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Neurons throughout the rat vibrissa somatosensory pathway are sensitive to the angular direction of whisker movement.
Could this sensitivity help rats discriminate stimuli? Here we use a simple computational model of cortical neurons to analyze
the robustness of directional selectivity. In the model, directional preference emerges from tuning of synaptic conductance
amplitude and latency, as in recent experimental findings. We find that directional selectivity during stimulation with random
deflection sequences is strongly dependent on the mean deflection frequency: Selectivity is weakened at high frequencies
even when each individual deflection evokes strong directional tuning. This variability of directional selectivity is due to
generic properties of synaptic integration by the neuronal membrane, and is therefore likely to hold under very general
physiological conditions. Our results suggest that directional selectivity depends on stimulus context. It may participate in
tasks involving brief whisker contact, such as detection of object position, but is likely to be weakened in tasks involving
sustained whisker exploration (e.g., texture discrimination).
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INTRODUCTION
The whisker somatosensory system is crucial to rodents’ ability to

discriminate object location and identity. The elementary features

of whisker stimulus representations continue to be a subject of

great interest [1]. It has long been known that neurons throughout

the pathway are sensitive to whisker motion direction [2–8]. Could

directional selectivity be a key element of barrel cortex stimulus

representations? Recent work by several groups has examined the

organization of directional tuning in barrel cortex (BC) and its

afferents [8–12] and elucidated mechanisms of directional pre-

ference in cortical neurons, showing how synaptic responses vary

systematically as a function of the direction of whisker deflection

[13–15].

One contribution to directional selectivity comes from latency

tuning of excitatory inputs [14]. Excitatory synaptic potential

amplitudes are somewhat broadly tuned (all whisker directions

evoking monosynaptic thalamocortical input), although still with

a preferred direction, and inhibitory amplitudes have weak tuning.

However, excitatory responses to the preferred direction have

short latency whereas those to other directions have longer

latencies. Conversely, inhibitory responses have uniform latency.

The outcome is that substantial excitation precedes inhibition only

for a range of directions close to the preferred one, so that stimuli

with this direction enjoy a greater (approximately 2 ms-duration)

‘‘window of opportunity’’ to generate spikes. Thus, for temporally

isolated whisker deflections, the relative timing of synaptic inputs is

a key mechanism shaping directional selectivity, in conjunction

with other mechanisms such as amplitude tuning and changes in

spike threshold [13].

Studies of BC directional tuning have typically involved whisker

deflections that are temporally isolated from the preceding and

succeeding deflections. Conversely, whisker motion induced by

texture stimuli is extended in time and has a characteristic

intermittent, ‘‘noisy’’ structure organized as a succession of ‘‘stick-

and-slip’’ events [16,17]. Periods of relatively low-frequency, slow

whisker motion (free whisking, 5–20 Hz) are interspersed with

high-frequency events (several hundred Hz): this structure

constitutes a texture’s kinetic ‘‘signature’’, is encoded by neurons

in the whisker pathway [16] and may be a substrate for

discrimination. Rapidly varying stimuli are useful for studying

temporal precision and encoding in the whisker pathway [18];

furthermore, artificial, rapidly varying ‘‘white noise’’ stimuli can be

used to predict responses to naturalistic texture waveforms [16].

Strikingly, directional tuning of responses to continuous, rapidly

varying stimuli in BC (but not in trigeminal ganglion) appears

to be comparatively weak [16]: for instance, tuning is bilaterally

symmetric, with each direction and its opposite evoking in-

distinguishable responses. This result is based on multiunit cluster

recordings; if applicable to single units, it would lead to a qualita-

tively different perspective on directional tuning maps and their

significance, as it would imply that BC directional tuning might be

limited to brief, isolated stimuli.

In the work presented here, we implemented directional tuning

of synaptic conductances in a simple integrate-and-fire model to

predict how directional selectivity could be affected by stimuli with

rapid variations. We found that one stimulus feature (frequency)

can strongly affect the representation of another feature (direction)
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even in highly simplified models, a phenomenon caused by generic

properties of neuronal integration. Directional selectivity is thus

modulated by the frequency of ongoing motion. Our results

suggest that the role of directional selectivity may be prominent in

some situations (e.g. discrimination of object location), but is likely

to be negligible in others, such as texture discrimination.

RESULTS

Model of synaptically based directional selectivity
To predict how timing-based directional selectivity is expressed

during rapidly varying stimuli, we implemented synaptic ampli-

tude and latency tuning in a simple model. An integrate-and-fire

neuron received excitatory and inhibitory conductance-based

inputs whose amplitude and latency depended on the direction

of each ‘‘whisker deflection’’ (Fig. 1A; compare e.g. to Fig. 5 in

[14]). We set synaptic conductance durations and time constants

for synaptic integration according to experimental data (see

Materials and Methods). We first checked responses with

temporally isolated single-deflection stimuli in eight directions; as

expected, the model matched experimental results, with synaptic

directional tuning sharpened by the spike threshold (Fig. 1B).

Dependence of directional selectivity on stimulus

frequency
We then generated stimulus sets consisting of sequences of

deflections in eight possible directions (described in Materials

and Methods). Each such displacement had a well-defined

direction, determining activation of excitatory and inhibitory

conductances according to the rules of Fig. 1A. Deflection

sequences explored a spatial region defined as a grid of discrete

positions (Materials and Methods; an example ‘‘diamond’’ grid

used in the simulations is shown under the polar plots in Fig. 2).

Deflections occurred at exponentially distributed intervals set by

a Poisson process, a simple choice of highly irregular stimulus.

Directional selectivity at different frequencies was computed by

varying the mean inter-deflection interval.

We found that directional selectivity during sustained stimula-

tion with whisker deflection sequences depended strongly on

stimulus frequency. For low-frequency deflection sequences (e.g.

20 Hz), directional selectivity maps had a shape similar to that for

single deflections or for sequences of isolated deflections (Fig. 2A).

However, for higher frequencies (e.g. 200 Hz) directional

selectivity was nearly absent (Fig. 2B).

This is because a mechanism based on timing differences must

lose selectivity when differences in input arrival times (,5 ms) are

small relative to the synaptic integration time scale. In BC, several

estimates of integration time scale are consistent: membrane time

constants are ,10–20 ms; average individual post-synaptic

potential duration in vivo is ,20 ms [15]; the duration of the

linear filters determining a neuronal response is ,20 ms [19];

directly measured integration times range down to ,1 ms at the

beginning of stimulation, but reach ,20 ms during prolonged or

repeated stimulation [20]. At high stimulation frequencies relative

to this time scale, successive synaptic inputs evoked by deflections

in different directions are not isolated in time, but summed

together by the postsynaptic membrane. Without a precise

‘‘window of opportunity’’, spike generation depends on synaptic

summation. Responses to different directions are thus effectively

averaged together, and angular preferences will be lost during

postsynaptic integration.

Tuning was weakened at high frequencies regardless of the

geometry of the whisker position grid used (see below and

Materials and Methods). Interestingly, high-frequency tuning plots

(Fig. 2B) could be almost fully bilaterally symmetric, comparable

to responses to continuous stimuli measured in anesthetized

animals [16]. We emphasize that the strikingly different tuning

curves in Figs. 2A and B were achieved without changing any

model parameters except stimulation frequency.

Robustness of the frequency dependence of

directional selectivity
Our basic model included several simplifying parameter choices,

such as a lack of synaptic dynamics and a specific choice for the

duration of the time window over which response magnitudes

were computed (see Materials and Methods). We therefore tested

how various alterations to the model’s design could affect the

predicted decrease in directional selectivity under high-frequency

stimulation. Our aim was not just to extend the model to a slightly

Figure 1. Definition of directionally selective model neuron. A: Latency tuning: directional dependence of excitatory and inhibitory synaptic
conductance peaks (left) and latencies (right). Symbols: Gray squares, excitatory conductance; white squares, inhibitory conductance; black circles,
total synaptic conductance. B: Polar plot of directional selectivity of model neuron tested with discrete single deflections in one of eight possible
directions (symbolically represented at bottom: solid line is 0u deflection). Responses are on a radial scale normalized to the preferred direction (PD,
set to 0u) response (outer circle = 1). Symbols: Circles, gray line: synaptic responses (mean peak evoked synaptic potential per deflection). Squares,
black line: spiking responses (mean evoked number of spikes per deflection, counted over a 20 ms window).
doi:10.1371/journal.pone.0000137.g001
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more realistic situation, but to evaluate whether its qualitative

predictions could be expected to generalize.

First, we evaluated the effects of the choice of time window used

to estimate responses and spike probabilities. Although the 20 ms

time window used in Figs. 1 and 2 was chosen on grounds of

physiological relevance (see Materials and Methods), BC in-

tegration time windows can vary – they are layer-dependent [21]

and are under the ongoing control of synaptic inhibition [20].

Using a shorter time window to estimate responses would decrease

the time over which synaptic inputs were effectively averaged

together in our analysis, and could therefore be expected to

sharpen the observed directional selectivity. Using a 10 ms time

window indeed resulted in sharpened selectivity but did not affect

the qualitative result: selectivity was profoundly reduced during

high-frequency stimulation (Fig. 3A).

Next, we added short-term dynamics to both excitatory and

inhibitory synaptic inputs to the model neuron. Several forms of

synaptic depression were assumed, for consistency with recent

studies of BC short-term synaptic plasticity that have found

different results according to experimental design. Thus, de-

pressing excitatory and inhibitory synapses were either ‘‘Strongly

balanced’’ (SBD: both the steady-state value and the relaxation

dynamics of depression are the same for excitatory and inhibitory

synapses [22]), ‘‘Weakly balanced’’ (WBD: the relaxation dynam-

ics of synaptic depression at 10 Hz stimulation frequency is the

same for excitatory and inhibitory synapses, but not the steady-

state depressed synaptic efficacy), or ‘‘Non-balanced’’ (NBD: for all

stimulation frequencies both the steady state and relaxation

dynamics of synaptic efficacies differ for excitatory and inhibitory

pathways [20]). Although directional selectivity was somewhat

affected by assumptions regarding the detailed form of synaptic

dynamics, the central result held in every case: selectivity decreased

sharply under high-frequency stimulation (Fig. 3B).

Finally, we compared directional selectivity for deflections on

a ‘‘diamond’’ grid to selectivity for deflections on other grid

geometries (Fig. 3C; see Materials and Methods for a discussion of

grid design). Irrespective of grid choice, directional selectivity

dropped off strongly with increasing frequency.

Figure 2. Directional selectivity is sensitive to stimulus frequency. A: Plot of directional selectivity tested with 20 Hz random deflection sequence.
Deflections occurred at exponentially distributed intervals (symbolically represented at bottom left: each vertical line is a deflection) and were across
neighboring positions on a diamond spatial grid (bottom right). Thus, there was a ‘‘whisker displacement’’ from one position to a neighbor every
50 ms on average. Response scales and symbols as in Fig. 1B. B: Plot of directional selectivity tested with 200 Hz random deflection sequence. Except
for frequency, all other parameters were as for A (symbols at bottom represent the faster sequence and the unchanged position grid). Directional
selectivity was substantially weakened.
doi:10.1371/journal.pone.0000137.g002

Figure 3. Robustness to changes in key model parameters. All panels
represent the ‘‘Selectivity Index’’ (see Materials and Methods) computed
on spiking responses. A: Dependence on time window for response
estimation. Selectivity index as a function of stimulus frequency
assessed using two different integration time windows after each
deflection (10 and 20 ms). B: Dependence on short-term synaptic
plasticity. The selectivity index was evaluated for conditions differing in
how synaptic depression properties were matched across excitatory
and inhibitory conductances (ND: no depression, same model as in
other figures; SBD, WBD and NBD defined in Results). C: Dependence on
choice of grid geometry on which whisker deflections were defined
(square: deflections on square grid; diamond: on diamond grid; random:
random walk deflections; see Materials and Methods for full explanation
and Fig. 2, bottom, for schematic of diamond grid). In all cases,
response selectivity was weakened at high frequencies. Error bars:
standard error of mean across trials.
doi:10.1371/journal.pone.0000137.g003
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In conclusion, directional selectivity based on smooth tuning of

synaptic amplitude and latency is sensitive to stimulus temporal

structure. It functions robustly for temporally isolated stimuli and

for low-frequency irregular stimulation and breaks down at

stimulus frequencies that are high relative to neuronal integration

times. This fragility of directional selectivity applies over a wide

range of model parameters.

DISCUSSION

Robust loss of directional selectivity for high-

frequency stimuli
Using a very simple model that incorporates generic features of

synaptic integration, we have found that the directional selectivity

of BC neurons can be highly dependent on other stimulus features.

Varying the stimulus frequency resulted in strikingly different

directional tuning, as exemplified by the curves in Figs. 2A and B,

which were obtained with identical model parameters. The model

was able to account for apparent discrepancies in the literature

between the magnitude of directional selectivity to single deflec-

tions (e.g. [12–15]) and to rapidly varying motion [16].

Stimulus waveforms used in our simulations consisted of

sequences of discrete instantaneous displacements, a choice made

in the interest of greater simplicity and transparency. It is

important to note that to the extent that directional selectivity

depends on latency tuning, this choice of stimulus will be biased in

favor of directional selectivity. This is because directional tuning

based on precise synaptic latency relies on the synchronous

activation of afferent neurons. In our model, discrete deflections

evoked synaptic conductance waveforms with precise latency,

corresponding to a high degree of synchrony. Experimentally,

thalamic synchrony is stimulus-dependent [10,11,23] and is

uniquely high for responses evoked by discrete stimuli with a fast

onset (the situation contemplated in our simulations), as com-

pared to other stimuli encountered by the system. For example,

synchrony under stimulation with long-duration, continuous

waveforms is weaker than under the conditions simulated here

[15]. Directional selectivity would therefore be expected to

decrease with those stimuli, although the comparison has not

been directly made experimentally. Systematic comparisons of

directional selectivity for stimuli with variable sharpness or velocity

have only been made for isolated ramp-and-hold stimuli [11].

Several lines of experimental evidence indicate that aside from

synaptic latency tuning, other mechanisms participate in cortical

directional selectivity [11,13]. Importantly, the degradation of

directional selectivity at high frequencies in our model stems from

temporal filtering intrinsic to synaptic integration at the membrane

– a general, basic neuronal property. We therefore expect this

degradation to be a general phenomenon, applicable to directional

selectivity mediated by almost any mechanism, including most

forms of magnitude tuning as well as spike threshold modulation

[13]. Note however that smooth tuning is more susceptible to the

averaging effect than all-or-none tuning: neurons receiving all

their input from afferents with identical directional tuning can

maintain a strong directional preference at much higher fre-

quencies. In sum, loss of directional selectivity under ongoing,

continuous, or high-frequency stimuli is likely to be a robust

property of BC responses. The influence of stimulus frequency on

directional selectivity is an experimentally testable prediction.

Relevance to tactile coding
Our results suggest that BC directional tuning is at its peak early in

a response and for temporally isolated stimuli with a sudden onset:

for example, when a whisker first encounters an object. What

could be the functional role of this selectivity? Free whisking occurs

at frequencies between 5–20 Hz, a range over which directional

selectivity is relatively strong. Upon first whisker contact with an

object, directional information could thus help the cortex generate

a percept of object position and orientation [24]. Later on during

exploration of a texture, as whiskers experience high-frequency

‘‘stick-and-slip’’ events separated by short intervals [16,17],

directional information is likely to be ‘‘integrated away’’. This is

consistent with the idea that texture discrimination should be

invariant to the texture’s position and orientation relative to the

whiskers, much as our ability to identify a surface does not depend

on how we are running our fingers along it. Ultimately, of course,

whether directional selectivity plays a role in whisker stimulus

encoding must be settled by directly testing whether rodents can

use the direction of vibrissa motion as a sensory cue at different

moments during tactile exploration.

Much recent work in the barrel cortex and other sensory

cortical areas has been concerned with response modulation by

motor inputs, particularly in active sensing, as well as with

modulation by states of overall brain activity, for instance by

wakefulness or attention (e.g. [1,25–33]). Our results are a re-

minder that even before considering active modulatory phenom-

ena, response tuning to particular features can be modulated by

other stimulus features. The relevance of receptive field properties

should be judged in the context of how rats use their whiskers, and

what they can feel.

MATERIALS AND METHODS

Model neuron
We implemented a single-compartment leaky integrate-and-fire

model neuron [34] with a resting potential of 269 mV, a mem-

brane capacitance of 0.36 mF/cm2 (as in experiments in barrel

cortex [20,22]), and a leak conductance of 0.03 mS/cm2 (yielding

a membrane time constant of 12 ms, consistent with experiments

in barrel cortex [20,22]). The neuron received synaptic inputs in

the form of conductance changes with reversal potentials of 0 and

285 mV for excitatory and inhibitory synapses, respectively. The

corresponding maximal conductances were modulated according

to deflection direction (as indicated in Fig. 1A) and took values of

0.014 mS/cm2 and 0.020 mS/cm2, respectively, at the preferred

direction (PD). The time course of conductance opening was

modeled as the difference of two exponentials (with time constants

t1 and t2) with variable delayed onset D. Latencies to peak were

given by D+t1t2/(t12t2)ln(t1/t2), as plotted in Fig. 1A. For

excitatory conductances t1 = 3 ms, t2 = 2 ms, and D = 0.5–1.4 ms.

For inhibitory conductances t1 = 4 ms, t2 = 3 ms, and D = 1 ms.

This choice of time constants gave time courses consistent with

experimental measures of post-synaptic potentials elicited by

whisker deflections [14]. When the membrane potential reached

the threshold of 260 mV, an action potential was fired and the

membrane potential was reset to 270 mV. This value was then

held for a refractory period of 2 ms. We verified that the chosen

spike threshold sharpened tuning as seen experimentally [13,15]:

this is shown in Figs. 1 and 2.

For simplicity and transparency, the basic model (Figs. 1, 2, and

3A) had no adaptive dynamics (i.e. no synaptic depression or

intrinsic spike-frequency adaptation). Synaptic dynamics were

implemented in Fig. 3B according to three alternative assump-

tions: SBD, WBD and NBD, defined by whether depression

dynamics and steady states were matched or not across excitatory

and inhibitory conductances (see Results). The phenomenological

model of synaptic depression was described by two parameters: c
and tD [35]. In the SBD case, we used c = 0.8, tD = 400 ms for

Variable Barrel Cortex Tuning
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both excitatory and inhibitory synapses. In the WBD case, we used

c = 0.8, tD = 333 ms for excitatory synapses and c = 0.6, tD =

1000 ms for inhibitory synapses. This resulted in a decay time

constant for synaptic efficacy of 200 ms at a 10 Hz stimulation

rate both for excitatory and for inhibitory conductances. However,

steady-state depressed efficacies differed for excitatory and inhibi-

tory pathways. In the NBD case, we used c = 0.4, tD = 200 ms for

excitatory synapses and c = 0.8, tD = 2000 ms for inhibitory

synapses. For this choice of parameters neither relaxation

dynamics nor steady-state efficacy values coincided for excitatory

and inhibitory synapses, irrespective of stimulation conditions.

Spike thresholds were fixed at 265.5 mV for SBD, 265 mV for

WBD and 266 mV for NBD. Our aim was to compare

directional selectivity with and without synaptic dynamics, to

examine how selectivity could be affected by depression. In

plotting Fig. 3B, we therefore focused on steady-state, ‘‘adapted’’

responses, counting spikes starting 300 ms after the onset of

stimulation; initial, ‘‘non-adapted’’ responses had the same

selectivity as those in the basic model.

Data were averaged over many trials (200 – 2000) consisting of

different stimulation sequences drawn from the same statistical

distribution (see below).

Simulations were performed in Matlab (The Mathworks,

Natick, MA).

Design of stimulus sequences
We generated stimuli consisting of sequences of successive, discrete

‘‘whisker deflections’’ in eight possible directions. Deflections

occurred at exponentially distributed intervals, a simple choice of

noisy, rapidly varying stimulus that conforms to Poisson statistics.

Activation of excitatory and inhibitory conductances was fully

determined by direction according to Fig. 1A, making it necessary

to ensure that each deflection had a well-defined direction. We

therefore constrained deflections so that, instead of varying

continuously over the x-y (anteroposterior-dorsoventral) plane of

whisking motion, they occurred between discrete positions on one

of several possible grids. For example, one could design a square

grid on which deflections could be from any one corner to any of

the others. In this example, and using cardinal directions for

convenience, starting from the lower right-hand (SE) corner

deflections could be vertically N (to the upper right-hand corner),

horizontally W (to the lower left-hand corner), or diagonally NW

(to the upper left-hand corner). Responses to deflections in all eight

directions, starting from all corners, were sampled.

Grid choice constrained the stimulus temporal correlation

structure: for the square grid example described above, any

deflection with an eastward component (E, NE, or SE) was likely

to be followed by a deflection with a westward component. In

other words, a deflection in one direction had an increased

probability of being followed by a deflection in the opposite

direction. For low-frequency deflection sequences, responses to

each direction were well isolated in time, but for high-frequency

sequences, they were ‘‘mixed in’’ (through synaptic integration)

with responses to motion with a component in the opposite

direction. This could imply a loss of directional selectivity. Note

that similar correlations between successive deflections will also

arise generally in real whisking movements – for example, whisker

protractions are necessarily followed by retractions, and perturba-

tions induced by textures consist of back-and-forth vibrations at

frequencies up to several hundred Hz [16].

To avoid conditioning our results to the temporal correlations

imposed by any particular grid geometry, we designed several

choices of geometry. The principal criteria used in these designs

were to ensure adequate sampling of responses to all eight possible

directions, while restricting all deflections to have approximately

the same amplitude. Approximate equality of deflection ampli-

tudes allowed us to neglect response dependence on any motion

parameters other than direction and frequency. Choices of grid

geometry included the following: (1) Squares as described above.

(2) Squares or diamonds with vertices at the corners, at the

midpoints of edges and at the grid center, with deflections allowed

between every pair of neighboring vertices. For brevity we refer to

this geometry as ‘‘diamond’’ grid; see the lower part of Fig. 2A and

B for a schematic. (3) Free random walks, such that each deflection

started and ended at a random position. The square grid had the

strongest temporal correlations, the random walk had no

correlations, and the diamond grid was intermediate. The data

shown in Figs. 2, 3A and 3B were obtained using the diamond

geometry, chosen because it imposed less restrictive temporal

correlations than the square grid and had a more physiologically

realistic structure than the random walk: while whiskers are fixed

at their base and describe motion that is continuous and close to

cyclical, each random-walk deflection started from a random

position independently of where the last deflection had ended.

Fig. 3C shows a comparison of results for these choices of grid.

Assessment of responses
Spiking probabilities were measured over a 20 ms time window

following each deflection. This coincides with the approximate size

of time windows for synaptic integration (see Results) and is the

experimentally determined period over which stimulus features

influence spiking probability in vivo, as assessed directly from the

width of BC spike-triggered stimulus linear filters [19] and the

width of the windows relevant to spiking probability prediction

under white noise stimuli [16]. We also tested a 10 ms time

window (Fig. 3).

Effects of various modifications to the model were compared by

computing a ‘‘Selectivity Index’’ that measured the relative

magnitude of the response to the preferred direction: Selectivity

Index = (response to preferred direction2average of all other

responses)/(response to preferred direction). The index was equal

to 0 if there was no directional selectivity and equal to 1 if the non-

preferred responses were 0% of the preferred response. Fig. 3

represents the Selectivity Index calculated for spiking responses.

ACKNOWLEDGMENTS
We thank Mathew Diamond and Rasmus Petersen for insightful comments

and suggestions on a previous version of the manuscript.

Author Contributions

Conceived and designed the experiments: MM. Performed the experi-

ments: GP. Analyzed the data: AC GP MM. Contributed reagents/

materials/analysis tools: AC GP. Wrote the paper: MM. Other: Designed

simulations, wrote the modeling code: AC. Designed simulations, wrote the

modeling code, performed the simulations, and made the figures: GP.

Conceived the project, designed simulations: MM.

REFERENCES
1. Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the

rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16: 435–444.

2. Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory

neocortex. J Neurophysiol 41: 798–820.

Variable Barrel Cortex Tuning

PLoS ONE | www.plosone.org 5 December 2006 | Issue 1 | e137



3. Simons DJ (1983) Multi-whisker stimulation and its effects on vibrissa units in rat

SmI barrel cortex. Brain Res 276: 178–182.

4. Simons DJ, Carvell GE (1989) Thalamocortical response transformation in the

rat vibrissa/barrel system. J Neurophysiol 61: 311–330.

5. Lichtenstein SH, Carvell GE, Simons DJ (1990) Responses of rat trigeminal

ganglion neurons to movements of vibrissae in different directions. Somatosens

Mot Res 7: 47–65.

6. Minnery BS, Bruno RM, Simons DJ (2003) Response transformation and

receptive-field synthesis in the lemniscal trigeminothalamic circuit.

J Neurophysiol 90: 1556–1570.

7. Shoykhet M, Shetty P, Minnery BS, Simons DJ (2003) Protracted development

of responses to whisker deflection in rat trigeminal ganglion neurons.

J Neurophysiol 90: 1432–1437.

8. Timofeeva E, Merette C, Emond C, Lavallee P, Deschenes M (2003) A map

of angular tuning preference in thalamic barreloids. J Neurosci 23:

10717–10723.

9. Bruno RM, Khatri V, Land PW, Simons DJ (2003) Thalamocortical angular

tuning domains within individual barrels of rat somatosensory cortex. J Neurosci

23: 9565–9574.

10. Temereanca S, Simons DJ (2003) Local field potentials and the encoding of

whisker deflections by population firing synchrony in thalamic barreloids.

J Neurophysiol 89: 2137–2145.

11. Lee SH, Simons DJ (2004) Angular tuning and velocity sensitivity in different

neuron classes within layer 4 of rat barrel cortex. J Neurophysiol 91: 223–229.

12. Andermann ML, Moore CI (2006) A somatotopic map of vibrissa motion

direction within a barrel column. Nat Neurosci 9: 543–551.

13. Wilent WB, Contreras D (2005) Stimulus-dependent changes in spike threshold

enhance feature selectivity in rat barrel cortex neurons. J Neurosci 25:

2983–2991.

14. Wilent WB, Contreras D (2005) Dynamics of excitation and inhibition

underlying stimulus selectivity in rat somatosensory cortex. Nat Neurosci 8:

1364–1370.

15. Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously

active thalamocortical synapses. Science 312: 1622–1627.

16. Arabzadeh E, Zorzin E, Diamond ME (2005) Neuronal encoding of texture in

the whisker sensory pathway. PLoS Biol 3: e17.

17. Hipp J, Arabzadeh E, Zorzin E, Conradt J, Kayser C, et al. (2006) Texture

signals in whisker vibrations. J Neurophysiol 95: 1792–1799.

18. Jones LM, Depireux DA, Simons DJ, Keller A (2004) Robust temporal coding in

the trigeminal system. Science 304: 1986–1989.

19. Maravall M, Petersen RS, Fairhall AL, Arabzadeh E, Diamond ME (2007)

Shifts in coding properties and maintenance of information transmission during
adaptation in barrel cortex. PLoS Biol In Press.

20. Gabernet L, Jadhav SP, Feldman DE, Carandini M, Scanziani M (2005)

Somatosensory integration controlled by dynamic thalamocortical feed-forward
inhibition. Neuron 48: 315–327.

21. Wilent WB, Contreras D (2004) Synaptic responses to whisker deflections in rat
barrel cortex as a function of cortical layer and stimulus intensity. J Neurosci 24:

3985–3998.

22. Higley MJ, Contreras D (2006) Balanced excitation and inhibition determine
spike timing during frequency adaptation. J Neurosci 26: 448–457.

23. Pinto DJ, Brumberg JC, Simons DJ (2000) Circuit dynamics and coding
strategies in rodent somatosensory cortex. J Neurophysiol 83: 1158–1166.

24. Polley DB, Rickert JL, Frostig RD (2005) Whisker-based discrimination of object
orientation determined with a rapid training paradigm. Neurobiol Learn Mem

83: 134–142.

25. Fanselow EE, Nicolelis MA (1999) Behavioral modulation of tactile responses in
the rat somatosensory system. J Neurosci 19: 7603–7616.

26. Erchova IA, Lebedev MA, Diamond ME (2002) Somatosensory cortical
neuronal population activity across states of anaesthesia. Eur J Neurosci 15:

744–752.

27. Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B (2003) Interaction
of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex.

Proc Natl Acad Sci U S A 100: 13638–13643.
28. Castro-Alamancos MA (2004) Absence of rapid sensory adaptation in neocortex

during information processing states. Neuron 41: 455–464.
29. Castro-Alamancos MA (2004) Dynamics of sensory thalamocortical synaptic

networks during information processing states. Prog Neurobiol 74: 213–247.

30. Erchova IA, Diamond ME (2004) Rapid fluctuations in rat barrel cortex
plasticity. J Neurosci 24: 5931–5941.

31. Fiser J, Chiu C, Weliky M (2004) Small modulation of ongoing cortical dynamics
by sensory input during natural vision. Nature 431: 573–578.

32. Hentschke H, Haiss F, Schwarz C (2006) Central signals rapidly switch tactile

processing in rat barrel cortex during whisker movements. Cereb Cortex 16:
1142–1156.

33. Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane
potential in barrel cortex of awake mice. Nat Neurosci 9: 608–610.

34. Tuckwell HC (1988) Introduction to Theoretical Neurobiology. Cambridge,
MA: Cambridge University Press.

35. Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical

gain control. Science 275: 220–224.

Variable Barrel Cortex Tuning

PLoS ONE | www.plosone.org 6 December 2006 | Issue 1 | e137


