
GAT: A Graph-Theoretical Analysis Toolbox for Analyzing
Between-Group Differences in Large-Scale Structural and
Functional Brain Networks
S. M. Hadi Hosseini1*, Fumiko Hoeft1,2, Shelli R. Kesler1,3

1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America, 2 Division of Child and

Adolescent Psychiatry, Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America, 3 Stanford Cancer Center, Palo

Alto, California, United States of America

Abstract

In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of
large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing
topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT)
that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user
interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological
properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random
failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation
testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding
process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-
matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The
results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that
confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the
capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.
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Introduction

Brain structural and functional connectivity plays an impor-

tant role in neuroanatomy, neurodevelopment, electrophysiolo-

gy, functional brain imaging, and neural basis of cognition [1].

Brain networks, along with other biological networks, have been

shown to follow a specific topology known as small-world. A

small-world network architecture facilitates rapid synchroniza-

tion and efficient information transfer with minimal wiring cost

through an optimal balance between local processing and global

interaction [2]. Since small-world characteristics were described

quantitatively for brain networks, there have been multiple

graph-theoretical studies seeking to assess the organization of

structural and functional brain networks in healthy individuals

and patient population [3–22].

The unique feature of graph-theoretical analysis, compared

with the more traditional univariate neuroimaging approaches, is

that it can directly test the differences in topological parameters of

the brain network such as small-worldness, modularity, highly

connected regions (hubs), and regional network parameters.

[23,24] Additionally, graph theoretical analysis is potentially

applicable to any modality, scale, or volume of neuroscientific

data [25]. Graph theoretical analyses have been applied to

regional gray matter volume, cortical thickness, surface area, and

diffusion weighted imaging data to analyze topology of structural

brain networks and to resting state and task-related functional

connectivity data to analyze the topology of functional brain

networks. These studies have illustrated an alteration of arrange-

ments in structural and functional brain networks associated with

normal aging, multiple sclerosis, Alzheimer’s disease, schizophre-

nia, depression, and epilepsy [4,5,9,12,14,15,20,22,26].

In recent years, a number of freely available software packages

have been introduced to apply graph theory for analyzing

topology of brain networks (e.g. Brain Connectivity Toolbox

[27]; eConnectome [28]; NetworkX (http://networkx.lanl.gov/

overview.html); and Brainwaiver (http://cran.r-project.org/web/

packages/brainwaver). The focus of these packages is mainly on

extracting network measures and/or visualization of networks.

However, the methodology of comparing network topologies of

different groups (or systems) is challenging [29]. In this report, we

describe the development a graph analysis toolbox (GAT) that

facilitates analysis and comparison of structural and functional

brain networks. GAT is an open-source Matlab-based package

with graphical user interface that integrates the Brain Connectivity

Toolbox [27] for quantification of network measures and the REX

toolbox (http://web.mit.edu/swg/software.htm) for region of
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interest extraction (REX). For structural network analysis, GAT

accepts gray matter volume/surface area/cortical thickness data of

groups, extracts structural correlation networks, applies different

thresholding schemes for comparing networks between groups,

calculates network measures for different thresholding schemes,

estimates between-group differences in network measures using

functional data analysis (FDA) [30,31] and area under the curve

(AUC) analysis, tests the significance of between-group differences

in global and regional network measures using nonparametric

permutation testing, and performs hub analysis, random failure

and targeted attack analysis and modularity analysis. For

functional networks, GAT accepts the output from functional

connectivity toolbox (http://www.nitrc.org/projects/conn), ex-

tracts the network measures, finds the range of network densities

where individual networks are not fragmented, performs both

parametric and non-parametric statistical tests to test the

significance of between-group differences in global and regional

network measures at each densities as well as on FDA and AUC

estimates, and the above-mentioned analyses as for structural

graphs.

To demonstrate the capabilities of GAT, we investigated the

differences in organization of structural brain networks in survivors

of acute lymphoblastic leukemia (ALL), the most common

childhood cancer, and healthy matched controls. There are

several lines of evidence suggesting that ALL may involve

widespread neurobiologic injury. First, while the mechanism by

which cancer and its treatments affect cognitive function are

largely unknown, possible candidates include neurotoxic effects of

chemotherapy, oxidative damage and cytokine dysregulation

[32,33]. These candidate mechanisms might have diffuse effects

on brain structure. Second, structural neuroimaging studies,

including our own [34] have shown diffuse changes in white

matter and gray matter structure associated with ALL [35–38].

Third, meta-analyses of neuropsychological studies on ALL

survivors have indicated decline in a wide range of cognitive

functions including executive functioning, processing speed and

memory [39,40] (see [41,42] for a review). These functions are

known to be subserved by distributed, integrated neural networks

[43]. We investigated whether topological properties of large-scale

structural brain networks are altered in ALL survivors.

Materials and Methods

Overview of How to Use the GAT
GAT is an open-source Matlab (The MathWorks Inc., Natick)

package that provides a GUI framework to facilitate the

investigation of organization of brain networks. The GUI allows

users to interact with the toolbox easily without requiring

knowledge of Matlab or programming. GAT provides an

interactive platform for conducting graph theoretical analysis on

various types of data including morphometry, functional, diffusion

weighted and behavioral data (Fig. 1). The main focus of the

toolbox is on analyzing the between-group differences in brain

network topology. The toolbox facilitates investigation of brain

networks by constructing binary undirected graphs (i.e. two

regions in brain network are either connected or not connected

and the connection does not have any weight or direction).

However, we are extending the toolbox to be able to analyze

weighted and directed networks. In the following sections, we

describe the detailed procedure for analyzing structural and

functional network. The procedure for analyzing between-group

differences in behavioral networks/white matter networks is quite

similar to the procedure described for comparison of structural

morphometry/functional networks.

Structural Graphs Based on Morphometry Data
Coordinated variations in brain morphology have been

proposed as a valid measure to infer large-scale structural brain

networks [13,44–46]. This approach depends upon the assump-

tion that positive correlations between morphometric parameters

of different brain regions indicate connectivity [45]. Previous study

revealed that some of the tractography maps obtained from

diffusion tensor imaging are strikingly similar to pattern of

correlations in cortical thickness [44]. In addition, the structural

networks constructed from morphometric correlations of cortical

volume, thickness, and surface data [13,44–46] have been shown

to follow small-world characteristics in healthy individuals

[12,17,19,47]. The GUI panel for investigating structural corre-

lation networks based on morphometry data is shown in Fig. 2.

Input data. GAT accepts two types of morphometry data to

investigate the organization of structural correlation networks:

first, GAT accepts the gray matter images of individuals as input

(e.g. modulated, normalized gray matter maps from voxel-based

morphometry analysis). Having the gray matter images, the first

step is to define the network nodes that are identified by the

regional parcellation scheme that will be chosen. There are

different nodal definition methods in brain network analysis.

While the results might be affected by the choice of parcellation

scheme, recent evidence indicates that the results of between-

group comparison remain intact regardless of the applied

parcellation scheme [48]. The ROI scheme that is available in

GAT is the 90 cortical and subcortical regions of interest (ROIs)

from the Automated Anatomical Labeling (AAL) atlas, extracted

using the WFU PickAtlas Toolbox [49]. The ROIs are identical

to those used in a previous graph analysis study of typical brain

development by Fan and colleagues [19,22,50]. Note that the

gray matter images should be resliced to the same dimension as

that of the provided AAL ROIs. The ROIs are subsequently

used to mask the individual modulated, normalized gray matter

images and extract the average volume within each ROI using

the REX code (http://web.mit.edu/swg/software.htm). Alterna-

tively, a customized ROI scheme can be implemented to extract

Figure 1. Main GUI of the graph analysis toolbox (GAT). The
toolbox allows topological assessment of morphometry, functional,
diffusion, and behavioral data.
doi:10.1371/journal.pone.0040709.g001

GAT: Graph Analysis Toolbox for Brain Networks

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e40709



the regional volume data. REX accepts predefined ROIs as

NIFTI-1 image mask files (*.img or.nii formats) or text files (.tal

format). In addition, user can input previously extracted regional

morphometry data (e.g. surface area, cortical thickness, regional

gray matter volume data) via spreadsheets (Microsoft Excel.xls

files) into GAT.

Covariates of nuisance. For between-group comparisons,

the regional morphometry data might require correction for

between-group differences in covariates of nuisance such as total

brain volume, age and gender. GAT accepts the covariates of

nuisance in a spreadsheet (Microsoft Excel.xls files ) and performs

a linear regression analysis at every ROI to remove the effects of

covariates. The residuals of this regression are then substituted for

raw regional morphometry values [13,19,20].

Construction of structural correlation network. GAT

uses the extracted regional morphometry data (or residuals) of all

the N ROIs for construction of structural correlation networks. For

each group, an N6N association matrix R is generated with each

entry rij defined as the Pearson correlation coefficient (or partial

correlation coefficient) between regional values of regions i and j,

across subjects. The user can specify what type of correlation

analysis (Pearson vs. partial correlation) to be done on the data.

From each association matrix, a binary adjacency matrix A is

derived where aij is considered 1 if rij is greater than a specific

threshold and zero otherwise. The diagonal elements of the

constructed association matrix are set to zero. The resultant

adjacency matrix represents a binary undirected graph G in which

regions i and j are connected if gij is unity. Therefore, a graph is

Figure 2. GUI for graph theoretical analysis of morphometry data. The toolbox facilitates construction of structural correlation networks,
extraction of network measures, statistical analysis, regional network analysis, network failure and attack analysis, modularity analysis, AUC and FDA
analyses and visualization.
doi:10.1371/journal.pone.0040709.g002

GAT: Graph Analysis Toolbox for Brain Networks

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e40709



constructed with n nodes (ROIs), with a network degree of E equal

to number of edges (links), and a network density (cost) of D = E/

[(N6(N21) )/2] representing the fraction of present connections

to all possible connections.

Thresholding. Thresholding the association matrices of

different groups at an absolute threshold results in networks with

a different number of nodes (and degrees) that might influence the

network measures and reduce interpretation of between group

results [29]. Two approaches are implemented for thresholding

the constructed association matrices based on previous studies

[12,14,20]: 1) Thresholding the constructed association matrices at

a minimum network density (Dmin) in which all nodes become fully

connected in the brain networks of both groups (none of the

networks are fragmented); 2) Thresholding the constructed

association matrices at a range of network densities for comparing

the network topologies across that range. The GAT allows the user

to specify the range and the interval between densities. The

specified range may include the density points prior to the network

fragmentation point but the results should be interpreted carefully.

Network analysis. The small-worldness of a complex

network, as described in the introduction, has two key metrics:

the clustering coefficient C and the characteristic path length L of

the network. The clustering coefficient of a node is a measure of

the number of edges that exist between its nearest neighbors. The

clustering coefficient of a network is thus the average of clustering

coefficients across nodes and is a measure of network segregation.

The characteristic path length of a network is the average shortest

path length between all pairs of nodes in the network and is the

most commonly used measure of network integration [27]. To

evaluate the topology of the brain network, these parameters must

be compared to the corresponding mean values of a benchmark

random graph [51,52]. Thus, the small-worldness index of a

network is obtained as [C/Crand]/[L/Lrand] where Crand and Lrand

are the mean clustering coefficient and the characteristic path

length of the m random networks [11]. m is the number of null

networks generated for normalization of clustering and path length

and is specified by the user (default value of 20). In a small-world

network, the clustering coefficient is significantly higher than that

of random networks (C/Crand ratio greater than 1) while the

characteristic path length is comparable to random networks (L/

Lrand ratio close to 1). The benchmark random networks are

usually constructed using rewiring algorithms that preserves the

topology of the graphs; i.e. random graphs with the same number

of nodes, total edges and degree distribution as the network of

interest [51,52]. However, recent evidence suggests that correla-

tion networks are inherently more clustered and partial correlation

networks are inherently less clustered than random networks of the

same size and degree [53]. Thus, alternative algorithms were

proposed for constructing benchmark random networks that only

annihilates intrinsic structure in the empirical data. For structural

networks, two types of algorithms are implemented in the GAT for

construction of benchmark null networks: 1) topology randomiza-

tion that generates random networks with the same number of

nodes, degree, and degree distribution as the network of interest

and 2) correlation matrix randomization that generates null

covariance matrices that are matched to the distributional

properties of the observed covariance matrix [53]. It should be

noted that the choice of null network largely affects the small-

world metrics for networks thresholded at lower densities (density

,0.2) [53].

GAT extracts network measures using the codes developed in

the Brain Connectivity Toolbox (BCT) [27]. Several network

metrics including measures of network segregation (e.g. clustering,

transitivity), integration (e.g. path length, efficiency), centrality (e.g.

nodal betweenness, edge betweenness), and resilience (e.g.

assortativity) are quantified (see [27] for a list of network

measures). These metrics are quantified at both the network and

regional level. GAT generates the plots of changes in global

network measures as a function of network density. It also creates

the association and adjacency matrices (thresholded at Dmin) for

each group network.

Comparing network measures between groups. In order

to test the statistical significance of the between-group differences

in network topology and regional network measures, a non-

parametric permutation test with 1000 (user defined) repetitions is

used [12,14,20]. In each repetition, the regional data (or residuals)

of each participant are randomly reassigned to one of the two

groups so that each randomized group had the same number of

subjects as the original groups. Then, an association matrix is

obtained for each randomized group. The binary adjacency

matrices are then estimated by applying the same thresholding

procedure as described above. The network measures are then

calculated for all the networks at each density. The differences in

network measures between randomized groups (at each network

density) are then calculated resulting in a permutation distribution

of difference under the null hypothesis. The actual between-group

difference in network measures is then placed in the corresponding

permutation distribution and a one/two-tailed p-value (user

defined) is calculated based on its percentile position [20]. For

global network measures, GAT generates the plots of between-

differences in network measures along with the quantified

confidence intervals as a function of network density.

GAT also compares the areas under a curve (AUC) for each

network measure [20,54]. For this purpose, the curves extracted

from thresholding across a range of densities are used. Each of

these curves depicts the changes in a specific network measure (for

each group) as a function of network density. To test the

significance of the between-group differences in AUC of each

network measure, the actual between-group difference in AUC for

each network measure is placed in the corresponding permutation

distribution and p-value is calculated based on its percentile

position. By performing AUC analysis, the comparison between

network measures is less sensitive to the thresholding process.

However, the result still depends on the selected minimum and

maximum network densities. While the GAT uses user-defined

range of network densities for AUC analysis, we strongly

recommend using the calculated Dmin as the minimum density;

specifically because the networks become fragmented below Dmin

and the comparisons might be affected by group differences in the

number of nodes and connections [29]. A maximum network

density of below 50% is suggested since structural networks with

more than 50% connections are likely non-biological [55].

Although AUC analysis alleviates the sensitivity of the between

group comparison to the thresholding process, it is too sensitive to

the random structure present at higher network density values and

is further insensitive to differences in the shape of the curves rather

their mean. Thus, in addition to AUC analysis, GAT utilizes

functional data analysis (FDA) which is a statistical method for

comparing curves and overcomes these limitations [30,31]. In

FDA, each network measure curve is treated as a function (y = f(x))

and the summation of differences in y-values (a graph metric)

between groups are calculated at a range of density. A

nonparametric permutation test is then applied (as for AUC

analysis) to test the significance of the observed summation.

The same permutation procedure is used to test the significance

of the between-group differences in regional network measures.

However, for regional measures, GAT performs three separate

comparisons: 1) Comparing regional networks measures for the

GAT: Graph Analysis Toolbox for Brain Networks
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networks thresholded at Dmin; 2) comparing the AUC of the

regional network measures over the specified density range; 3)

performing FDA on the regional network curves over the specified

density range. GAT outputs both uncorrected and false discovery

rate (FDR) corrected p-values as measures of significance of the

regional measures comparisons. GAT also generates the plots of

between-group differences in regional network measures along

with the quantified confidence intervals as a function of network

density.

Network hub analysis. Hubs are crucial components for

efficient communication in a network. Hubs are not only

considered as important regulators of information flow but also

play a key role in network resilience to insult [27]. Previous studies

demonstrated that the hubs in the human brain structural

correlation networks tend to be the regions in highly connected

association cortex [13] and that the distribution of hubs are altered

in structural networks of patients with Schizophrenia, Alzheimer’s

disease and multiple sclerosis [12,14,15]. A node is considered as a

hub if its regional degree/betweenness centrality is 1 (or 2) SD

higher than the mean network degree/betweenness [12,20]. GAT

quantifies the network hubs based on measures of degree,

betweenness centrality, local efficiency or local clustering and a

user-defined SD cutoff.

The same as for regional measures, three approaches are taken

for quantification of hubs. 1) The hubs are quantified for networks

thresholded at Dmin; 2) the hubs are quantified based on the AUC

of the degree (or betweenness, etc.) in the specified density range;

3) the hubs are quantified from FDA of the degree (or

betweenness, etc.) curves in the specified density range.

Random failure and targeted attack analysis. To assess

the resilience of brain networks to acute and focal damage,

networks can be lesioned by random deletion of nodes, or by

targeted attack on the highest-degree nodes in the network [56]. In

GAT, random failure of the networks is simulated by randomly

removing one node from the network and then measuring changes

in global network metrics (e.g. size, path length, etc.) of the

remaining largest component. This process is repeated by

incrementally removing additional nodes randomly until the size

of the largest component is 1 [3,57].

To assess the network behavior against targeted attack, the same

procedure is applied. However, in this case, the nodes are removed

in rank order of decreasing nodal measure (e.g. nodal betweenness,

degree, etc.). Several global metrics like size, path length, mean

local and global efficiency as well as a number of nodal metrics like

nodal degree and betweenness have been suggested in the

literature for assessing random failure and targeted attack analysis

[3,11,14,20,58]. In GAT, user may pick among several regional

(e.g. degree, betweenness, clustering) and global metrics (e.g. size,

mean local and global efficiency, path length) to investigate the

effect of random failure and targeted attack on network behavior.

The user can specify the density threshold at which random failure

and targeted attack analysis are performed.

To test whether two group networks behave differently against

random failure and targeted attack, a permutation analysis (same

as the procedure mentioned for analyzing between-group differ-

ences in network measures) is performed. Then, the difference in

network behavior is measured either at each attack (failure),

through FDA or AUC analysis.

Network modularity analysis. Modularity is a more

sophisticated measure of network segregation and is quantified

by subdividing the network into groups of regions that have

maximal within group connections and minimal between-group

links. A unique advantage of modular organization is that it can

evolve one module at a time, without risking loss of function in

other modules [59]. Optimization algorithms are usually used to

find such modular structures within a network. GAT uses the

algorithms described in [60] and [61], and implemented in BCT,

for quantification of modular structure. In order to characterize

the degeneracy of the modularity structure adequately, the

optimization algorithm runs several times (the number of iterations

(default is 100) is specified by the user). Then, the community

structure with highest maximized modularity value is used as the

representative modular structure.

Network visualization. For visualization of networks on

brain templates, GAT takes two approaches: first, GAT directly

maps the network structure on an axial view of anatomical brain

template (T1 image). Each ROI is represented by one node whose

world coordinate has been extracted from AAL atlas. The brain

networks are then mapped using these nodal dimensions. Second,

GAT creates the node and edge files required by BrainNet Viewer

(http://www.nitrc.org/projects/bnv/) in order to visualize the

connectivity patterns. This way, you can use the files generated by

GAT in BrainNet Viewer and visualize the networks and hub

structures.

Degree distribution. Pattern of distribution of nodal con-

nectivity in a network (degree distribution) reveals specific

characteristics of the network and its resilience to random failure

and targeted attacks [3,13,62]. Previous studies have demonstrated

that the degree distribution of small-world structural brain

networks follows an exponentially truncated power-law distribu-

tion [13,63]. Such distribution is formulated as P(d) , [d(e21) *

exp(-d/dc)], where P(d) is the probability of network regional degree

(d), dc is the cut-off degree above which there is an exponential

decay in probability of hubs and e is the exponent, and indicates a

scaling regimen, followed by an exponential decay in the

probability of nodes with nodal degree greater than a cutoff value

of dc; suggesting a network which mostly comprised of nodes with a

nodal degree close to average network degree and also a number

of nodes with higher number of connections (hubs). GAT

examines whether the cumulative degree distribution of the

constructed networks follows an exponentially truncated power-

law distribution and returns the R-square, which is a measure of

how successful the fit is (R-square value close to 1 represents a

perfect fit). It also generates a figure showing the original and fitted

degree distributions. The cumulative degree distribution is used to

reduce the effects of noise on smaller data sets [64]. There are also

other forms of degree distribution observed in real-world networks

including power law degree distribution (d2e) and exponential

degree distribution (e2e*d). GAT also compares the R-square

values for exponentially truncated power law fit model, power law

fit model and exponential fit model.

Functional Graphs Based on Resting-state or Task-based
fMRI Data

Temporal correlations in spontaneous low-frequency fluctua-

tions in blood oxygen level dependent (BOLD) signal while

subjects rest has been demonstrated as a reliable measure of brain

connectivity [65–67]. The small-worldness of resting-state func-

tional networks have been consistently demonstrated in several

fMRI studies [3,5,16,68,69]. In addition, resting state fMRI

connectivity studies are sensitive to abnormal global network

organization, revealing changes in several clinical populations with

cognitive deficits including Alzheimer’s disease [5,9], schizophre-

nia [70,71], traumatic brain injury [72], temporal lobe epilepsy

[73], depression [10,26] and attention-deficit hyperactivity disor-

der [74]. On the other hand, task-based functional connectivity

pattern, i.e. temporal correlations of low-frequency BOLD signal

while a subject performs a task, has also been shown to reflect the

GAT: Graph Analysis Toolbox for Brain Networks
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pathologic conditions. Previous studies demonstrated alterations in

topologies of task-based functional connectivity pattern during

memory encoding and recognition in older adults [75] and during

episodic memory performance in Schizophrenia [76]. The GUI

panel for investigating functional brain networks based on

functional connectivity data is shown in Fig. 3.

Input data. GAT accepts two types of input data to

investigate the organization of functional correlation networks:

First, GAT accepts the output from functional connectivity

toolbox (http://www.nitrc.org/projects/conn) as input and ex-

tract the individual correlation matrices (an N6N matrix) as well as

the ROI names. The correlation outputs of functional connectivity

toolbox are in the form of z-scores. Thus, the program first

converts the z-scores to original correlation values. Network nodes

are defined based on the same ROI scheme used for functional

connectivity analysis within the functional connectivity toolbox.

Alternatively, the user can input previously extracted correlation

matrices, partial correlation values, coherence matrices, or mutual

information matrices by putting them into an M6N6N Matlab

array with M subjects and N ROIS.

Construction of functional network. From the previous

step, we have an N6N association matrix R for each individual

with each entry rij represents the strength of functional connectivity

between regions i and j. For each association matrix (individual),

an N6N binary adjacency matrix A is derived where aij is

considered 1 if rij is greater than a specific threshold and zero

otherwise. The diagonal elements of the constructed association

matrix are set to zero. The resultant adjacency matrix represents a

binary undirected graph G in which regions i and j are connected if

gij is unity. Therefore, a graph is constructed with n nodes (ROIs),

with a network degree of E equal to number of edges (links), and a

network density (cost) of D = E/[(N6(N21) )/2] representing the

fraction of present connections to all possible connections.

Thresholding. Thresholding the association matrices of

different individuals at an absolute threshold results in networks

with a different number of nodes (and degrees) that might

influence the network measures and reduce interpretation of

between group results [29]. Thus, the individual association

matrices are thresholded at a range of network densities.

Network analysis. The network analysis step is similar to

analysis of structural networks. The only difference is that for

functional networks, a set of network measures are quantified for

each individual network, rather than each group. Therefore,

normalized clustering coefficient (C/Crand), normalized path

length (L/Lrand), and small world index are quantified for each

individual network. Benchmark random networks generated for

functional graphs include topology randomization and correlation

matrix randomization [53].

Similarly, the regional network measures such as nodal

clustering, transitivity, path length, local efficiency, nodal be-

tweenness and assortativity are quantified for each individual

network, as described above.

Covariates of nuisance. For between-group comparisons,

the individual network measures might require correction for

between-group differences in covariates of nuisance such as age

and gender. GAT accepts the covariates of nuisance in a

spreadsheet (Microsoft Excel.xls files) and performs a linear

regression analysis at every individual network measure to remove

the effects of covariates. The residuals of this regression are then

substituted for the raw individual network measures for further

between-group comparison.

Comparing network measures between groups. Before

performing statistical testing, the density range in which network

Figure 3. GUI for graph theoretical analysis of functional data. The toolbox facilitates construction of functional networks, extraction of
network measures, statistical analysis, regional network analysis, modularity analysis, AUC and FDA analyses and visualization.
doi:10.1371/journal.pone.0040709.g003
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comparison is meaningful needs to be identified, i.e. the density

range in which the networks are not fragmented. Therefore, the

individual networks are tested for fragmentation to find the range

of densities in which all the nodes are connected at least to one

other node. After examining all the networks, the minimum

network density at which no individual network is fragmented is

identified. The maximum network density is indicated by the user

by examining the small-worldness of the individual networks. All

the further analyses are performed on the networks thresholded

over this density range.

In order to test the statistical significance of the between-group

differences in network topology and regional network measures,

GAT performs a parametric t-test (e.g. 2-sample t-test for

comparing two groups) as well as a non-parametric permutation

test with 2000 (user defined) repetitions [70]. For permutation

testing, in each repetition, the network measures (or residuals) of

each individual are randomly reassigned to one of the two groups

so that each randomized group had the same number of subjects

as the original groups. Then, the differences in network measures

between randomized groups (at each network density) are then

calculated resulting in a permutation distribution of difference

under the null hypothesis. The actual between-group difference in

network measures is then placed in the corresponding permutation

distribution and a two-tailed p-value is calculated based on its

percentile position. This results in a p-value of difference at each

network density.

In addition to comparing global network measures at every

density, FDA and AUC analyses are performed to make the

between-group comparison less sensitive to the thresholding

process. The FDA and AUC analyses are performed for each

network measure at the specified density range. To test the

significance of the between-group differences, either a nonpara-

metric permutation test or a parametric t-test is performed.

The same procedure is used to compare the between-group

differences in regional network measures. However, for the

regional measures, comparison at every network density will result

in a large number of comparisons (number of densities 6number

of ROIs). Therefore, the comparison is made on the AUC of

regional network measures over the specified density range or on

the FDA results. GAT outputs both uncorrected and false

discovery rate (FDR) corrected p-values as measures of signifi-

cance of regional measures comparisons. In the present study, the

p-values reported for regional differences between groups are FDR

corrected for multiple comparisons (90 comparisons).

Network hub analysis. The same as for structural networks,

network hubs for functional networks are quantified based on

measures of degree, betweenness, local efficiency or local

clustering and a user-defined SD cutoff. For functional networks,

the AUC of the nodal measures over the specified density range or

the FDA results are used for hub analysis. Alternatively, a user-

specified density can be used for hub analysis.

Other procedures such as visualization and analysis of degree

distribution are similar to the one described for structural

networks.

Results

To demonstrate the capabilities of GAT, we examined the

differences in organization of structural brain networks in survivors

of ALL, the most common child cancer, and healthy matched

controls (CON). The detailed procedures of participants, data

acquisition and preprocessing is published elsewhere [34]. In

summary, 28 children and adolescents with a history of ALL (age

5.0–19.8 years old) who had completed all anti-cancer treatments

for at least 6 months as well as 31 healthy controls (age 4.1–18.4

years old), matched for age, gender, maternal education level and

minority status, were recruited. The study was approved by the

Stanford University Institutional Review Board and the Stanford

Cancer Center’s Scientific Review Board and written informed

consent was obtained from adult participants or from the parent/

legal guardian of minor participants and assent was obtained from

participants age 8 years and older per Stanford University’s

regulations.

High resolution, 3D spoiled gradient recall MR images were

obtained using a 3 Tesla GE Signa whole body scanner (GE

Medical Systems, Milwaukee, WI) with the following parameters:

repetition time = 6.436 ms, echo time = 2.064 ms, flip angle = 15u,
number of excitation = 3, matrix size = 2566256 voxels, field of

view = 220, slice thickness = 1.5 mm, 124 contiguous slices. To

extract individual gray matter volumes, voxel-based morphometry

analysis was conducted in Statistical Parametric Mapping (SPM8)

[77] using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/

vbm). We utilized the optimized VBM process [78] which

included 1) segmentation and extraction of the brain in native

space, 2) normalization of the images to a standard space using a

customized pediatric template, created via Template-O-Matic

software [79] using images from all subjects, 3) segmentation and

extraction of the normalized brain (extraction is repeated to ensure

that no non-brain tissues remain), 4) modulation of the normalized

images to correct for tissue volume differences due to the

normalization procedure, and 5) inspection of the resulting gray

matter images by expert raters, blinded to group assignment for

quality, guided by boxplots and covariance matrices output by the

VBM8 toolbox. The extracted gray matter volume maps were

used as the input to GAT for construction and analysis of

structural correlation networks.

Network Construction
Regional gray matter volumes of 90 cortical and subcortical

ROIs were extracted by applying AAL parcellation scheme to

the individual normalized gray matter images. The extracted

regional gray matter volume data were corrected for between

group differences in age, gender, total brain volume, and their

interactions. For each group, a 90690 association matrix was

generated by performing Pearson correlation coefficient between

regional gray matter volumes across subjects. Previous studies

used Pearson correlation analysis to infer statistical associations

in morphometry data between brain regions [13,15,17–20,22].

An alternative measure is partial correlation that attempts to

remove the effect of indirect paths [80]. However, partial

correlation is not suitable for studies with sample size smaller

than the number of ROIs [53]. Binary adjacency matrices were

then derived by thresholding the association matrices at a range

of densities (Dmin: 0.01:0.45; Dmin = 0.22). The lower bound of

the range is determined as the minimum density in which the

networks of both groups are not fragmented (Dmin = 0.22). For

densities above 0.45 the graphs becomes increasingly random

(small-world index ,1.5). Additionally, for anatomical networks,

connections above this density are less likely biological [81].

Each of the derived binary adjacency matrices represents a

network with a specific density. The resultant association and

binary adjacency matrices (thresholded at Dmin) are shown in

Fig. 4. Consistent with previous studies [12–14,17,20], the

association matrices in both groups exhibited similar patterns of

connectivity, with generally strong correlations between bilater-

ally homologous regions as well as between regions within the

same lobe.
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Within-group Global Network Measures
The minimum network density below which the networks are

fragmented was Dmin = 0.22. To investigate changes in the

network topology as a function of network density, GAT

thresholds the constructed association matrices at a range of

network densities. Changes in global network measures as a

function of network cost are shown in Fig. 5. The networks of both

groups followed a small-world organization across a wide range of

network densities; both the networks had a path length slightly

higher than random networks while having a clustering coefficient

that was much higher than that in random networks. This pattern

results in a small-world index of higher than one across the range

of network densities.

Between-group Differences in Global Network Measures
Differences across network densities. We investigated

between-group differences in global network measures on

networks thresholded at a range of densities (0.22:0.01:0.45).

Compared with CON, the ALL network showed smaller

normalized clustering and larger normalized path length across

the range of densities but the difference was not significant

(p,0.05) (Fig. 6). This pattern led to a significantly smaller small-

Figure 4. Association and adjacency matrices. Association matrices for A) ALL and B) CON groups; the color-bar shows the strength of the
connections. Binary adjacency matrices for C) ALL and D) CON groups; red color represents presence of connection. These matrices are the maps
thresholded at Dmin (22%) in which all nodes became fully connected in the structural networks of both groups. For clarity, only the regions in the left
hemisphere are labeled. Abbreviations are used as follow: L: left hemisphere; AMYG: amygdala; ANG: angular gyrus; CALC: calcarine fissure; CN:
caudate nucleus; ACC: anterior cingulate; MCC: mid-cingulate; PCC: posterior cingulate; CUN: cuneus; IFOp: inferior frontal gyrus, opercular part; IFOr:
inferior frontal gyrus, orbirtal part; IFTr: inferior frontal gyrus, triangular part; MedFOr: medial fronal gyrus, orbital part; MFG: middle frontal gyrus;
MFOr: middle frontal gyrus, orbital part; SFG: superior frontal gyrus; MedSF: superior frontal gyrus, medial part; SFOr: superior frontal gyrus, orbital
part; FG: fusiform gyrus; HSHL: heschl gyrus; HIPP: hippocampus; INS: insula; LNG: lingual gyrus; IOG: inferior occipital gyrus; MOG: middle occipital
gyrus; SOG: superior occipital gyrus; OFB: olfactory cortex; PLD: lenticular nucleus, pallidum; PCL: paracentral lobule; PHIP: parahippocampal gyrus;
IPL: inferior parietal lobule; SPL: superior parietal lobule; PoCG: postcentral gyrus; PrCG: precentral gyrus; PCUN: precuneus; PUT: putamen; REC: gyrus
rectus; RLN: rolandic operculum; SMA: supplementary motor area; SMG: supramarginal gyrus; ITG: inferior temporal gyrus; MTG: middle temporal
gyrus; MTP: middle temporal pole; STP: superior temporal pole; STG: superior temporal gyrus; THL: thalamus.
doi:10.1371/journal.pone.0040709.g004
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Figure 5. Changes in global network measures as a function of
network density. Normalized clustering (top), normalized path length
(middle), and small-world index (bottom) of both the ALL and CON
networks. Both the networks follow a small-world organization, i.e.
normalized clustering of greater than 1 and normalized path length of
close to 1.
doi:10.1371/journal.pone.0040709.g005

Figure 6. Between-group differences in global network mea-
sures as a function of network density. The 95% confidence
intervals and between-group differences in normalized clustering (top),
normalized path length (middle) and small-world index (bottom). The +
marker shows the difference between CON vs. ALL networks; the +
signs falling out of the confidence intervals indicate the densities in
which the difference is significant. The positive values indicate CON .
ALL and negative values indicate CON , ALL. Relative to CON network,
the small-world index in ALL network was significantly lower in various
network densities. The AUC of the small-world index was also
significantly lower in the ALL network.
doi:10.1371/journal.pone.0040709.g006
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world index in the ALL network at several densities across the

range (p,0.05) (Fig. 6).
FDA and AUC analysis on global network measures. In

addition to comparing networks at various densities, we compared

the AUC for global network measure curves (density range of

0.22:0.01:0.45) between groups. Similar to the observed differ-

ences across densities, while the ALL network had non-

significantly smaller AUC for normalized clustering (p = 0.079)

and larger normalized path length (p = 0.352), it showed a

significantly smaller small-worldness (p = 0.043) compared with

CON network. The FDA results were also consistent with the

AUC results; ALL network had non-significantly smaller normal-

ized clustering (p = 0.080), larger normalized path length

(p = 0.352), and significantly smaller small-world index (p = 0.041).

Between-group Differences in Regional Network
Measures

Differences at Dmin. [Thightest]We investigated between-

group differences in regional network measures, specifically nodal

betweenness, on networks thresholded at Dmin. Regions including

left middle frontal gyrus, left medial superior frontal and right

supramarginal gyrus showed significantly smaller betweenness in

ALL network. Conversely, a number of regions including right

insula, right inferior parietal and left supramarginal gyrus showed

significant larger betweenness in ALL network. None of these

regions survived after correction for multiple comparisons

(P,0.05).
FDA and AUC analysis on regional network

measures. We also compared the AUC for regional network

measure curves (density range of 0.22:0.01:0.45) between groups

(Fig. 7). While some of the regions were common between AUC

analysis and analysis of network differences at Dmin a number of

different regions were also found. Specifically, left orbital inferior

frontal, and right triangular inferior frontal regions showed

significantly smaller betweenness in ALL while left insula showed

significantly larger betweenness in ALL. None of these regions

survived after correcting for multiple comparisons (p,0.05) so the

regional results are considered exploratory. The FDA results were

similar to AUC results.

Network Hubs
We considered a node as a hub if its regional betweenness

centrality is 2 SD higher than the mean network betweenness.

Hubs were quantified for networks thresholded at Dmin as well as

based on FDA and the AUC of nodal betweenness curves (density

range of 0.22:0.01:0.45). For networks thresholded at Dmin, the

ALL network hubs were found in the right inferior parietal lobule,

left supramarginal gyrus, left postcentral gyrus and right rolandic

operculum whereas the CON network hubs were found in the

right cuneus, left middle frontal gyrus, left medial superior frontal

gyrus, bilateral postcentral gyrus, and right supramarginal gyrus.

Hub quantification based on AUC analysis revealed ALL

network hubs in the right insula, right inferior parietal, right

rolandic operculum and left supramarginal gyrus and CON

network hubs in the left middle frontal gyrus, left medial superior

frontal gryus, right inferior parietal lobule and bilateral postcentral

gyrus (Fig. 8). Hubs quantified using FDA were exactly the same as

those obtained from AUC analysis.

Random Failure and Targeted Attack Analysis
In order to analyze the networks behavior in response to

random failure, we calculated the size of the largest remaining

component in response to successive removal of nodes, in random

order. Changes in size of the remained largest component of the

network as a function of fraction of randomly removed nodes are

depicted in Fig. 9A. In most of the fractions of removed nodes, the

resilience of the ALL network to random failure was significantly

reduced compared to CON (p,0.05). The AUC of the curve was

also significantly lower in the ALL network compared to CON

(p = 0.043). The FDA results were also consistent with the AUC

results showing significantly lower robustness to random failure in

the ALL network (p = 0.042).

The same procedure was applied to analyze the networks

behavior in response to targeted attack but removing the nodes in

rank order of decreasing nodal betweenness centrality. The CON

network was generally more robust to targeted attack compared to

ALL network and the difference reached significance at a few

fractions of attacked nodes (p,0.05) (Fig. 9B). The AUC for the

CON network was larger than for the ALL but it was not

significant (p = 0.175). The same results were observed using FDA.

Network Modularity Analysis
Global network modularity was significantly higher in the CON

network compared with the ALL across several network densities

(Fig. 10A). The FDA and AUC analysis also revealed a

significantly higher modularity in the CON network in the density

range of interest (0.22:0.01:0.45) (p = 0.023 for AUC analysis and

p = 0.024 for FDA). Five modules were found in the networks of

both groups as color-coded in Figure 10B.

Degree Distribution
The degree distribution in both networks followed an exponen-

tially truncated power-law distribution (P(d) , [d(e21) * exp(2d/

dc)]) (Fig. 11). The exponent estimate (e) was 1.19 for ALL and 1.27

for CON networks. The cut-off degree (dc) was 2.65 for ALL

network and 2.52 for the CON. The R-square value was 0.97 for

both groups’ distributions fits. We also compared the goodness-of-

fit for other forms of degree distribution. The R-square for BC

group was 0.56 for power law fit and 0.91 for exponential fit. For

the CON group, the R-square value was 0.50 for power law fit and

0.85 for exponential fit.

Discussion

Graph theoretical analyses of neuroimaging data have increased

our understanding of the organization of structural and functional

brain networks in recent years. In this report, we describe the

development of a graph analysis toolbox (GAT) that facilitates

analysis and comparison of structural and functional brain

networks. We demonstrated the capabilities of GAT by investi-

gating the differences in organization of structural brain networks

in survivors of acute lymphoblastic leukemia (ALL) and healthy

matched Controls (CON). The results revealed an alteration in

small-world characteristics of the brain structural networks in the

ALL network; an observation that confirms our hypothesis

suggesting widespread neurobiological injury in ALL survivors.

This is the first report of altered large-scale structural brain

networks in ALL survivors.

Large-scale Structural Networks in ALL
Global network measures. Both the ALL and CON

networks followed a small-world organization across a wide range

of densities (Fig. 5). Such a network allows for efficient information

processing by providing an optimal balance between segregation

and integration [14]. The results are in line with previous graph

analysis studies that have consistently shown a small-world

architecture in structural brain networks in healthy individuals

[12,19,47].
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Figure 7. Between-group differences in regional network topology. Regions that showed significant between-group differences in nodal
betweenness mapped on ICBM152 surface template. Hot color identifies the regions that have significantly higher nodal betweenness in CON
compared to ALL while cold color identifies regions with significantly higher nodal betweenness in ALL compared to CON. The regional differences
were quantified based on AUC analysis in the density range of 0.22:0.01:0.45.
doi:10.1371/journal.pone.0040709.g007

Figure 8. Network hubs.: Constructed networks and corresponding hubs for ALL (top) and CON (middle) groups. Nodes that are labeled represent
network hubs (nodes with nodal betweenness of 2SD greater than network mean betweenness). The volume of the spheres represents the
betweenness of the corresponding brain region. Green color highlights hubs specific to CON network; yellow color represents hubs specific to ALL
network; Orange color represents hubs that are common in both groups; blue color represents non-hub regions. The hubs were quantified based on
AUC analysis in the density range of 0.22:0.01:0.45.
doi:10.1371/journal.pone.0040709.g008
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Compared to the CON network, the ALL network showed

smaller normalized clustering and larger normalized path length

that led to a significant smaller small-world index across several

densities in the ALL network. In addition, the area under the

small-worldness curve was also significantly smaller in the ALL

network suggesting the consistency of the findings irrespective of

the threshold. These findings suggest that the structural networks

of ALL patients tend to have a more regularized configuration

relative to CON group; a configuration that is more segregated but

less integrated compared to random networks. This configuration

in the ALL network is thus less optimal for information processing

compared to CON network. Our results corroborate previous

structural neuroimaging findings that have demonstrated a diffuse

pattern of atrophy in white matter and gray matter structure in

ALL survivors [34–38].

One potential mechanism underlying this network-level alter-

ation is white matter damage. A large body of evidence suggests

that global gray matter atrophy is associated with focal and global

white matter damage due in part to the transection of axons and

subsequent retrograde neuronal loss [82,83]. Animal studies show

that chemotherapy suppresses neural progenitor cell proliferation

responsible for white-matter tract integrity and cortico-cortical

connections [84–88]. Thus, the observed network-level alteration

in structural correlation network of ALL patients might arise from

neurotoxic effects of chemotherapy on cortico-cortical connec-

tions. This idea is also supported by previous diffusion weighted

Figure 9. Between-group differences in network resilience to random failure and targeted attack. Changes in the size of the largest
component of the networks after cascading random failure (A) and targeted attack (B). Stars show where the difference in the size of the largest
remaining components between groups is significant. The ALL network shows less tolerance to random failure and targeted attack. The AUC analysis
revealed a significantly lower tolerance to random failure in the ALL network compared to CON.
doi:10.1371/journal.pone.0040709.g009

Figure 10. Between-group differences in network modularity. The 95% confidence intervals and between-group differences in network
modularity (A). The + marker shows the difference between CON vs. ALL networks; the + signs falling out of the confidence intervals indicate the
densities in which the difference in global modularity is significant. The positive values indicate CON . ALL and negative values indicate CON , ALL.
The modular structures of the CON and ALL networks are also shown (B). While both the networks had the same number of modules (five modules
color-coded for each network separately), the degree of modularity is significantly lower in the ALL group in various network densities relative to CON
group.
doi:10.1371/journal.pone.0040709.g010
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imaging studies involving ALL survivors that reported a diffuse

pattern of microstructural white matter damage [35,37,89].

Regional network measures. The observed between-group

differences in regional network measures did not survive after

correction for multiple comparisons. However, the uncorrected

results were in line with previous findings and thus we consider the

following to be exploratory. Several regions in the prefrontal

cortex showed smaller betweenness centrality in the ALL network

compared to CON. Nodes with higher centrality in the network

identify regions that have the potential to participate in a large

number of functional interactions [90]. A number of neuropsy-

chological studies have shown a subtle long-term neurocognitive

deficits, specifically in cognitive functions subserved by prefrontal

cortex, in survivors of childhood ALL (see [41,42] for a review).

Previous neuroimaging studies reported reduced white matter

connectivity between frontal and occipital regions [34,89],

decreased white matter structure and volume in frontal regions

[37,38,91], and reduced fractional anisotropy in frontal white

matter structure [37] in ALL survivors. Decreased regional white

matter volume in prefrontal regions was also associated with

decreased performance on neuropsychological measures in this

population [91]. Paakko and colleagues [92] reported that ALL

patients with white matter changes more often had impairment of

attention and cognitive functions subserved by the frontal regions.

These reports might explain the observed lack of centrality in

prefrontal regions in the ALL network in our study suggesting an

impaired functional interaction between frontal regions and the

rest of the brain network.

Network hubs. The identified hubs in the CON network are

consistent with the results of previous graph-theoretical analysis

involving healthy subjects [12,14]. The CON network showed

more number of central hubs located in the prefrontal cortex

compared to ALL. The observed lack of highly central hubs in the

prefrontal cortex in the ALL network is in line with the results of

group-differences in regional network measures and suggests

network alterations involving regions critical for the executive

functions in ALL.

Random failure and targeted attack analysis. The AUC

of the random failure curve was significantly lower in the ALL

network compared to CON suggesting the overall lower resilience

of the ALL network in response to random failure. In addition, the

resilience of the ALL network was lower in response to targeted

attack but the overall between-group difference was not significant.

This observation is consistent with the results of global network

measures suggesting that the ALL network is more regularized

relative to CON network. Networks with more regularization are

less resilient to random failure and show reduced resilience to

pathologies [20]. A regularized network, compared with a small-

world network, does not have highly connected hubs and thus fails

to integrate various modules in the event of network fragmentation

as a result of cascaded random failures.

Network modularity. While both the networks had the

same number of modules, the degree of network modularity was

significantly smaller in the ALL network. The smaller network

modularity in the ALL network corroborates the observed higher

path length and lower clustering in the ALL network and suggests

a reduction in the balance between network segregation and

integration in ALL.

Degree distribution. The degree distribution of both

networks followed an exponentially truncated power law distribu-

tion suggesting a network with many regions having small number

of connections and a few regions having large number of

connections (hubs). The cutoff degree was around 3 for both the

networks, consistent with previous reports [13,20].

GAT Features
GAT provides a GUI framework to facilitate the investigation of

organization of brain networks without requiring the users to have

knowledge of Matlab or programming. In addition, GAT has a

number of unique features that other available graph-analysis

packages lack. First, unlike other graph-analysis packages that

mainly focused on extraction of network measures and/or

visualization, the unique feature of the GAT is that it integrates

the processes of ROI extraction, network construction, regional

and global network analysis, network comparison, hub analysis,

random failure and targeted attack simulation and network

visualization. Second, GAT facilitates analyzing between-group

differences in global network measures, regional network proper-

Figure 11. Degree distributions. The log-log plot of cumulative degree distributions of ALL (A) and CON (B) networks thresholded at Dmin. The
solid line indicates the exponentially truncated power-law curve fitted to the cumulative degree distribution of the networks (dotted line). The
estimated exponent was 1.19 for ALL and 1.27 for CON, the cut-off degree was 2.65 for the ALL and 2.52 for the CON network. These parameters
resulted in R-square value of 0.97 for both distributions (value close to one represents a good fit).
doi:10.1371/journal.pone.0040709.g011
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ties, and resilience to random failure and targeted attack using

permutation analysis. Third, in addition to comparing networks at

various densities, GAT compares the areas under a curve (AUC)

for each network measure. By performing AUC analysis, the

comparison between network measures is less sensitive to the

thresholding process. GAT performs AUC analysis for comparing

global networks measures, regional network measures, network

hubs as well as random failure and targeted attack analysis.

Fourth, GAT utilizes FDA which is more sensitive to differences in

shape of the curves to complement the AUC results. Finally, GAT

provides tools for testing network connectivity and analyze

network degree distribution.

However, GAT mainly performs network comparison by

converting the association matrices to binary undirected adjacency

matrices, which result in loss of information. Comparing weighted

and/or directed networks would be more informative but there are

still some methodological challenges to analyze and compare

weighted and directed networks [93]. We are extending the

toolbox to be able to analyze weighted and directed networks.

In summary, we described the development of GAT that

facilitates analysis and comparison of structural and functional

brain networks. Using GAT, we compared the organization of

large-scale structural correlation networks between ALL survivors

and matched healthy controls. We found an alteration in small-

world characteristics of the structural correlation networks in ALL

relative to healthy controls that corroborates our hypothesis

suggesting widespread network-level neurobiological injury in

ALL survivors. Compared to CON, the ALL network showed

smaller clustering and longer path length that resulted in

significantly smaller small-world index in ALL group; an

observation that suggests a more regularized network structure

in ALL relative to CON network. The ALL network is thus less

optimal for information transfer and more vulnerable to network

failures and attacks, supported by random failure and targeted

attack analyses results.
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