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Abstract

Background: Marine allopatric speciation involves interplay between intrinsic organismal properties and extrinsic factors.
However, the relative contribution of each depends on the taxon under study and its geographic context. Utilizing sea
catfishes in the Cathorops mapale species group, this study tests the hypothesis that both reproductive strategies conferring
limited dispersal opportunities and an apparent geomorphologic barrier in the Southern Caribbean have promoted
speciation in this group from a little studied area of the world.

Methodology/Principal Findings: Mitochondrial gene sequences were obtained from representatives of the Cathorops
mapale species group across its distributional range from Colombia to Venezuela. Morphometric and meristic analyses were
also done to assess morphologic variation. Along a ,2000 km transect, two major lineages, Cathorops sp. and C. mapale,
were identified by levels of genetic differentiation, phylogenetic reconstructions, and morphological analyses. The lineages
are separated by ,150 km at the Santa Marta Massif (SMM) in Colombia. The northward displacement of the SMM into the
Caribbean in the early Pleistocene altered the geomorphology of the continental margin, ultimately disrupting the natural
habitat of C. mapale. The estimated ,0.86 my divergence of the lineages from a common ancestor coincides with the
timing of the SMM displacement at ,0.78 my.

Main Conclusions/Significance: Results presented here support the hypothesis that organismal properties as well as
extrinsic factors lead to diversification of the Cathorops mapale group along the northern coast of South America. While a
lack of pelagic larval stages and ecological specialization are forces impacting this process, the identification of the SMM as
contributing to allopatric speciation in marine organisms adds to the list of recognized barriers in the Caribbean.
Comparative examination of additional Southern Caribbean taxa, particularly those with varying life history traits and
dispersal capabilities, will determine the extent by which the SMM has influenced marine phylogeography in the region.
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Introduction

Whereas there is tremendous evidence documenting the

processes promoting isolation, and ultimately speciation, in

terrestrial and freshwater organisms, how such mechanisms

operate in marine habitats can be puzzling [1,2,3]. Generally,

allopatric speciation models are difficult to invoke for marine

organisms given the limited opportunities for geographic isolation

in a continuous environment and an elevated potential for

dispersal due to pelagic broadcast spawning [1,4]. Furthermore,

extrinsic factors such as circulation patterns, temperature regimes,

and coastal geomorphology may act as barriers restricting gene

flow in marine environments [2,5,6]. While such barriers generally

provide an avenue for inferring historical vicariant events, only a

few regions have been comprehensively examined in this context

[7,8,9,10]. On the other hand, intrinsic organismal properties such

as limited dispersal abilities also have a strong influence on

population structure [11,12,13], so that brooders and/or species

that undergo direct development are more prone to geographic

isolation and genetic segregation than pelagic dispersers

[10,14,15].

Well studied marine systems with low vagility revealing highly

structured populations or deep phylogeographic breaks include the

Spiny Damselfish (Acanthochromis polyacanthus), the Banggai Cardi-

nalfish (Pterapogon kauderni), the Surfperchs (Embiotica spp.), the

Tidewater Goby (Eucyclogobius newberryi), a sea cucumber (Cucumaria
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pseudocurata), the Rock Whelk (Nucella emarginata), and the Bamboo

Worm (Clymenella torquata), among others [12,16,17,18,19]. How-

ever, studying the genetic structure of additional species with

limited dispersal abilities can provide further insights into the

mechanisms driving marine allopatric speciation as well as the

relative contribution of extrinsic and intrinsic factors to this

process. Likewise, emphasizing the sampling of understudied

areas, in conjunction with phylogenetic and phylogeographic

assessments, can help to provide a better understanding of regional

patterns in marine biogeography.

The Mapalé Sea Catfish, or Cathorops mapale species group,

inhabits coastal lagoons and inshore marine waters in the

Southern Caribbean [20,21]. Like other sea catfishes, the C.

mapale group practices oral incubation and lacks pelagic larval

stages. This specialized reproductive mode, coupled with their

demersal habits, results in low dispersal capabilities and high rates

of species endemism for sea catfishes [22]. Thus, the C. mapale

group offers an excellent opportunity for identifying potential

processes promoting allopatric speciation in the sea. The Mapalé

Sea Catfish encompasses two major lineages: Cathorops mapale sensu

stricto, distributed along the central and southwestern coasts of the

Colombian Caribbean, and Cathorops sp., occurring from north-

eastern Colombia through Venezuela [20,23]. A similar break in

faunal composition has been reported for other marine organisms

in the region including mollusks and fishes ([24,25], see

Discussion). However, no historical scenarios have been proposed

toward explaining this biogeographic pattern.

In light of the above, the present study infers that the limited

dispersal opportunities offered by its reproductive strategies, in

conjunction with extrinsic factors like geomorphological barriers,

have promoted marine allopatric speciation in the Cathorops mapale

group. To test this, phylogenetic analyses were performed on

mitochondrial gene sequences collected along their distributional

range. Additionally, divergence times were estimated via molecular

clock analyses and morphological variation quantified using

morphometric and meristic approaches. Based on these results,

we hypothesize that a major barrier on the northern Colombian

coast likely promoted allopatric speciation in the Cathorops mapale

group at the end of the early Pleistocene. In this context, this study

provides new insights into the biogeography of the Southern

Caribbean, a highly diverse yet understudied area of the world [26].

Materials and Methods

Sampling, DNA sequence data, and genetic variation
Taxonomic sampling within the genus Cathorops was designed

following the phylogenetic hypotheses of Betancur-R. et al. [20]

and Betancur-R [27]. In addition to the C. mapale group (C. mapale

and Cathorops sp.), the ingroup included the closely related C. fuerthii

group (C. fuerthii, C. aff. fuerthii, and C. manglarensis; from the Eastern

Pacific) and C. cf. higuchii (from Nicaraguan Caribbean). We used

C. spixii, C. agassizii, and C. hypophthalmus as outgroups. Sample size

within the C. mapale group consisted of 17 individuals from each

lineage collected at 10 locations along its distributional range, with

a focus on neighboring localities from either side of the Parque

Nacional Natural Tayrona (PNNT) in Santa Marta, Colombia

(Fig. 1; Table S1), which represents the distributional breakpoint

between the lineages (see below). This sample size represents

individuals collected during multiple field trips to Venezuela and

Colombia from 2003 to 2008 by RBR and AAP. Institutional

abbreviations are as listed at ASIH website (2010) http://www.

asih.org/codons.pdf, with the addition of stri-x: tissue collection,

Smithsonian Tropical Research Institute. SL is standard length.

Two letter country codes follow ISO-3166.

Targeted mitochondrial regions included partial cytochrome b (cyt

b) and the complete ATP synthase subunits 8 and 6 (ATPase 8/6)

protein-coding genes. Nucleic acid extractions, PCR conditions,

utilized primers, and sequence alignment procedures are as

described in Betancur-R. et al. [23]. The software DnaSP v. 5

[28] was used to estimate haplotype diversity as well as levels of

sequence polymorphism. Corrected genetic distances were calcu-

lated in PAUP* v.4.0b10 [29].

Figure 1. Sampling localities for the Cathorops mapale group along the southern Caribbean. Arrow indicates Parque Nacional Natural
Tayrona (PNNT), where the continental shelf is narrower (gray line shows 200 m isobath). UR, Urabá; GM*, Golfo de Morrosquillo; CT, Cartagena; CG,
Ciénaga Grande de Santa Marta; GS, Golfo de Salamanca; CM, Camarones; RH, Riohacha; BP*, Bahı́a Portete; PC, Puerto Cabello; IM, Isla Margarita; CA,
Carupano; GP, Golfo de Paria (map from www.aquarius.ifm-geomar.de). *Only morphological material examined from these localities.
doi:10.1371/journal.pone.0011566.g001
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Phylogenetic reconstructions
Phylogenetic reconstructions were performed under maximum

likelihood (ML), Bayesian inference (BI), and maximum parsimony

(MP) criteria. For ML and BI, the number of model parameters

was estimated using the Akaike information criterion (AIC) in

ModelTest v. 3.7 [30]. The ML analyses were performed in Garli

v. 0.96 [31] with ten runs from random-starting seeds to ensure

convergence of likelihood scores. Model parameters were

estimated simultaneously (i.e., unfixed) and remaining settings left

at default values. The ML nodal support was assessed using the

fast bootstrapping algorithm via automatic estimation of runs in

RAxML [32] as implemented in the CIPRES portal v.1.15 (2010)

http://www.phylo.org/.

The BI analyses were performed in MrBayes v.3.1.2 [33] via

Markov chain Monte Carlo (MCMC) iterations. The MCMC

searches were conducted in triplicate using four chains. Each

search was run for 4.06106 generations, with tree sampling every

100 generations. Ten percent of the initial trees sampled in each

MCMC run were discarded as burn-in. To confirm that post-

burn-in trees represent the actual MCMC posterior distribution,

marginal parameters (i.e., the MrBayes log file) were analyzed

using the Effective Sample Size (ESS) statistic in the program

Tracer [34]. ESS values greater than 200 were obtained for all

parameters, suggesting that the MCMC searches were run for a

sufficient duration to accurately represent the posterior distribu-

tion [34]. The post-burn-in samples of the three independent runs

were combined in order to estimate marginal probabilities of

summary parameters, consensus phylograms, and posterior

probabilities of nodes. The MP reconstructions were conducted

in PAUP* via heuristic searches with random addition of

sequences (10000 replicates) and the tree-bisection-reconnection

algorithm.

Divergence time estimations
Molecular clock analyses were performed to infer the diver-

gence time for the Cathorops sp./C. mapale stem node (Fig. 2: {2).

Two different methods were conducted to assess rate heterogeneity

among sequences: relative rate tests (RRT) based on likelihood, as

Figure 2. Phylogenetic hypothesis for the Cathorops mapale group and related species inferred from mitochondrial sequences
(,2 kbp). Phylogram shown was estimated from ML analyses (lnL -4686.70); well-supported clades are congruent with MP and BI topologies
(outgroup Cathorops hypophthalmus not shown). Numbers below and above nodes represent RAxML bootstrap values (300 replicates via automatic
estimation of runs) and Bayesian posterior probabilities, respectively (well-supported clades only). {1 Molecular clock calibration point: Pliocene rising
of Panama isthmus. {2 Molecular clock estimation point for testing the hypothetical vicariant event separating Cathorops sp. and C. mapale:
northward displacement of Santa Marta Massif and disruption of continental shelf (end of early Pleistocene). Locality abbreviations follow Fig. 1 and
Table S1 (ISO-3166 country codes given in parenthesis).
doi:10.1371/journal.pone.0011566.g002
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implemented in the software r8s v.1.71 [35,36], and likelihood

ratio tests (LRT) as implemented in PAUP*. Both tests failed to

reject the null hypothesis of clock-like behavior (see Results); thus,

divergence times were estimated under the assumption of a

molecular clock via the likelihood-based Langley-Fitch (LF)

method in r8s [36]. For clock calibration, the final rise of the

Panama isthmus (3.1–2.8 mya [37]) was utilized as the

hypothetical vicariant event leading to the divergence of the

Cathorops mapale (Southern Caribbean) and C. fuerthii (Eastern

Pacific; node {1, Fig. 2) groups from a common ancestor. The

mitochondrial distances calculated from protein-coding sequences

between the two groups (2.2–2.8% [20]) are similar to those

reported for other transisthmian fish pairs assumed to have

diverged during the final rise of the isthmus [7,38]. Both

maximum and minimum age constraints (3.1 and 2.8 my,

respectively) were applied to node {1 (see also [27]).

Morphometric and meristic analyses
Morphological variation within the Cathorops mapale group was

quantified using morphometric and meristic analyses. Measure-

ments were taken with either a ruler and recorded to the nearest

millimeter (mm) or with dial callipers and recorded to the nearest

0.1 mm. Thirty five measurements representing truss homologous

points were made on 18 individuals of Cathorops mapale and 20

individuals of Cathorops sp. (Text S1). Twenty-eight measurements

were recorded as specified in Betancur-R. (2007); the remaining

seven follows Marceniuk (2007) (Text S2). Principal component

(PC) analyses were conducted to estimate size-free shape variation

by reducing the dimensionality of the dataset while retaining as

much variation as possible (Jolliffe, 2002). The PC analyses were

performed on a covariate matrix of log-transformed measurements

in the software JMP (SAS Institute). Univariate analyses were

conducted to find potential morphometric differences between the

two lineages by plotting two measurements with opposite polarity

(as identified by PC analyses).

Counts for meristic analyses were obtained from fins (pectoral-

fin and anal-fin rays) and gill arches (gill rakers on first and second

arches) on 18 individuals of Cathorops mapale and 24 individuals of

Cathorops sp. All counts included rudimentary elements and the

best meristic discriminators were arranged into a frequency table.

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant local animal welfare bodies; the

institutions involved approved animal work.

Results

Sequence analyses and genetic variation
The mitochondrial protein-coding gene sequences utilized here

are available from GenBank under the accession numbers listed in

Table S1. The final alignment included 1937 bp, with 1095 bp

coming from the partial cyt b and 842 bp for the complete ATPase

8/6 (see also [23,27]). In the concatenated alignment, 31 positions

had missing data due to ambiguity in the chromatogram reads;

these were excluded from the genetic differentiation analyses. As

previously suggested [20], measures of genetic differentiation,

phylogenetic reconstructions, and morphological analyses (but see

below) support two major lineages within the Cathorops mapale

group: C. mapale, encompassing individuals from Urabá (south-

western Colombian Caribbean) through Santa Marta (central

Colombian Caribbean; localities UR, GM, CT, CG, GS; see

details and abbreviations in Fig. 1) along a ,450 km of coastline.

On the other hand, individuals from an ,1400 km of coastline

from Riohacha (northern Colombian Caribbean) through Golfo

de Paria (eastern Venezuelan; localities CM, RH, BP, PC, IM,

CA, and GP; Fig. 1) belong to Cathorops sp. The two lineages are

separated by at least ,150 km, with the PNNT situated along this

particular stretch of coastline (Fig. 1).

Measures of sequence variation within each lineage and overall

are summarized in Table 1. Polymorphisms between sequences

were confined to point mutations, with an absence of nucleotide

insertions or deletions. Notably, no haplotypes were shared

between Cathorops mapale and Cathorops sp. or between geographic

locations separated by the PNNT (see above). The two lineages

were also distinguishable by eight fixed substitutions, three in cyt b

and five in ATPase 8/6. Haplotype diversity was high, with similar

values obtained from C. mapale (0.978) and Cathorops sp. (0.985).

Cathorops mapale possessed higher values for polymorphic sites

(PS = 31) and parsimony-informative sites (PIS = 15) than Cathorops

sp. (PS = 23; PIS = 10). Corrected genetic distances (based on a

GTR+I+C model, see below) among lineages of the C. mapale

group were on average higher (0.71–1.23%) than within groups

(0–0.82% for C. mapale, 0–0.53% for Cathorops sp.).

Phylogenetic analyses and divergence time estimations
All phylogenetic reconstructions were performed on the

concatenated dataset containing 1937 bp (Fig. 2). Both ML and

BI analyses were conducted under a GTR+I+C model as selected

by the AIC and a single partition. The ML (optimal tree score =

lnL 24686.70), BI (mean posterior probability score = lnL

24978.81), and MP (24 optimal trees of 378 steps) reconstructions

resulted in highly congruent topologies. Although a few poorly

supported nodes within Cathorops sp. or C. mapale were in

disagreement among the different reconstruction methods, all

species-level clades were identical and well supported. As

suggested by previous studies [20,23,27], the C. fuerthii group

from the Eastern Pacific was recovered as the sister clade of the C.

mapale group and Cathorops sp. and C. mapale were reciprocally

monophyletic in all analyses (Fig. 2).

The RRT performed with different nesting hierarchies on the

three clades failed to reject the null hypothesis of clock-like

behavior (x2 = 0.08–0.49; d.f. = 1; p = 0.48–0.77). Similarly, the

LRT suggested no significant rate heterogeneity when comparing

the likelihood scores of clock-enforced and non-enforced optimi-

zations on a neighbor-joining tree calculated with the model

parameters obtained from ModelTest (outgroup Cathorops hy-

pophthalmus excluded from the analyses; x2 = 33.3; d.f. = 38;

p = 0.68). The LF method estimated that the split between

Cathorops sp. and C. mapale occurred 0.89 my ago, with a

substitution rate of 0.56%/my/lineage.

Table 1. Summary of sequence variation statistics and
genetic distances for the Cathorops mapale group.

Source HD PS PIS GD (GTR+I+C)

Cathorops mapale 0.978 31 15 0–0.0082

Cathorops sp. 0.985 23 10 0–0.0053

Overall (C. mapale group) 0.991 60 33 0.0071–0.0123

HD, haplotype diversity.
PS, polymorphic sites.
PIS, parsimony-informative sites.
GD, genetic distances.
doi:10.1371/journal.pone.0011566.t001
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Morphometric and meristic analyses
In the PC analysis, PC1, PC2, PC3, and PC4 explained

87.59%, 4.10%, 2.68%, and 1.50% of the variation, respectively.

While PC1 is the size factor, the remaining components represent

size-free shape variation [39]. Scatterplots of PC2 vs. PC3 and

PC2 vs. PC4 revealed morphometric overlap for Cathorops sp. and

C. mapale (Fig. 3). Similar results were obtained after removing 18

morphometric variables (see Text S2) potentially associated with

sexual dimorphism in Cathorops (results not shown, [21,40]).

Furthermore, males and females overlapped in all analyses,

suggesting morphometric variation is not mainly driven by sexual

differentiation. Despite the observed overlap in the multivariate

analyses, Cathorops sp. and C. mapale were separated by the averages

of a morphometric ratio and the modes of two meristic variables

(although some overlap occurs). The bivariate plot of maxillary

barbel vs. posterior internarial distance was the best morphometric

discriminator (Fig. 4; maxillary barbel/posterior internarial

distance: 4.8–7.9, mean 6.16 SD 0.8 in C. mapale; 3.6–6.0, mean

4.46 SD 0.8 in Cathorops sp.). For the meristic analyses, anterior

rakers on first (20–24, mode 23, in C. mapale; 16–21, mode 18, in

Cathorops sp.) and second (20–24, mode 23, in C. mapale; 16–21,

mode 18, in Cathorops sp.) gill arches were the best variables

differentiating the two lineages (see details in Table 2).

Discussion

Compared to the terrestrial environment, a relative small

number of barriers that may promote allopatric speciation in

marine organisms have been documented [1]. Furthermore,

defining biogeographic breaks at regional scales may be complex

as a result of the varying dispersal capabilities among marine

organisms [9,10]. This study provides evidence for a biogeo-

graphic break apparently responsible for allopatric speciation in a

coastal Neotropical fish lacking pelagic larval stages. Phylogenetic

hypotheses derived from mitochondrial gene sequences revealed a

deep break for the Cathorops mapale group around the PNNT in

northern Colombia (Fig. 1). While multivariate and frequency-

data analyses reveal either full or partial overlapping between C.

mapale and Cathorops sp. at the morphological level (Figs. 3, 4;

Table 2), the two lineages show complete segregation at the

mitochondrial level (Fig. 2).

The reciprocal monophyly and eight fixed substitutions

observed between Cathorops sp. and C. mapale suggest that, once

established (ca. 0.8 mya, see below), the isolating barrier was

maintained and effectively restricted gene flow across the PNNT

from that point through to the present time. Although some

mixing between the lineages near the barrier’s boundary cannot be

completely ruled out, our sampling of individuals from locations

adjacent to the boundary does not provide support for this

scenario. Further sampling around the boundary region, as well as

comparative phylogeographic studies utilizing other marine

organisms with low dispersal capabilities (e.g., other sea catfishes,

toadfishes, gobies, gastropods), are crucial toward describing the

extent to which the suggested biogeographic break may be

restricting gene flow and promoting allopatric speciation in the

marine environment (see below).

On the other hand, male-mediated gene flow might provide an

alternative interpretation to allopatric speciation given the

matrilineal segregation and partial morphological overlap reported

here. In this scenario, although females with restricted migration

would promote divergence of the mitochondrial genome, male-

biased migration could facilitate the transport of nuclear genes

across the barrier while simultaneously impeding phenotypic

differentiation. Although this study examined no nuclear markers

to test this competing hypothesis, we feel this is an unlikely

situation for multiple reasons. First, compelling evidence suggests

niche conservatism, and corresponding morphological stationarity,

is a common result of allopatric speciation due to a lack of

differential selective regimes that might drive morphological

divergence (i.e., both Cathorops sp. and C. mapale retain the

ancestral morphological traits that facilitate utilization of a specific

niche) [41,42,43]. Second, prominent examples of male-mediated

Figure 3. Principal component analysis of 35 morphometric variables from the Cathorops mapale group. Scatterplots of (A) PC2 vs. PC3
and (B) PC2 vs. PC4 (percent of variation for each PC given in parenthesis). Opened and filled symbols represent males and females, respectively.
doi:10.1371/journal.pone.0011566.g003
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gene flow typically involve taxa with long-distance migration and

nesting-site fidelity, such as the green sea turtle (Chelonia mydas) that

migrates between foraging and nesting locations separated by

hundreds to thousands of kilometers [44,45]. While studies on sea

catfish biology have documented subtle seasonal migration

between adjacent habitats (e.g., [46,47]), to our knowledge, no

evidence of extensive migratory behaviors have been reported.

Moreover, given that male sea catfishes (including the Cathorops

mapale group) practice oral incubation, suggesting both sexes invest

high energetic resources into reproduction (e.g., [48]), male-biased

migratory behavior (i.e., vagile males and sedentary females) seems

implausible. Lastly, coincidental patterns of similar distributions

and regional endemism documented for many other fish as well as

invertebrate species in the area reinforce the allopatric hypothesis

we propose for the Cathorops mapale group (see below).

Caribbean biogeography and the Santa Marta Massif
Given the apparent absence of barriers to gene flow, marine

biogeographers have long questioned whether Caribbean popu-

lations are genetically homogeneous or geographically segregated.

Although many species are widely distributed in the Greater

Caribbean, regional endemism has traditionally suggested the

presence of biogeographic breaks, such as in the Florida peninsula

[49], the West Indies [50], the Bahamas [51], and the Southern

Caribbean [25,52,53]. In the 90’s, Shulman and Bermingham [5]

Figure 4. Best morphometric discriminator for the Cathorops mapale group. Plot of maxillary barbel vs. posterior internarial distance.
doi:10.1371/journal.pone.0011566.g004

Table 2. Frequency table summarizing best meristic variables
differentiating lineages within the Cathorops mapale group.

1st arch upper limb 4 5 6 7 8 n

Cathorops sp. 1 9 14 24

C. mapale 5 10 3 18

1st arch lower limb 12 13 14 15 16 n

Cathorops sp. 6 13 4 1 24

C. mapale 1 5 12 18

1st arch total 16 17 18 19 20 21 22 23 24 n

Cathorops sp. 1 3 8 7 4 1 24

C. mapale 1 3 3 8 3 18

2nd arch lower limb 11 12 13 14 15 n

Cathorops sp. 2 5 9 5 21

C. mapale 1 9 7 17

2nd arch total 16 17 18 19 20 21 n

Cathorops sp. 2 5 7 6 1 21

C. mapale 1 4 11 1 17

doi:10.1371/journal.pone.0011566.t002
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examined mitochondrial restriction fragment length polymor-

phisms (RFLPs) of fish species with varying dispersal mechanisms,

concluding that Caribbean populations were widely interconnect-

ed. However, within the past decade, studies using biophysical

models and more sensitive molecular techniques on broader

taxonomic arrays have revealed regional subdivision within the

Caribbean and phylogeographic breaks in several species,

including gobies, serranids, damselfishes, and acroporid corals

[54,55,56,57]. Generalized trends from these studies imply

isolation of the Florida peninsula from the rest of the Greater

Caribbean and biogeographic breaks around the central Bahamas

and the Mona Passage between Hispaniola and Puerto Rico.

Likewise, the Amazon barrier in northeastern South America,

formed by the outflow of the Amazon and Orinoco Rivers, has

been shown to play an important role in the formation of

numerous geminate pairs between Brazilian and Caribbean

shallow reef faunas (e.g., [58,59]).

Although much attention has been paid toward documenting

biogeographic trends in the Western Atlantic, patterns and

processes shaping the distribution of marine organisms in the

Southern Caribbean, where the Cathorops mapale group occurs,

remain poorly understood. Notably, the continental shelf of the

Southern Caribbean, roughly extending from Costa Rica to the

Orinoco delta [25], is considered one of two hotspots (along with

the East Indies triangle) for marine biodiversity in the world [26].

Based on mollusk faunal composition and endemism, the Southern

Caribbean has been long identified as being isolated from the rest

of the Caribbean and otherwise more allied with the Eastern

Pacific (e.g., [25,53,60]). Although the delimitation of biogeo-

graphic units in the Southern Caribbean has been debated, most

studies recognize a Colombian–Venezuelan–Trinidad (CVT)

subprovince, extending from around Santa Marta northeastwards

to Trinidad. Some species, such as the gastropods Voluta musica and

Phyllonotus margaritensis [24,25], and the fishes Paralabrax dewegeri,

Citharichthys minutus, C. valdezi, as well as Cathorops sp. (A. Acero P.,

unpubl. data; [61]), are chiefly confined to the CVT subprovince.

For many other species whose range partially overlaps the CVT

(e.g., Colomesus psittacus, Paralabrax dewegeri, and Genyatremus luteus),

their western distributional limit coincides with the Santa Marta-

La Guajira boundary, around the PNNT. This abrupt break in

faunal composition has been attributed to the combined effects of

the narrow coastal shelf and cold up-welling waters influencing the

region [24,25]. While these previous accounts place this regional

endemism in a descriptive framework, neither historical scenarios

or supporting genetic data explaining such biogeographic

patterns and breaks of the Southern Caribbean have to date been

reported.

Based on the data presented here, this study hypothesizes that

the basal genetic break in the Cathorops mapale group in northern

Colombia around the PNNT resulted (in part, see below) from

the geological progression of the Santa Marta Massif (SMM; =

Sierra Nevada de Santa Marta). The SMM is a prominent

triangular geomorphic feature of 5800 m elevation facing the

Caribbean (Fig. 5). Although there has been much debate

regarding its origin and isolated position in northwestern South

America, two major transcurrent faults bound the SMM and

appear actively associated with its tectonic emplacement history.

These are the Oca fault, in the north, and the Santa Marta fault

along the northwest (Fig. 5a, [62,63,64,65]). Campbell [62]

proposed a 110 km displacement of the SMM to the north to

reach its present position during post Miocene times [66]. Duque-

Caro [65] estimated an age comprising the Pliocene-Pleistocene

boundary, during the time of Andean Orogeny and transcurrent

faulting phenomena, such as that of the Santa Marta Fault (see

also [67]). Stratigraphic, biostratigraphic and chronostratigraphic

reassessments of historic and recent data from the areas

surrounding the SMM (H. Duque-Caro and G. Guzmán-Ospitia,

in prep.) indicate that the most recent activity of the Santa Marta

Fault, which emplaced the SMM to its present position, was in

the order of 75 km (Fig. 5b) and took place by the end of early

Pleistocene epoch (ca. 0.78 mya). In total, the displacement of the

SMM altered the geomorphology in the continental margin of

the Colombian Caribbean by disrupting the shelf connection

between both the western and eastern sides of the massif,

effectively making the shelf narrower and shallower around the

PNNT (Fig. 1; Fig. 5a).

Given the above, the major changes in the geomorphological

configuration of continental margin along the Colombian

Caribbean fragmented the natural soft bottom habitat of Cathorops

and allowed the formation of coral reef assemblages in the PNNT,

leading to the apparent emergence of a barrier to gene flow for the

genus. Alternatively, but not mutually excusive, the continental

slope might have been exposed during low sea level episodes (as a

result of the narrow shelf), causing local extirpation of Cathorops. A

similar scenario has been suggested to explain the absence of

several marine fishes around the ‘hump’ of Brazil [58].

Further support for our hypothesis comes from divergence times

inferred via molecular clock analyses. Specifically, the estimate of

0.86 my for the split of Cathorops sp. and C. mapale closely match

those predicted by the most recent geological evidence for the

progression of the SMM (end of the early Pleistocene time ,0.78

my). The application of comparative phylogeographic approaches

involving multiple taxa will help to determine the extent to which

the SMM-PNNT barrier has shaped coastal biogeography in the

Southern Caribbean.

Alternatively, oceanographic scenarios could also explain the

observed phylogenetic break in Cathorops. For instance, detailed

biophysical models by Cowen et al. [56] suggest a discontinuity

around La Guajira, a region influenced by strong seasonal

upwelling and offshore currents [68]. From their population

genetic analyses of the coral Acropora palmata, Baums et al. [54]

documented a break somewhere between Panama and Venezuela

(samples of Colombian A. palmata were not included in their

analysis), which is reportedly the result of habitat disruptions

segregating coral-reef-dwelling and upwelling-tolerant species.

Additional investigations of coral populations suggest the fresh-

water runoff of the Magdalena River (located ,50 km southwest

of PNNT) can sporadically influence marine waters around Santa

Marta, leading to the generation of local phylogeographic breaks

(J.A. Sanchez pers. comm.). While these oceanographic factors

may impact population structure in reef species, we believe that

these are unlikely scenarios for interrupting gene flow among

continental estuarine taxa with low vagility inhabiting shallow

muddy bottoms. Notably, Cathorops mapale sensu stricto occurs at

either side of the Magdalena delta (genetic samples collected

eastwards and westwards from the river were analyzed here),

indicating that the river per se is not generating this major

biogeographic break. Furthermore, recent examination of marine

phylogeographic breaks based on quantitative approaches have

revealed that historical processes (e.g., the geological progression

of the SMM) are typically responsible for shaping the distribution

among poor dispersers (e.g., the C. mapale group) whereas

contemporary oceanography (e.g., upwelling) is more of a

determinant factor for structuring phylogeography in planktonic

dispersers [10]. Future work on species with antagonistic life

histories (i.e., short vs. long distance dispersal) and habitat

preferences (i.e., soft vs. reef bottoms) in the Southern Caribbean

will provide a framework to test these predictions.
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Taxonomic implications and conservation aspects
Some evident questions emerge from our study of the Cathorops

mapale group at the mitochondrial and morphological levels. For

example, should Cathorops sp. and C. mapale be recognized as

separate species? Likewise, should the Cathorops mapale group

comprise a single species with broader circumscription? Meristic

and morphopometric analyses all reveal partial overlap between

the two lineages. Also, while mitochondrial distances range from

1.5%–2.8% among sister-species pairs in the genus Cathorops (as

corrected by the Kimura-2-parameter model; see [20]), divergence

between C. mapale and Cathorops is only 0.7–1.2%. Furthermore,

divergence time estimates for the split of the two lineages (,0.9

my) are slightly lower than generally inferred times for allopatric

speciation in fishes (2.3–1.0 my, [69]). Considering the incomplete

morphological differentiation as well as the comparatively low

mitochondrial distances and recent divergence times, we conclude

that C. mapale and Cathorops sp. represent a case of incipient

speciation. Nevertheless, in a taxonomic framework, it is

appropriate to recognize the specific status of these lineages. This

is particularly relevant considering that Mapalé Sea Catfish play

an important role in artisanal fisheries for coastal populations

along Colombia and Venezuela. Giving that overfishing at

localities such as Ciénaga Grande de Santa Marta has lead to a

progressive reduction in reported catch size below that of the

minimum maturation size in recent years [70,71], the fishery may

require conservation and management in the immediate future.

Supporting Information

Table S1 Molecular material examined and GenBank accession

numbers for the Cathorops mapale group. Locality codes follow Fig. 1;

two letter country codes follow ISO-3166. See Betancur-R. (2009)

for details on outgroup (non-Cathorops mapale group) material.

Found at: doi:10.1371/journal.pone.0011566.s001 (0.02 MB

XLS)

Text S1 Morphological material examined for the Cathorops

mapale group. Locality abbreviations given in parentheses follow

Fig. 1; two letter country codes follow ISO-3166.

Found at: doi:10.1371/journal.pone.0011566.s002 (0.03 MB

DOC)

Text S2 Morphometric measurements utilized for multivariate

analyses of the Cathorops mapale group. Asterisk (*) indicate variables

potentially associated with sexual dimorphism (Acero P. et al.,

2005; Marceniuk & Betancur-R., 2008).

Found at: doi:10.1371/journal.pone.0011566.s003 (0.02 MB

DOC)
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