler et al. [7] who acknowledged the pitfalls of

using large microarray collections in co-expression analyses and

suggested manually selecting relevant datasets based on literature

knowledge. However, manual selection is progressively becoming

unfeasible with the ever increasing size of microarray databases.

Furthermore, the relevance of an experiment for a certain

functional class may not be obvious. We developed an algorithm

which is able to identify a set of experiments from a microarray

collection that can improve GBA-based analyses and we

demonstrated its effectiveness in different ways.

Firstly, we showed that across various functional categories, for

the selected set, the histograms of correlation coefficients show

enrichment in larger (in absolute value) correlation coefficients

(Fig. 4). Secondly, this enrichment was also shown by comparing

classifiers in a machine learning framework (Fig. 5). Thirdly, we

showed that the selected experiments improve GBA-based gene

function prediction (Fig. 6). Additionally, we observed that the

performance of the selected set varied with the specificity of the

functional annotation (Fig. 7): as broader process annotations
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contain several smaller more specific processes, the overall

correlation between the genes would be relatively lower than in

specific processes. As a result, it is harder to differentiate the

process from the background.

Moreover, our results on Arabidopsis and yeast show that the

algorithm performs in a consistent way, independently of the type

of organism. We also see that the selection performance is

independent of the functional classification system (results using

GO or MIPSFunCat were comparable).

As mentioned in the Results section, the conditions for use of

the t-test are not strictly met as they would require the correlations

to be independent and Gaussian. Neither condition is met by the

correlations in a set of genes. Clearly they are not Gaussian, since

Gaussian data is unbounded, while correlations are bounded

between 21 and 1. In addition, they are not independent. For

example, if g1, g2 and g3 are three genes, then, in general, corr(g1,

g3) is not independent of corr(g1, g2) and corr(g2, g3) – for instance,

if corr(g1, g2) and corr(g2, g3) are both high, then corr(g1, g3) must

also be reasonably high (here, corr(gi, gj) denotes the correlation

between genes gi and gj).

Thus, the use of t-tests here is not guaranteed to give accurate p-

values. However, our motivation for using the t-test is not to

compute accurate p-values, but to compensate for the different

number of microarrays in the different sets of experiments,

something for which the t-test seems well-suited. In particular,

since the computed p-values are used only to rank experiments,

precise p-values are unimportant, as long as their relative values are

approximately correct. Importantly, our results show that the t-test

Figure 6. Experiments selected by the algorithm improve GBA-based function prediction. ROC curve analysis for evaluating the
effectiveness of the selected experiments at improving GBA-based gene function prediction. The functional categories shown here are the same as in
Figure 5, while more examples for both the GO and MIPS functional categorizations are presented in Supplementary Information S7. (A) Average
ROC curves from 10-fold cross validation obtained using all experiments (red) and the experiments selected by our algorithm (green) for four
different GO functional categories, two from Arabidopsis and two from yeast. (B) Averaged (1-AUC) scores from 10-fold cross validation – the lower
the value of (1-AUC), the better the performance of the classifier. (C) Average (1-AUC) and average ROC curves for two MIPS FunCat terms for
Arabidopsis. p-values for the t test between the ten (1-AUC) values from the ten-fold cross-validation obtained using the selected experiments and
those obtained using all experiments are also reported in blue for both (B) and (C).
doi:10.1371/journal.pone.0039681.g006
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is a promising heuristic. Finally, we point out that a possible future

refinement of this work is to apply a Fisher transformation to the

correlation data to make it approximately Gaussian before

applying the t-tests. Although this would not eliminate the

dependences between the correlations, it might result in a more

powerful test.

Observing the biological background of the experiments

selected as relevant by the algorithm we note that most of the

selections are also in agreement with literature knowledge. For

example, in the results obtained for Arabidopsis, the selection of

experiments for GO:0009873 ‘‘Ethylene mediated signalling

pathway’’ such as osmotic stress time series, salt stress time series

and oxidative stress time series experiments seem relevant as

ethylene is a well-studied mediator of osmotic stress- and salt

stress-related responses [15]. Also, ethylene along with hormones

such as abscisic acid (ABA) has been shown to control many of the

drought-related responses [16]. For growth-related terms such as

GO:0010564 ‘‘Regulation of cell cycle process’’ and GO:0048764

‘‘Trichoblast maturation’’, growth-related experiments such as the

Weigel developmental stages experiments were selected. For the

GO term GO:0010053 ‘‘Root epidermal cell differentiation’’,

experiments related to ABA treatment and ethylene treatment

were selected. These selections are reasonable as studies such as

[17] have demonstrated the role of ABA, along with hormones

Figure 7. The effectiveness of selected experiments improves with annotation specificity. Difference between the average (1-AUC) of the
10-fold cross-validations, obtained for the selected set and for all experiments, for every term from the leaf node ‘‘GO:0009861: Jasmonic acid and
ethylene dependent systemic resistance’’ up to the root. The greater the difference, the better the performance of the selected set.
doi:10.1371/journal.pone.0039681.g007

Figure 8. The experiment selection algorithm is effective on gene groups based on KEGG. ROC curve analysis for genes in the ‘‘Alpha
linolenic acid metabolic pathway’’ (KEGG ID: ath00592) from the KEGG Pathway Database. (A) Average ROC curves from the ten-fold cross-validation
for the GBA-based classifier for predicting genes belonging to ‘‘Alpha-linolenic acid metabolism’’ pathway. (B) Average (1-AUC) scores from 10-fold
cross validation. The p-value for the t-test between the ten (1-AUC) values from the ten-fold cross-validation obtained using the selected experiments
and those obtained using all experiments is also reported in blue.
doi:10.1371/journal.pone.0039681.g008
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such as ethylene in regulating epidermal cell-specific gene

expression in Arabidopsis thaliana roots. Similarly, yeast experiment

selections also generally reflected the functional backgrounds of

the functional category of interest. Examples of GO BP terms and

the corresponding sets of experiments selected by our algorithm

are provided in Supplementary Information S7.

It is worth highlighting that a minority of experiments selected

by the algorithm seemed to be unrelated to the GO terms of

interest. We found this reasonable as the Biological Process of

interest could also be activated in experiments originally designed

to study a seemingly unrelated phenomena; in other words, this

could be due our current limited biological understanding about

these processes. Viewing the experiment selection procedure as a

classification problem also provides an insight into the role of the

seemingly irrelevant experiments in the selected set. In fact, it is

possible that such experiments may not be good ‘‘descriptors’’ of

the functional category of interest. However, they may be effective

discriminators of the functional category of interest from the

background. An analogous example would be a classification

problem, where spheres have to be identified from a collection of

objects containing cubes, pyramids and spheres. Several features

exist that can effectively describe a sphere. However, in addition to

these features, a feature such as the lack of sharp corners between

the faces in the object can be very effective for discriminating the

sphere from all the other objects in the collection. In this example,

it is interesting to note that although the angle between the edges

would not be relevant to describe a sphere, it is nevertheless

effective for discriminating the sphere from all the other objects in

the collection. Similarly, the set of experiments selected as relevant

to a functional category of interest may contain experiments which

do describe that functional category, but nonetheless may be very

relevant in a GBA-based functional analysis. We note that it would

not be possible to identify such experiments based on literature

knowledge alone.

The algorithm is highly scalable and can be efficiently deployed

to select experiments from large microarray collections. The

execution time of the algorithm can be further reduced by

sampling only a few genes from each functional category used in

the background set. Although in the results presented in this paper

we always used the full set of genes in the background set, we find

that, in general, using this sampling technique provides good

results while greatly reducing the computational time (data not

shown). One of the important applications of our experiment

selection algorithm is the selection of relevant datasets for specific

biochemical pathways. We see that with the selected set of

experiments, the members of the pathway show stronger

correlation among themselves compared to the correlation in the

background set and the correlation with the background genes.

Thus the selected set increases the likelihood of detecting true

members of the pathway of interest.

In conclusion, we believe that our semi-supervised experiment

selection method can have a wide reaching impact for gene

network construction, gene function prediction and biochemical

pathway modelling.

Materials and Methods

Data Preparation
For Arabidopsis thaliana, our microarray data collection consisted

of 756 Affymetrix ATH1-501 22 K arrays from 44 experiments.

The microarrays were sourced from NASCARRAYS [9] Patho-

gen Series, Developmental Series, Stress series and Chemical and

Hormone treatment series. Raw data was downloaded, pre-

processed and normalized by MAS 5.0 using R Bioconductor

packages [18]. All the data used were from experiments based on

wild-type plants only. Experiments conducted on multiple organs

such as roots and shoots were considered as separate experiments.

For yeast, the microarray collection consisted of 537 Affymetrix

microarrays from 31 individual experiments. The data was

downloaded from the Many Microbes Database [10] and

consisted of a mix of wild-type and mutant based experiments

under various stresses, growth, chemical and hormone treatments.

Throughout our analysis, only GO Biological Process annota-

tions with non-electronic evidence codes were considered. The

background set comprised of genes which belong to GO terms

other than the term of interest and its children. In order to afford

sufficient number of genes for a statistically significant t-test and

cross-validation, only terms with at least 25 genes were chosen as

the category of interest. Similarly, for MIPS FunCat, the term of

interest included all its children in the tree; the remaining terms

were considered as the background. For the pathway analysis,

pathways and genes annotated to the pathways were obtained

from KEGG [12].

The p-values for the correlation coefficients were calculated

using the corrcoef function of MATLAB. corrcoef transforms the

correlation to create a t-statistic having n22 degrees of freedom,

where n is the number of rows in the data. The confidence bounds

are based on an asymptotic normal distribution of 0.5*log((1+R)/

(12R)), with an approximate variance equal to 1/(n23), where R

is the sample correlation.

Supporting Information

Supplementary Information S1 Poor correlation can be an

experimental artefact.

(DOCX)

Supplementary Information S2 Poor correlation can rapidly

dilute the average correlation.

(DOCX)

Supplementary Information S3 Discussion on the use of the

correlations between genes in the background.

(DOCX)

Supplementary Information S4 List of experiments in the

microarray collection.

(DOCX)

Supplementary Information S5 Evaluating the effectiveness

of the selected experiments – additional results for GO and MIPS.

(DOCX)

Supplementary Information S6 Selected experiments im-

prove gene function prediction – additional results for GO and

MIPS.

(DOCX)

Supplementary Information S7 Examples of experiments

selected by the algorithm.

(DOCX)

Acknowledgments

We thank Dr. Simon Barak and Prof. Peter Bramley for useful discussions

and suggestions. We also thank the anonymous referees for the thorough

and very helpful reviews which have greatly improved the paper.

Author Contributions

Conceived and designed the experiments: AP HY AD. Performed the

experiments: PB HY. Analyzed the data: PB. Contributed reagents/

materials/analysis tools: PB. Wrote the paper: AP PB AD HY LB.

Transcriptomics Experiment Selection for GBA

PLoS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e39681



References

1. Wolfe C, Kohane I, Butte A (2005) Systematic survey reveals general

applicability of ‘‘guilt-by-association’’ within gene coexpression networks.

BMC Bioinformatics 6: 227. doi:10.1186/1471-2105-6-227.

2. Quackenbush J (2003) GENOMICS: Microarrays – Guilt by Association.

Science 302: 240–241. doi:10.1126/science.1090887.

3. Quackenbush J (2001) Computational analysis of microarray data. Nature

reviews. Genetics 2: 418–27. doi:10.1038/35076576.

4. Eisen MB (1998) Cluster analysis and display of genome-wide expression

patterns. Proceedings of the National Academy of Sciences 95: 14863–14868.

doi:10.1073/pnas.95.25.14863.

5. Wu LF, Hughes TR, Davierwala AP, Robinson MD, Stoughton R, et al. (2002)

Large-scale prediction of Saccharomyces cerevisiae gene function using

overlapping transcriptional clusters. Nature Genetics 31: 255–265.

doi:10.1038/ng906.

6. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data

analysis: a survey. IEEE/ACM Transactions on Computational Biology and

Bioinformatics/IEEE, ACM 1: 24–45. doi:10.1109/TCBB.2004.2.

7. Adler P, Kolde R, Kull M, Tkachenko A, Peterson H, et al. (2009) Mining for

coexpression across hundreds of datasets using novel rank aggregation and

visualization methods. Genome biology 10: R139. doi:10.1186/gb-2009-10-12-

r139.

8. Casal JJ, Mazzella MA (1998) Conditional Synergism between Cryptochrome 1

and Phytochrome B Is Shown by the Analysis of phyA, phyB, and hy4 Simple,

Double, and Triple Mutants in Arabidopsis. Plant Physiol. 118: 19–25.

doi:10.1104/pp.118.1.19.

9. Craigon DJ, James N, Okyere J, Higgins J, Jotham J, et al. (2004) NASCArrays:

a repository for microarray data generated by NASC’s transcriptomics service.

Nucleic acids research 32: D575–7. doi:10.1093/nar/gkh133.

10. Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, et al. (2007) Many

Microbe Microarrays Database: uniformly normalized Affymetrix compendia
with structured experimental metadata. Nucl. Acids Res.: gkm815. doi:10.1093/

nar/gkm815.
11. Hastie T, Tibshirani R, Friedman J (2009) Elements of statistical learning.

Second ed. New York: Springer. 600 p.

12. KEGG Orthology Database. Available: http://www.genome.jp/kegg/ko.html.
Accessed 2011 June 20.

13. Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are
phytohormones with multiple functions, including plant defense and reproduc-

tion. Genetics and molecular research: GMR 9: 484–505. doi:10.4238/vol9-

1gmr754.
14. Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana:

crucial regulatory nodes and new physiological scenarios. The New phytologist
177: 301–18. doi:10.1111/j.1469-8137.2007.02292.x.

15. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, et al. (2006) Crosstalk
between abiotic and biotic stress responses: a current view from the points of

convergence in the stress signaling networks. Current opinion in plant biology 9:

436–42. doi:10.1016/j.pbi.2006.05.014.
16. Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights

from cell to plant to community. Plant, cell & environment 33: 510–25.
doi:10.1111/j.1365-3040.2009.02052.x.

17. Hengel AJ van, Barber C, Roberts K (2004) The expression patterns of

arabinogalactan-protein AtAGP30 and GLABRA2 reveal a role for abscisic acid
in the early stages of root epidermal patterning. The Plant journal: for cell and

molecular biology 39: 70–83. doi:10.1111/j.1365-313X.2004.02104.x.
18. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004)

Bioconductor: open software development for computational biology and
bioinformatics. Genome biology 5: R80. doi:10.1186/gb-2004-5-10-r80.

Transcriptomics Experiment Selection for GBA

PLoS ONE | www.plosone.org 11 August 2012 | Volume 7 | Issue 8 | e39681


