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Abstract

The purpose of the paper is to find a new approach to measure 3D green biomass of urban forest and to testify its precision.
In this study, the 3D green biomass could be acquired on basis of a remote sensing inversion model in which each standing
wood was first scanned by Terrestrial Laser Scanner to catch its point cloud data, then the point cloud picture was opened
in a digital mapping data acquisition system to get the elevation in an independent coordinate, and at last the individual
volume captured was associated with the remote sensing image in SPOT5(System Probatoired’Observation dela Tarre)by
means of such tools as SPSS (Statistical Product and Service Solutions), GIS (Geographic Information System), RS (Remote
Sensing) and spatial analysis software (FARO SCENE and Geomagic studio11). The results showed that the 3D green biomass
of Beijing urban forest was 399.1295 million m3, of which coniferous was 28.7871 million m3 and broad-leaf was 370.3424
million m3. The accuracy of 3D green biomass was over 85%, comparison with the values from 235 field sample data in a
typical sampling way. This suggested that the precision done by the 3D forest green biomass based on the image in SPOT5
could meet requirements. This represents an improvement over the conventional method because it not only provides a
basis to evalue indices of Beijing urban greenings, but also introduces a new technique to assess 3D green biomass in other
cities.
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Introduction

It is hard to estimate the amount of urban green space due to its

characteristics of diverse structure and scattered distribution [1,2].

Therefore, 3D green biomass could be vividly defined as a 3D

volume of the stems and leaves of all plants growing in the region

[3], which can not only more accurately reflect the proportion of

all vegetations in the region than such traditional 2D indicators as

forest area and coverage, but also provide some ecological

efficiency and green indexes suitable for the ecological assessment

of the urban landscape, while playing an important role in

planning the city and building the forestry discipline [4,5] .

In general, two methods can be used for the 3D Green Biomass

estimation: the ground survey and the estimating with the remote

sensing technology [6–9]. Actually, the ground survey is difficult to

be done on a large scale even if the value can get a high accuracy

because the green biomass can be acquired by the 3D volume

measured by each tree’s crown width and diameter at the breast

height so that the systems need continuous field tests to be

improved [10–21]. The remote sensing technology has been

widely used in vegetation classification, forest fire monitoring and

3D green biomass measuring. Lv et al. [22] calculated the 3D

volume by the crown height and width, how the crown width and

height on the aerial photo was first measured. Cheng et al. [24]

acquired the 3D volume by using the screen tracking vectorization

by means of GIS, who first made some field investigations to get

the data of leaf area and vegetation coverage, and then combined

the data with some high resolution images (IKONOS). Zhou et al.

[25] succeeded in making an estimation of the 3D green biomass

of Shanghai urban city forest by classifying the species on the

aerial photos with high resolution, then simulating the stereo

quantity by the plane quantity on the computer. Compared with

the traditional ground work, the remote sensing techniques

mentioned above have made greater improvements with such less

cost as manpower, material and time, leading a fast calculation of

3D green biomass on a large scale. However, although the

approaches can mitigate some problems, their precisions are not

guaranteed because they are computered by the crown volume

based on an appropriate formula suitable for the crown shape.

Additionally, there are so timely and limited calculations that it is

difficult to be widely promoted. Therefore, it is essential to find a

more precise and generalized approach capable of achieving the

3D green biomass by means of remote sensing retrieval method

today when the ecological environment is more and more

important.

The spatial distribution of leaf area determines resource capture

and canopy exchanges with the atmosphere. It is generally tedious

and time-consuming to measure the spatial distribution of leaf

area, even when 3D digital techniques are employed [21–26].

Many tree models, like light models, therefore choose individual
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canopies as a volume filled with leaf area. Simple shapes like

ellipsoids or frustums have been extensively used to model tree

shape [26–31]. More sophisticated parametric envelopes have

been proposed by Cescatti (1997) to extend the range of modeled

canopy shapes, and non-parametric envelopes like polygonal

envelopes are expected to fit any tree shape [32]. However, all the

envelopes showed that different shape models for the same tree

may lead to large differences in crown volume [33–36]. None of

these methods for tree crown volume estimation has been

evaluated by comparison with direct measurements. Moreover,

neither method accounts for the fractal nature of plants, because

only one value of crown volume is computed (i.e., at the

observation scale) and changes in crown volume with measure-

ment scale are ignored.

On the other hand, airborne laser scanners can be used to

acquire vertical and horizontal forest structure in detail as

scanning targets with laser pulses. In particular, such vertical

measurements enable the prediction of forest biomass and carbon

storage. Furthermore, laser sensors can be used to accurately

measure topographical information, the physical properties of a

forest and other information. Therefore, ALS(Auto Scanner Laser

System)has been recognized as a more efficient and precise

instrument than field surveys and optical remote sensing

techniques [37–43]. Since the early to mid 1980s, several studies

using full waveform sensors have been performed for forest

inventory, merchantable timber volume estimation [44], and forest

canopy characterization [45–47]. Recently, several researchers

have applied discretely emitted laser pulses for the individual- and

stand-level tree height estimation [47–53]and height-based timber

volume estimates [44–46].However, there is currently no effective

approach in the methods mentioned above to resolve the problems

on how to calculate the canopy volume accurately and quickly,

especially for the volume on a large scale.

In this paper, the 3D green biomass of Beijing urban forest was

calculated and analyzed based on the remote sensing retrieval

model. This approach, in which to obtain the point cloud data of

the crown, 30 different trees in size of each species from over 30

common tree species in Beijing urban area(like arborvitae, cedar, pine,

cypress, ginkgo, poplar, sycamore, willow tree, Sophora japonica, Ailanthus

altissima, Koelreuteria, ash, maple, cork oak and other about ten

common tree species)were chosen for scanning with laser scanner

FARO(FARO develops and markets portable CMMs (coordinate

measuring machines) and 3D imaging devices to solve dimensional

metrology problems.), was designed to calculate the 3D green

biomass of single wood by CASS (CAD AID SURVEY SYSTEM)

software(CASS mapping equipment in the South in AutoCAD

2004 to develop a new generation of digital terrain cadastral

mapping software)which has been patented in China in 2011 [24–

28], associated with the remote sensing image in SPOT5, and by

means of SPSS, GIS, RS and other spatial analysis tools [46–49].

Materials and Methods

Ethics Statement
No specific permits were required for the described field studies,

since the trees chosen in the study are owned and managed by the

state including the sites for our sampling are not privately-owned

or protected in any way and specific permission for non-profit

research, therefore, is not required. The field studies were not

involved in endangered or protected species in this area.

Data Acquisition
The study site was located in Beijing (39u269400N to

41u039050N, 115u259450E to 117u309200E), The SPOT5 remote

sensing image data from four views in summer of 2009 in Beijing

were selected in this paper, including resolution of 10 m multi-

spectral band and 2.5 m panchromatic band. Besides, there is

much supporting information, such as Beijing 1:250,000 admin-

istrative map, traffic road map, water maps, maps of forest

resources, Worldview remote sensing images of 2008 in Beijing

City, the latest Goolge Earth data and so on. The total area of

Beijing is 16,800 km2, of which mountainous areas occupy about

62% and plains take up the rest. Forestry areas is 104,609,637 m,

including 65,891,408 m forestation-suitable, 557,631 m open

forest, 30,580,843 m shrub, 2,110,388 m young forest and

5,469,367 m other forest. Geographically, Beijing is a transitional

zone for southern and northern plants of China. Influenced by

warm-temperate continental monsoon climate, its sub-natural

flora generally belongs to warm temperate zone deciduous broad-

leaved forest and coniferous forest, but due to serious destruction

in early years, currently there are only small area forests with

sporadically scattered trees. In some higher mountainous planted

forest, the Larix principis-rupprechtii forests were originally

Figure 1. Schematic diagram of scanning point coordinate
calculation. XP——P abscissa values; YP——P ordinate values;
ZP——P Elevation Value; a——included angle of P was perpendicular
to the YZ plane with X axis; b——included angle of P with XY plane.
doi:10.1371/journal.pone.0075920.g001

Figure 2. Mimic diagram of three-dimensional laser scanning
method for measuring the crown volume.
doi:10.1371/journal.pone.0075920.g002
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distributed as the sub-natural compositions, however, shrub and

secondary forests are the most widely distributed zonal vegetations

of Beijing, such as betula, populus, quercus.

In this study, at first over 1000 trees (30 species and over 30

trees in each species), like pinus bungeana, cedar and pinus

tabulaeformis, planting in campuses, parks, roadsides, housing

estates and mountain forests in Beijing city, were sampled and

scanned systematically and representatively with terrestrial 3D

laser scanner FARO LS880, and then their 3D coordinates were

measured by means of some instruments like Trimble GPS(Global

Positioning System) and Topcon total station. To acquire the point

cloud data, we put up a platform, where some parameters of the

scanner should be first set. The horizontal direction was 360u,
vertical direction was 155u (from 290 to 65) and a resolution of

2 mm in 10 m. Next, three stations should be set up according to

its growth and relative terrain of the tree to be measured, because

they can generally constitute an equilateral triangle in theory

whose included angle is 120u. Additionally, at least three public

spheres should be placed on a non-straight line between two

stations and all could be scanned by the above 3 stations without

any shelter. The target paper, which only acted as a reference for

scanning, were finally posted on the trunk with a height of about

1.3 m above ground northwards (Figure 1). Only when all trees

were scanned, could the target ball be removed, otherwise, they

had to be re-scanned. To get the volume of the sampling forest,

each single tree had to be scanned in about 10 minutes. For field

application, scanning for single tree should be done in open forest

because too many close planting trees with branches and leaves

will lead to serious shadows. Meanwhile, some pictures of the trees

Figure 3. Mimic diagram of measuring crown cross-sectional area.
doi:10.1371/journal.pone.0075920.g003

Figure 4. 3D point cloud data.
doi:10.1371/journal.pone.0075920.g004
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Figure 5. Classification flow diagram of the image information.
doi:10.1371/journal.pone.0075920.g005

Figure 6. Interpretation signs. Coniferous forest, Broad-leaved forest, Grass, Farmland, Water, Building land and other lands are signed in the
figure.
doi:10.1371/journal.pone.0075920.g006
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to be measured as reference for post-processing point cloud trees

should be taken, where the scanner was placed.

To achieve the crown 3D green biomass of single tree, we made

a calculation on point cloud data of the crown using a CASS

software which could computer a volume with digital elevation

after a secondary development of CAD (Computer Aided Design).

In processing, some pictures with different point clouds of the

standing woods were first pieced together at a coordinate system

by coordinate match by means of the 3D scanner’s software, and

then a 3D model of standing wood was developed and saved as

.dxf which could be discerned by the digital mapping system after

the data were pre-processed and extracted. Next, the point cloud

picture captured by the scanner was opened in a digital mapping

data acquisition system to set up an independent coordinate

system and the elevation could be extracted (Figure 2).The area

whose volume should be calculated was outlined with a closed

compound line instead of fitting curve in a mesh with 3D triangles,

because a fitted curve would be replaced by the broken line so that

the precision of the results could be affected. Finally, the point

cloud volume was calculated with the help of DTM (Digital

Terrain Model) method of the system shown as follow: the points

on the crown surface collected at the same height were linked with

the smooth curve to form some contour lines which were then

separated into some grids with a regular 2 cm cell size(Certainly,

the length can be divided into any other size, but 2 cm here was

just for convenience), so that the topmost elevation in each grid

could be estimated by linear interpolation and marked at its top

right, where the designed elevation was set 0; next, we calculated

the volumes with some formulas shown as follows:(1) Vcorner-

point = h*1/4 Sgrid; (2) Vedgepoint = h*2/4Sgrid;(3) Vturningpoint = h*3/

4 Sgrid;(4) Vmidpoint = h*Sgrid. (5)Vcrown = nVgrid, where h is a

canopy height and n is the number of all grids (Figure 2 and 3).

The point cloud data are shown in Figure 4. In remote sensing

SPOT5 data, we performed a spatial resolution of 2.5 m

panchromatic and 10 m multi-spectral bands using artificial visual

interpretation method to extract the vegetation classification

information. And we added SPOT5 image gray value, its remote

sensing factors and GIS factors into the independent values.

Remote sensing image classification and information
extraction

The green biomass retrieval model can be developed by means

of various information, methods, monitoring and manual inter-

pretation. In supervised method, at first, some known character-

istic parameters are extracted from the spectral features based on

samples from training areas, and then other unspecified param-

eters which can be extracted and classified in sorts from images are

analyzed according to prior probability of different kinds of

objects. The ground information is demonstrated by pixels in

image, while the pixel information is expressed by spectral

characteristics of different image bands. Due to the different

spatial resolutions and complex grounds, some mixed pixels can

appear in images which will result in different objects with the

same spectra characteristics or same spectrum with different

objects. Therefore, the accuracy will be confined if the urban

vegetation is classified only by supervised classification because

misclassification and loss classification can arise in some specific

classification and extraction. The present vegetation is classified by

means of visual interpretation or computer-aided, however, it is of

low automation, long hours and low efficiency or likely to be worse

because of the unskilled labors or less educated operators (Figure 5

and Figure 6).

In this study, the first information was captured based on the

spatial structure feature and spectral brightness of the pixels in

different bands of the SPOT5 remote sensing image in Beijing

urban regions in 2010. The second was characteristics of

landscape, landform and forest resource distribution. The third

Table 1. Table of accuracy totals of classification.

Reference Totals Classified Totals Number Correct
Producer’s
Accuracy/% User’s Accuracy/% Kappa

Coniferous forest 14 7 6 42.86 85.71 0.834

Broadleaf forest 15 15 11 73.33 73.33 0.686

Grass 5 5 4 80.00 80.00 0.790

Farmland 11 15 10 90.91 66.67 0.626

Waters 2 2 2 100 100 1

Construction lands 39 39 37 94.87 94.87 0.916

Other lands 14 17 13 92.86 76.47 0.726P
100 100 83

doi:10.1371/journal.pone.0075920.t001

Table 2. Factors loading rotation matrix of varimax.

Variables Remote sensing principal components

1 2

1 B1 20.716 0.696

2 B2 20.751 0.658

3 B3 20.741 0.670

4 SWIR 20.726 0.686

5 NDVI 0.745 0.667

6 SAVI 0.744 0.668

7 MSAVI 0.742 0.670

Note: B1, B2 are visible bands, where B1 can detect absorption and reflectance
of plant green hormone, and B2 belongs to the red light zone capable of
distinguishing the color of different types of vegetation from the color
difference; Where B3 is near-infrared bands, which can reflect the sensitivity of
plants to chlorophyll by the correlation between some acquired strong
information and factors like leaf area index and biomass; SWIR (short-wave
(length) infrared (band)); NDVI (Normalized Difference Vegetation Index); SAVI
(Soil-Adjusted Vegetation Index); MSAVI (Modified Soil-Adjusted Vegetation
Index).
doi:10.1371/journal.pone.0075920.t002
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was about such maps as current vector, forest distribution,

greening investigation data, contour and traffic each year.

Beijing is so large that a lot of random points must appear in the

accuracy assessment of classification, thereby they should be

chosen at absolute random instead of any mandatory rule in

practice and the regional classification maps were assessed under

the Accuracy Assessment module of ERDAS IMAGINE

software(Table 1).

For classification of remote sensing images in some large areas,

its accuracy has been able to meet the needs of the latter analysis

and assessment.

Modeling
The Principal Component Analysis(PCA) with varimax rotation

was used for factor analysis in this study. As two PCs can be shown

in Table 2, the loading values of each independent variable in

either the first PC or the second were little changed, indicating

that there was only a small amount of correlation between

grouping variables. If the eight variables were forcibly added into

the model, it could not be guaranteed to high accuracy that some

uncorrelated variables to 3D green biomass could be directly

regressed by the model. So the factor involved into modeling could

be acquired by automatic filtration with the help of stepwise

regression modeling.

Based on the results interpreted by the remote sensing images

and the green biomass data measured in the plots, the relative

remote sensing factors and GIS factors were chosen as the

independent values of a model by means of the spatial relationship

of RS image rectified by GPS to ground samples, where the

remote sensing factors were related to the image gray value in

SPOT5 and its linear and nonlinear combination etc, and GIS

factors included slope, elevation, aspect etc.(Some factors were not

involved in modeling as independent variables like slope and

aspect since the subjects in the study were mainly located in

Beijing urban areas and topographic relief was not much

changed.) The 3D green biomass was repeatedly regressed to

model the conifer and broadleaf tree respectively on basis of the

correlation between the factors and the green biomass values

observed in the plots.

The 3D green biomass model of conifer is shown as follow:

V~1:149{0:096 B1{0:1 B2z0:199 SWIR ð1Þ

The 3D green biomass model of broadleaf tree is shown as

follow:

V~{40:290{0:236 B1{0:188 B2z0:487 SWIR ð2Þ

Where B1, B2 are visible bands, where B1 can detect absorption

and reflectance of plant green hormone, and B2 belongs to the red

light zone capable of distinguishing the color of different types of

vegetation from the color difference; SWIR band which can well

reflect the water feature in the plant leaves is a shortwave infrared

zone, by which it is easy to make the identification and

classification of vegetation, soil, and water.

Based on validation and accuracy assessment on the model and

comparison with the actual measured data in the ground, the data

for modeling should be systemized, and then 150 samples were

added into modeling and 100 checking samples were chosen to test

their accuracy.

It is possible to develop a reliable, scientific and operable model.

Analysis on the correlation coefficient between the gray values of

four bands in SPOT5 and the 3D green biomass of conifer and

broadleaf tree by using EXCEL software, the results were shown

in Table 3 and 4.

All tests were performed using version 18.0 of the SPSS software

(SPSS Inc., Chicago, IL).

Results and Analysis

Classification results and analysis
All the 3D green biomass of 1015 trees scanned by 3D laser

were added in the calibrated remote sensing image so that we

could get the gray value at each sampling point, and then by

means of remote sensing image Worldview 1 and Google earth

with the resolution of 0.5 m, each sampling tree was soon located.

Table 3. Correlation coefficient of conifer volume and RS factors.

Variables Band and combinations Correlation coefficient with 3D green biomass

1 B1 0.92917

2 B2 0.93602

3 B3 0.93711

4 SWIR 0.93102

doi:10.1371/journal.pone.0075920.t003

Table 4. Correlation coefficient of broadleaf tree volume and RS factors.

Variables Band and combinations Correlation coefficient with 3D green biomass

1 B1 0.86879

2 B2 0.80498

3 B3 0.805022

4 SWIR 0.87112

doi:10.1371/journal.pone.0075920.t004
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Based on supervised classification and visual interpretation, the

total Beijing urban forest area of conifer and broadleaf tree was

275.08 km2, of which the area of conifer tree was 54.47 km2, while

that of broadleaf tree was 220.61 km2. The correlation coefficient

between the 3D biomass of conifer tree and RS factors was over

0.9 and that of broadleaf tree was over 0.8, thus revealing that the

linear correlation was very close [44–47], thereby a model of 3D

green biomass could be developed with the direct remote sensing

data by the multiple linear regression.

Model checking
After sampling and drying every organ of the tree, we converted

them and got the biomass. Meanwhile,the stem and volume were

accurately measured by means of sectional measurement (Table 1),

As can be seen from Table 1, the overall classification accuracy

reaches more than 80%, and Kappa factor of 0.780, exceeding the

requirements of 0.7. After inducing and analyzing the eight

variable factors of B1, B2, B3, SWIR(short-wave (length) infrared

(band)), NDVI (Normalized Difference Vegetation Index), SAVI

(Soil-Adjusted Vegetation Index) and RVI (Ratio Vegetation

Index), we got the regression equations of conifer and broadleaf

tree shown as Eq.1 and Eq.2. The accuracy of the model was

tested with the correlation coefficient and F test to evaluate

(Table 5).

It is known that the correlation coefficient of the multiple

regression model of Beijing urban 3D green biomass was high(over

0.89) which correlated well with the 3D green biomass, remote

sensing factors and GIS factors, and F values also showed that the

significant differences existed in the model. The histogram of

regression standardized residual in Figure 7 illustrated that it was

an ideal bell-shaped normal distribution, and a better diagonal

distribution was illustrated in the cumulative probability distribu-

tion (Figure 7 and Figure 8).

Accuracy analysis
We performed 241 samples to identify whether the actual

measured values and estimated values significant differences

existed among the treatments, and when we did, we used the

(3D Green Biomass)TGB test to determine which specific

combinations of values differed significantly (Table 6)

(1) The residual standard deviation is acquired by formula

S~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(TGBs{TGBg)2

n{2

r
, where S is residual standard

deviation, TGBs is the actual measured value of 3D green

biomass, TGBg is the estimated value of 3D green biomass

and n is the number of sampling plots for accuracy test.

(2) The Standard error is acquired by formula dx~
Sffiffiffi
n
p , where

dx is Standard error.

(3) The absolute error limit of 95% and 99% is calculated by

formula D~dxta
n{2 , where D is the absolute error limit which

acquired by t value distribution table difference.

(4) The relative error limit of 95% and 99% is calculated by

formula E~
D
�XX

, where E is the relative error limit, and

�XX~

P
TGBg

n
is the mean value of TGB.

(5) Precision C is calculated by formula C~100%{E.

The monitoring data in Table 6 demonstrated that the precision

of the 3D green biomass of the sample based on the SPOT5 was

over 85%, indicating that it could fully meet the requirements.T
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Figure 7. Histogram of regression standardized residual.
doi:10.1371/journal.pone.0075920.g007

Figure 8. Cumulative probability distribution map.
doi:10.1371/journal.pone.0075920.g008
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In all, based on the remote sensing image gray values extracted

from the model by means of ArcGIS 9.3 and all statistical data

calculated on the remote sensing retrieval model of the 3D green

biomass, the green biomass in each region of Beijing could be

determined. The results shows that the 3D green biomass of

Beijing urban forest was 399.1295 million m3, of which coniferous

was 28.7871 million m3 and broad-leaf was 370.3424 million m3.

Discussion

As the above statistical data demonstrates, the case study

described in this paper confirms that this is possible. Compared

with the traditional 2D green indices in forest area, 3D green

biomass represents an improvement over the conventional method

because 3D index demonstrates that it can both accurately reflect

the volume of the vegetation in the region, and scientifically assess

the ecological environment of the city, while providing an

important basis for urban planning and forest sciences develop-

ment. The new approach of 3D green biomass illustrates that it is

performed more accurately, efficiently, easily, and rapidly than the

conventional, because the 3D green biomass not only involves the

processing of remote sensing image including identification and

classification, but also includes the investigation of forest vegeta-

tion on the ground, especially where the same species make great

differences in different climatic zones.

The total 3D green biomass of Beijing urban areas can be

acquired by the model and its grade distribution of biomass per

unit can be also computerized in ArcGIS 9.3 shown in figure 9

[30,31].

Beijing is an important capital urban district of China. In order

to fully implement the strategy of ‘‘Humanistic Beijing, Scientific

Beijing, Green Beijing’’ and promote the development of urban

eco-environment, the study can provide some materials for

references in urban green lands.

Table 6. Testing Results of Precision Ratio of TGB Based-on
SPOT5 Image.

Confidence Level

a = 0.05 a = 0.01

Sample Number(n) 241

Total of Actual Measured Values
P

33687.621

TGBs Average �XX 140.127

Total of Estimated Values
P

34788.741

TGBg Average �XX 148.013P
(TGBs{TGBg) 21874.453

P
(TGBs{TGBg)2 3513600.322

Standard Deviation 122.804

Standard Error dx 8.126

ta
n{2 1.989 2.620

Absolute Error D 15.873 20.958

Relative Error E/% 10.695 14.204

Precision C/% 89.302 85.796

doi:10.1371/journal.pone.0075920.t006

Figure 9. Grade distribution of 3D green biomass per unit area in Beijing.
doi:10.1371/journal.pone.0075920.g009
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The crown form is one of non-negligible factors in the

calculation of biomass with the help of 3D laser scanner, for

example, the shape of the crown will shake in the wind when the

scanned point cloud may not fully reflect the true state of the

involved crown volume. Therefore, the wood should be scanned at

rest to ensure the accuracy of the volume. Meanwhile, only the

biomass from the upper half of crowns were involved while the

under part, shrubs and herbs were not to be considered. In the

future we will focus on the relative research in the field.

The green biomass of 3D in Beijing was estimated by the

interpretation and classification of remote sensing data and

modeling. In this paper, the urban vegetation was extracted by

artificial visual interpretation and computer-aided, or strictly

speaking it was still semi-automated and time and labor

consuming. The extraction of vegetation is still the hot spot

researchers interested in. The resolution in SPOT5 remote sensing

image data was not high so that the crown width was greater than

2.5 m like a pixel. However, the gray on the corresponding band

can produce the deviation if it is less than a pixel. In all, the

biomass acquired in the study work as the exploratory research

and reference and more remote sensing images with higher

resolution will be used later to study.
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