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Vesna A. Eterović3, Pedro A. Ferchmin3*, Henning Ulrich1*

1 Departamento de Bioquı́mica, Instituto de Quı́mica, Universidade de São Paulo, São Paulo, Brazil, 2 Departmento de Neurologia/Neurocirurgia, Universidade Federal de

São Paulo, São Paulo, Brazil, 3 Department of Biochemistry, Universidad Central del Caribe, Bayamón, Pueto Rico, United States of America

Abstract

Background: Kinins, with bradykinin and des-Arg9-bradykinin being the most important ones, are pro-inflammatory
peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it
remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in
various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin
metabolite des-Arg9-bradykinin as well as Lys-des-Arg9-bradykinin activates the kinin-B1 receptor known to be expressed
under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-D-
aspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes
in the CA1 area of rat hippocampal slices.

Principal Findings: Bradykinin at 10 nM and 1 mM concentrations triggered a neuroprotective cascade via kinin-B2 receptor
activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by
10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor
antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-
kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However,
100 nM Lys-des-Arg9-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spike
recovery. The inhibition of population spikes recovery was reversed by PD98059, showing that MEK/MAPK was involved in
the induction of apoptosis mediated by the B1 receptor.

Conclusions: Bradykinin exerted protection against NMDA-induced excitotoxicity which is reversed in the presence of a
kinin-B1 receptor agonist. As bradykinin is converted to the kinin-B1 receptor metabolite des-Arg9-bradykinin by
carboxypeptidases, present in different areas including in brain, our results provide a mechanism for the neuroprotective
effect in vitro despite of the deleterious effect observed in vivo.
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Introduction

Stroke is a leading cause of death and disability in industrialized

countries. Moreover, surviving individuals are often permanently

disabled causing major economic losses [1] and immeasurable

human suffering. Neuronal cell death by apoptosis or necrosis

follows arterial obstruction. The ischemic core is defined by the

area where blood flow is completely interrupted and cell death

occurs as a result of lack of glucose and oxygen. Neuronal death in

the adjacent penumbral zone results from dramatic increases in

extracellular concentration of glutamate and augmented stimula-

tion of the NMDA subtype of glutamate receptor resulting in

massive influx of calcium [2,3]. Attempts to block excitotoxic

neuronal damage as consequence of ischemia with NMDA re-

ceptor antagonists have failed so far due to unexpected effects,

which include blockade of inhibitory neurotransmission (for a

review [4]) and the unintended inhibition of the pro-survival effect

induced by the NMDA receptor [5].

In addition to mechanical or enzymatic removal of the occlusion

underlying ischemia, therapeutic approaches aim at protection
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against neuronal death in the penumbral zone by activation of anti-

apoptotic pathways. Kallikrein, an enzyme which releases brady-

kinin (BK) and kallidin (Lys-BK) after proteolytic cleavage of

kininogens, was already shown to participate in neuroprotective

effects in vitro. Kallikrein gene transference by an adenovirus carrier

through intracerebroventricular injection into a rat model of is-

chemic stroke reduced deficits in motor function by neuroprotection

involving promotion of cell survival and migration as well as in-

hibition of apoptosis by activation of the anti-apoptotic Bcl-2

through AKT and reduction of oxidative stress [6]. These beneficial

effects were not only mediated by prolonged reduction of blood

pressure, regulation of angiogenesis and neurogenesis in the heart,

but also by regulation of AKT-Glycogen synthase kinase (GSK)-3b
and activation of AKT-Bad 14-3-3 signaling pathways [7,8]. Ex-

perimental evidence has suggested the involvement of the kallikrein-

kinin system in mechanisms of neuroprotection after stroke. For

instance, neuroprotection by kinin-mediated promotion of migra-

tion and inhibition of apoptosis in primary culture of glial cells was

blocked in the presence of the selective kinin-B2 receptor (B2BKR)

antagonist HOE-140 (Icatibant) [6].

In this paper we provide evidence for BK-induced neuroprotec-

tion of hippocampal neurons against NMDA-mediated excitotox-

icity, determined by electrophysiological measurements of recovery

of population spikes (PSs) whose magnitudes are directly propor-

tional to the number of synaptically elicited axon potentials by

pyramidal neurons [9]. B2BKR-mediated neuroprotection involved

phosphatidylinositol kinase (PI-3K) activation, while inhibition of

mitogen-activated protein kinase (MEK/MAPK) signaling did not

interfere with the induced neuroprotective effects. However, MEK/

MAPK activation was involved in kinin-B1 receptor (B1BKR)-

mediated signaling which reverted BK-induced PS recovery.

Results

The decrease of population spikes is correlated with
apoptotic events

Excitotoxicity in acute hippocampal slices was induced by 10 min

of exposure to 0.5 mM NMDA and resulted in a reduction of

population spikes (PSs) of pyramidal neurons to 25.966.9% (mean 6

S.E.M.) (Figure 1A; Figure S1A, B) of control recordings from slices

which had not been exposed to NMDA. When acute slices had been

pretreated with 5 mM Z-LEHD-FMK [Z-Leu-Glu(OMe)-His-As-

p(OMe)-FMK.TFA], a caspase 9 inhibitor-II, prior to the NMDA-

mediated insult, PSs were not rescued (32.366.6% of control values).

However, application of Z-LEHD-FMK after NMDA treatment led

to a significant improvement in PS recovery (70.268.8%, p,0.001)

(Figure 1 A). Similarly, population spike recovery occurred when the

GSK-3 inhibitor SB-216763 was applied after the NMDA insult

(62.867.1%), while no protection was observed when the inhibitor

was added prior to NMDA application (20.964.7% of control mea-

surements, Figure 1B). The release of cytochrome c from mito-

chondria is one of several signs of apoptosis [10]. Therefore, we

measured cytochrome c release in hippocampal slices treated with

NMDA, resulting in a decrease of population spikes. NMDA-treated

cell preparations released more than twice the amount of cytochrome

c more than untreated control cells (Figure 1C).

Population spikes, decreased in the presence of NMDA,
are restored by bradykinin treatment

In the absence of NMDA, agonists and antagonists of the kinin-B1

receptor did not affect the magnitude of PS recovery (Figure 2).

Application of artificial cerebrospinal fluid (ACSF) for 3 h resulted in

93.665.9%, 10 nM of Lys-des-Arg9-BK in 90.067.0%, 100 nM

Lys-des-Arg9-BK in 98.668.0, 100 nM Lys-des-Arg9-Leu8-BK in

91.969.0% and 1 mM Lys-des-Arg9-Leu8-BK in 88.265.7% of

initial PS areas. However, BK at 10 nM and 1 mM protected against

NMDA-induced excitotoxicity with recovery rates of 85.363.5% and

Figure 1. Relation of population spike recovery with apoptosis
rates. Initial population spikes (PS) were recorded in stratum pyrami-
dale region of hippocampal slices prior to and following a 10 min
application of 0.5 mM NMDA. A) Z-LEHD-FMK, a cell-permeant caspase
9 inhibitor (C.I.), was superfused during 1 h prior to NMDA administra-
tion or during 1 h after NMDA. Each lane was superfused for 1 h with
ACSF, and the initial PS was recorded from seven slices per lane. For the
NMDA lane, the perfusion with ACSF continued for 1 h. Then 0.5 mM
NMDA was applied for 10 min; the second lane was superfused with
5 mM of the caspase 9 inhibitor for 1 h after NMDA washout; the third
lane was superfused with the inhibitor for 1 h prior to exposure to
0.5 mM NMDA for 10 min. After that, all three lanes were superfused
with ACSF for 1 h, and at the end of this time, the final PS was recorded.
PS recovery rates (peak areas) obtained in the NMDA alone were
compared with those obtained in the presence of 0.5 mM NMDA plus
5 mM Z-LEDH-FMK (C.I.) (n = 21, ***, p,0.001, as analyzed by Student’s t-
test). B) The same protocol describe above was used for GSK-3
inhibition (GSK I) by 25 mM SB-216763 (n = 21, * p,0.05). C) NMDA-
triggered excitotoxicity induces cytochrome c release from mitochon-
dria and is correlated with the decrease of PS areas. Cytochrome c
release was measured after 3 hours. The amount of cytochrome c
released after NMDA was more than 2 fold greater (220620%) than
detected in control fraction obtained from slices superfused with ACSF
(n = 3, p,0.05). (A) to (C): Data are presented as mean values 6
standard deviation (S.D.).
doi:10.1371/journal.pone.0030755.g001
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76.367.3%, respectively (Figure 3; Figure S1A–D). As there was

no statistical significant difference in the PS recovery at both BK

concentrations, 10 nM BK was used for subsequent experiments.

BK-evoked protection against NMDA-induced cell death was due to

B2BKR activation, since effects mediated by10 nM BK were

abolished by co-application of the selective B2BKR receptor agonist

HOE-140 (100 nM HOE-140) with 13.965.1% of recovery rates

measured in control cells (Figure 3; Figure S1A,B,E).

Protection against NMDA-induced cell death may occur by

activation of PI3 kinase and MEK/MAPK signaling pathways

among other mechanisms. In the presence of 10 mM LY294002, a

selective PI3 kinase inhibitor [11,12], BK-induced recovery of PSs

was reduced to values observed in the presence of NMDA alone

(15.464.0%, p,0.001) (Figure 3; Figure S1A,B,F). The presence

of 50 mM PD98059, an inhibitor of MEK/MAPK activation

[13,14], did not interfere with BK-mediated PS recovery

indicating that B2BKR receptor evoked neuroprotection did not

depend on activation of the MEK/MAPK pathway (Figure 3;

Figure S1 A,B,G). Intriguingly, the neuroprotection induced by

10 nM BK was completely inhibited by 100 nM Lys-des-Arg9-BK,

a B1BKR receptor agonist (19.963.5% of control responses,

p,0.001). Population spikes were reestablished when 1 mM of the

B1BKR receptor antagonist Lys-des-Arg9-Leu8-BK was applied in

combination with BK and Lys-des-Arg9-BK (69.965.7%, p,

0.001). BK-induced neuroprotection was fully restored after

application of 50 mM PD98059 together with 10 nM BK and

100 nM Lys-des-Arg9-BK (10267.9% of control responses, p,

0.001) indicating that B1BKR action depended on MEK activity.

Discussion

Glutamate-mediated excitotoxicity involving the loss of calcium

homeostasis, oxidative stress and impairment of mitochondrial

metabolism (reviewed in [2]) following oxygen and glucose

deprivation is the main cause of delayed neuronal loss following

the initial cell death in the necrotic core. Glutamate-induced cell

death can be reproduced in culture. In cortical neuron cultures,

application of 500 mM of the glutamate receptor agonist NMDA

induced cell death [15]. The electrophysiological assay used in this

work to assess the percentage of functional pyramidal neurons

reports well initial phases of ischemic events in hippocampus [3].

Hippocampal slices were already employed in several in vitro

studies to determine NMDA-induced cell damage and neuropro-

tective properties of various compounds [16,17,18]. In this work,

we have shown that PS area is related to apoptosis and cell death,

since inhibition of caspase 9 or GSK-3 after the NMDA insult

resulted in recovery of PSs. In addition, cytochrome c release in

NMDA-treated hippocampal slices was significantly greater when

compared with controls (Figure 1). We are the first to show by

electrophysiological measurements that NMDA-induced excito-

toxic effects on hippocampal neurons can be reverted in the

presence of 10 nM or 1 mM BK. BK-induced protection was

completely inhibited in the presence of the 100 nM HOE-140, a

selective inhibitor of B2BKRs [19].

The effect of BK was thought to be mostly related to regulation

of inflammation and blood pressure, but now it is recognized to

involve regulation of synaptic functions and neuronal differenti-

ation [20,21,22,23]. B2BKR expression is not limited to

endothelial cells in the brain, but is also present along

differentiation of rat neural progenitor cells [22,23]. Developmen-

tal processes involve neuroprotective mechanisms resulting in

survival of differentiating cells. A recently published study of our

group indicated that bradykinin secretion and activation of

B2BKR activity were essential for differentiation of P19

embryonal carcinoma cells into neuronal cells expressing func-

tional muscarinic acetylcholine receptors [21]. Neuronal differen-

tiation of this cell line is accompanied by growth factor-mediated

inhibition of apoptosis.

In the present paper, we have shown BK-mediated neuropro-

tection of pyramidal neurons against NMDA-mediated excitotox-

icity. Our results indicate that BK-induced recuperation of PSs in

hippocampal neurons involved activation of PI3 kinase, which

then is responsible for Bad phosphorylation and subsequent anti-

apoptotic activity [24]. BK-mediated neuroprotection did not

depend on the MEK/MAPK activation cascade. Despite the fact

that MEK/MAPK is activated by BK and Lys-des-Arg9-BK in

transformed airway epithelial cell line cells used as model for

allergic airway inflammation [25], this mechanism is not involved

in BK-promoted neuroprotection of hippocampus neurons. The

observation that inhibition of PI3 kinase by its selective antagonist

LY294002, preventing translocation and phosphorylation of

downstream proteins, abolished BK-promoted recuperation of

PSs is indicative for its involvement in protection against NMDA-

mediated excitotoxic effects.

Recent studies suggest the involvement of B2BKRs in neuropro-

tection in other systems. Danielisova et al. [26,27] reported that

following induction of ischemia, post-conditioning with BK resulted in

survival of more than 97% of CA1 neurons. Kallikrein gene transfer

reduced apoptosis in a rat model of cerebral ischemia to near-normal

levels [6]. Moreover, in agreement with the supposed participation of

B2BKRs in neuroprotection, B2BKR receptor knock-out mice

subjected to ischemic conditions revealed increased mortality rates

and neurological deficits when compared with wild-type animals.

Decreased Akt phosphorylation levels correlated with increased

apoptosis rates in knock-out animals with arterial occlusion [28].

However, earlier works have connected BK-mediated effects

with the induction of postischemic brain damage by evoking

increased vascular permeability and subsequent development of

brain edema [29,30]. Further deleterious effects, such as the

generation of inflammatory mediators and free radicals [31],

Figure 2. Verification of population spike recovery in the
presence of kinin-B1 receptor agonists and antagonists.
Synaptically elicited PSs were recorded in the stratum pyramidale
region in the absence of NMDA. Control slices were treated only with
ACSF and compared with slices treated with 100 nM or 1 mM
concentrations of the B1BKR receptor antagonist Lys-des-Arg9-Leu8-BK
or agonist Lys-des-Arg9-BK. PSs were measured before and after the
application of peptides. Data are presented as mean values 6 S.D.
(n = 28).
doi:10.1371/journal.pone.0030755.g002
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appear to be secondary reactions following brain edema for-

mation. Moreover, previous studies suggest the participation of

BK in cell death and edema formation following brain ischemia

[32,33,34]. A rise in expression of B2BKR and an increase of

tissue and plasma BK concentration was measured, and

inhibition of BK formation decreased edema formation [33].

We hypothesized that a possible mechanism responsible for the

harmful effect of BK in vivo could be its conversion into des-

Arg9-BK, an agonist of the B1BKR. In agreement with such

hypothesis, 100 nM of the B1BKR agonist Lys-des-Arg9-BK

completely abolished the neuroprotection provided by bradyki-

nin (Figure 3). Reversion of neuroprotection by Lys-des-Arg9-

BK was mediated by MEK/MAPK activation, since co-

application of 50 mM PD98059 and 10 nM BK restored

population spikes. PD98059 is a highly selective inhibitor of

MEK/MAPK which activates distinct downstream pathways.

The involvement of MEK/MAPK kinases in B1BKR-mediated

signal transduction has been described in other systems, such as

proliferation induction of breast cancer cells [14], while

B2BKRs reveal some pharmacological heterogeneity and the

choice of PI-3K and/or MEK/MAPK by the B2BKR depends

on the respective cellular context [35].

The deleterious effect exerted by Lys-des-Arg9- BK-induced

activation of B1BKRs was also blocked in the presence of 1 mM

of the selective B1BKR antagonist Lys-des-Arg9-Leu8-BK. In

agreement, a recent study by Austinat et al. [36] provided evidence

that blockade of B1BKRs but not of B2BKRs protected against

formation of brain edema following ischemic stroke. It is worthwhile

to mention that Lys-des-Arg9-BK is an adequate compound for

studying effects of BK-metabolites on neuroprotection in rats, since

this B1BKR agonist and des-Arg9- BK possess equal pharmacological

profiles in this organism [37]. It is worthwhile mentioning that the

cellular origins of kinins and whether B1BKRs and B2BKRs are

expressed by the same population of hippocampal neurons needs

further investigation. Although kinin receptors are expressed by a

variety of neuronal cell lines in vitro, in vivo neuroprotection may also

involve the activation of signaling cascades in astro- and microglial

cells such as already suggested by previous work [6,38].

In addition to providing a molecular mechanism for neuroprotec-

tion against excitotoxic actions of NMDA, our work strengthens the

Figure 3. Kinin-B2 receptor mediated protection against NMDA-induced excitotoxicity and its reversion by Lys-des-Arg9-
bradykinin. Peak areas of synaptically elicited population spikes (PSs) recorded in the stratum pyramidale region of hippocampal slices are reported
as mean values 6 S.E.M. Bradykinin (BK) (10 nM and 1 mM) protected against NMDA (0.5 mM)-mediated cytotoxicity (n = 21, *** p,0.001, compared
to control values in the presence of NMDA alone). Neuroprotection induced by 10 nM BK was abolished in the presence of 100 nM HOE-140 (HOE)
(n = 21, ### p,0.001, values obtained in the presence of NMDA and BK compared to those collected in the presence of NMDA, BK and HOE-140).
The MEK/MAPK inhibitor PD98059 (50 mM) did not interfere with BK-mediated neuroprotection. The PI3-kinase inhibitor LY294002 (10 mM) co-applied
with 10 nM BK blocked neuroprotection conferred by BK (n = 21, p,0.05, compared to control values in the presence of BK alone). BK (10 nM)-
exerted effects were abolished by 100 nM of the B1BKR agonist Lys-des-Arg9-BK (p,0.001, compared to control values in the presence of BK alone).
Lys-des-Arg9-BK-mediated blockade of neuroprotection was reverted in the presence of PD98059 (50 mM) or the B1BKR antagonist Lys-des-Arg9-Leu8-
bradykinin (1 mM) (p,0.001, compared to control values in the presence of BK and Lys-des-Arg9-BK) (n = 21). Statistical analysis was done by one way
ANOVA followed by the Dunn’s method.
doi:10.1371/journal.pone.0030755.g003

Neuroprotective Properties of Bradykinin

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e30755



statement that B2BKR receptor activity exerts beneficial effects in the

central nervous system by promoting survival of neurons, while

noxious effects rise from B1BKR activation. Based on its prompt

neuroprotective action, a more stable analogue of BK which is not

metabolically converted into a B1BKR agonist may turn into a potent

therapeutic tool for the treatment of post-ischemic brain damage.

Materials and Methods

Standard reagents were obtained from Sigma-Aldrich (St. Louis,

MO).

Ethics statement
For protection assays against NMDA-provoked excitotoxicity,

hippocampal slices were prepared from male Sprague-Dawley rats

(120–200 g) from our colony, which were bred and used following

NIH guidelines. Procedures were reviewed and approved by the

Institutional Animal Care and Use Committee of Universidad

Central del Caribe (Protocol #10-VI-00).

Cytochrome c release
Cytochrome c release was measured in hippocampal slices using

QIA87 Cytochrome C Release Apoptosis Assay Kit (QIAGEN,

Valencia, CA) as described by the manufacturer.

Slice preparation and electrophysiological recordings
Brains from animals sacrificed by decapitation were removed and

the hippocampi dissected on ice and irrigated with ice-cold standard

artificial cerebrospinal fluid (ACSF) saturated with 95% O2, 5%

CO2 that contained (in mM): 125 NaCl, 3.3 KCl, 1.25, NaH2PO4, 2

MgSO4, 2 CaCl2, 25 NaHCO3, and 10 glucose. Transversal

400 mm-thick hippocampal slices were cut with a manual slicer and

immediately transferred to the incubation chamber and distributed

among three lanes with independent perfusion lines. Slices were

maintained on a nylon mesh at a temperature of 3461uC in the

interface between ACSF saturated with 95% O2, 5% CO2 using the

same humidified gaseous phase. The temperature was strictly kept

constant to avoid variability of results due to temperature-dependent

excitotoxicity of glutamate. Slices were allowed to recover from

dissection for one hour before starting the electrophysiological

recordings. A bipolar electrode placed in the stratum radiatum was

used to stimulate the Shaffer collateral incoming fibers with a

constant current for 0.2 ms. Synaptically elicited population spikes

(PSs) were recorded in stratum pyramidale with a glass electrode

filled with 2 M NaCl, having an impedance of 1–5 MV. The testing

procedure for neurotoxicity was performed according to Schurr et al.

[39]. About 30 slices from the hippocampi of two rats were

distributed equally among three lanes of the incubation chamber. A

maximum of seven slices were analyzed per lane for each replication

and 14 to 28 slices were tested per each experimental condition.

One hour after dissection, each slice was stimulated with a pulse

twice the strength required to elicit a threshold PS. The initial

response was recorded as PS area (ms6mV) and compared to the

final response elicited by identical stimulus strength recorded from

the same slice after the experimental treatment was finished. The

excitotoxic stimulus was delivered by incubation for 10 min with

0.5 mM NMDA in the presence of 95% O2, 5% CO2 and 10 mM

glucose. This concentration of NMDA is known to cause delayed

cell death in neuronal cultures [15]. The NMDA concentration and

length of exposure to NMDA were set to recover an average of 20%

of the PS area after NMDA treatment [16]. Besides NMDA, all

other drugs were applied for one hour. The percentage of the initial

response remaining at the end of the experiment was used as a

measure of electrophysiological recovery of the slice. Slices were

incubated with BK at 10 nM and 1 mM concentrations, 10 nM and

100 nM of the B1BKR agonist Lys-des-Arg9-bradykinin, 100 nM

and 1 mM of the B1BKR antagonist Lys-des-Arg9-Leu8-bradykinin,

10 mM of the PI3 kinase inhibitor LY294002, 50 mM of the MEK/

MAPK inhibitor PD98059 following 0.5 mM NMDA application

or with 5 mM of the caspase 9 inhibitor-II Z-LEHD-FMK or 25 mM

of the GSK-3 inhibitor SB-216763 prior or following the addition of

NMDA. Before the determination of final PSs, the slices were

washed with ACSF for one hour to eliminate lingering drugs and

any short-living drug effects.

Data collection and analysis
The areas of PSs were acquired using a GRASSHP5 series AC –

pre-amplifier and analyzed with the Labman program (gift from

Dr. T.J. Teyler, WWAMI Medical Education Program, University

of Idaho, Moscow, ID). The data were statistically analyzed with

SigmaStat v11 (SPSS, Chicago, IL). One-way analysis of variance

(ANOVA) followed by the Student-Newman-Keuls test was used

whenever the data were distributed normally. In some experi-

ments, a large proportion of slices treated with NMDA had zero

recovery and the data failed the normality test. In these cases, the

less powerful nonparametric Kruskal-Wallis one-way ANOVA on

ranks was used followed by the Dunn’s test.

Supporting Information

Figure S1 Representative traces of population spikes
obtained following application of NMDA or NMDA in the
presence of BK and/or inhibitors of BK-induced signal-
ing pathways. Synaptically elicited population spikes (PSs) were

recorded in the stratum pyramidale region of hippocampal slices

prior and following application of NMDA or NMDA in the

presence of BK and/or inhibitors of BK-induced signaling pa-

thways as detailed in the Methods’ section. (A.) A control slice

treated only with ACSF, followed by application of 0.5 mM

NMDA alone (B), or with 0.5 mM NMDA in the presence of

1 mM BK (C) or 10 nM BK (D), 10 nM BK and 100 nM HOE-

140 (B2BKR antagonist) (E), 10 nM BK and 10 mM LY294002

(PI3-kinase inhibitor) (F), or with 10 nM BK and 50 mM PD98059

(MEK/MAPK inhibitor) (G).

(TIF)
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