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Abstract

Bisphenol A (BPA) is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns
have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low
BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal
mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males
engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations
and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while
sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between
control and BPA females. We examined brains from embryos during late gestation to determine if gene expression
differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA
treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA
mediated effects. We also selected this embryonic age (E18.5) because it coincides with the onset of sexual differentiation of
the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains.
Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We
propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social
interactions are affected by BPA and in particular this compound modifies behavior in females.
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Introduction

Bisphenol A (BPA) is a synthetic monomer used to manufacture

polycarbonate plastics (i.e. food and water containers) and epoxy

resins (i.e. canned food linings). Exposure to this chemical is fairly

ubiquitous; as it has been detected in urine in 90% of all humans

sampled [1]. BPA is detectable in maternal and fetal plasma in

ranges from 0.3 to 18.9 and 0 to 9.2 ng/ml respectively [2].

Several countries have banned BPA in production of new products

based on findings from animal studies that suggest BPA can affect

the development of prostate, brain and behavior [3,4,5,6,7].

Neonatal treatment with BPA in general reduces sex differences in

the brain and can modify neurite and dendrite formation

[3,8,9,10,11]. Pre- and/or peri-natal exposure to BPA in rodents

is associated with cognitive impairments and decreased explora-

tion in a novel environment [12,13,14]. BPA can also influence

social interactions and anxiety in rodents [7,15,16,17]. In

cynomolgus monkeys, prenatal BPA exposure in male offspring

is correlated with increased outward looking and exploration, and

it affects behavior of the mothers [18]. In humans, a positive

association between gestational levels of BPA in mothers and

externalizing (hyperactivity and aggression) behaviors in 2 year old

girls has been reported [19]. This convergence of data demon-

strates that BPA exposure during gestation affects the brain and a

number of behaviors in several mammalian species.

Steroid hormones organize sex differences in the brain during

neonatal development [20,21]. BPA has steroid-like properties and

binds to both estrogen receptors (ERa, ERb) with low affinity

[22,23]. It also binds the estrogen membrane receptor (GPER) with

high affinity [23] as well as androgen and thyroid receptors

[24,25,26,27]. Many authors have suggested that BPA exposure

disrupts sexually dimorphic brain development and behaviors via its

actions on the steroid receptors [9,11,28]. In addition to steroid-

related effects, BPA may have even more global actions as it can act

to alter DNA methylation [29]. Dysregulation of DNA methylation

during these critical developmental windows could disrupt the

normal progression of brain and endocrine system development

causing robust changes in the developing embryo that can persist

into adulthood or even beyond if effects extend to germ cells [30]. In

addition, these two mechanisms may act synergistically, as DNA

methyltransferases have been shown to have a number of

interactions with estrogen receptors, particularly with ER ß [31].

In this set of studies we exposed female mice to a low dose of

BPA mixed into food pellets. We validated our dose by measuring
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BPA concentrations in blood from pregnant dams consuming the

diet. We assessed social interactions in juveniles gestated on

control or BPA containing diets. We are interested in this period

because, in humans it is a time when many neurodevelopmental

disorders that have a social behavior component, are first detected.

Moreover, many such disorders are skewed in their expression

toward males, one well known example is Autism Spectrum

Disorder (ASD) which is four times more prevalent in boys than in

girls [32]. Because sexual differentiation of the hypothalamus

begins in late gestation, we collected embryos on embryonic day

18.5 (E18.5) to assess differences in gene expression of candidate

genes in control versus BPA exposed brains. We assessed gene

expression with qPCR for the known estrogen receptors, DNA

methyltransferases, and several genes related to glutamate and

GABA transmission that have been identified as potential BPA

targets in other studies [33]. Finally we examined mRNA for the

oxytocin receptor because it has been implicated in a variety of

social behaviors [34,35].

Methods

Animals
All procedures were conducted in compliance with the University

of Virginia Animal Use and Care Committee and in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of Health.

All mice were housed on a 12:12 light (lights off at 1300 EST). Adult

female C57BL/6J (B6) mice were randomly assigned to one of two

groups and placed on either a phytoestrogen-free chow (n = 11;

Harlan Teklad, TD95092) or the same chow supplemented with

1.25 mg BPA per kg diet (n = 12; Harlan Teklad, TD09710). All

females consumed their assigned diets (food and water) ad libitum.

Over the last 10 days of gestation dams ingest about 4 grams daily of

this type of chow [16]. At this dose of BPA we calculate intake to be

roughly 5 mg of BPA daily. The US EPA lowest observed adverse

effect level (LOAEL) for humans is 50 mg/kg/day [36]. To

determine the maximum concentration believed to be safe, even

for daily exposure, the EPA divides this dose by a 1,000-fold safety

factor (50 mg/kg/day). Thus, a 150 pound (68 kg) pregnant woman

could ‘‘safely’’ consume 3.4 mg BPA per day and our dose is 680

times lower than the LOAEL.

For embryo collection females were placed on one of the two diets

as above. After one week on the diets, males were added to each

cage with a single female, and every morning we checked for plugs.

The day a plug was discovered was designated E0.5 and when a

plug was noted the male cage mate was removed. Pregnant females

were collected in the morning on E18.5, rapidly sacrificed with

isoflurane and embryos extracted. Embryo brains were collected

quickly and frozen on dry ice. Embryos were sexed by PCR [37]

and we limited our use to embryos positioned in utero next to at least

one male littermate to reduce any potential variation caused by

intrauterine position [38]. We collected brains from 10 litters for use

in this experiment (BPA n = 5, Control n = 5).

For the behavioral studies females were placed on one of the

two diets and paired with a male as described above. Males

remained with the females for seven days. Within 12 hours after

birth all pups (from control and BPA consuming dams) were

fostered to another dam that had delivered pups within the past

24 hours and was consuming the control diet. We did this to limit

offspring exposure to BPA to the gestational period and because

differences in maternal behavior caused by BPA might affect

behavior [16,39]. Foster dams (n = 20) had mixed litters of their

biological, same-age pups (not in the study), and fostered pups. For

identification purposes we randomly clipped tail tips of either the

biological or foster pups at the time of fostering. All pups (BPA:

n = 39; 18 females and 21 males, control: n = 28; 13 females and

15 males) remained with their dams until post natal (PN) 21, at

which time they were group housed by litter and sex and tested for

behaviors (see below).

BPA assay
Pregnant dams, on gestation day 18.5, consuming control

(n = 3) or BPA-supplemented diet (n = 4) were anesthetized with

isoflurane and blood was collected by cardiac puncture, spun and

serum frozen. Pooled sets of serum samples (,0.3–0.8 ml) were

aliquoted into glass tubes and spiked with an internal standard and

extracted twice with methyl tert-butyl ether (Fisher Scientific,

Pittsburgh, PA). The ether extracts were dried in glass tubes under

nitrogen and reconstituted in 60:40 methanol:water. Unconjugat-

ed (free) BPA was measured by HPLC with an ESA CoulArray

5600 detector. Separation was performed on a reverse-phase

250 mm Prodigy C18 column (Phenomenex), with a mobile phase

of 36:24:40 acetonitrile: methanol: 0.05 M sodium acetate buffer

(pH 4.8), and with the CoulArray cell potentials set at 325, 400,

720 and 875 mV. Bisphenol A (Sigma, St. Louis, MO) was used as

the internal standard. Quantitation was made against standard

curves of both analytes, and extraction efficiency was assessed

from recovery of the internal standard, which averaged over 95%.

The limit of detection (LOD) for BPA in serum by these methods

was 0.5 ng/ml based on extraction of 0.5 ml of serum, and values

below this level were estimated by extrapolation of the standard

curve to zero. BPA was not detected by HPLC in either the assay

blanks or in the solvent blanks used in the standard curve, nor in

the tubes used to collect blood and store serum. Solvents and water

used in the assay were HPLC grade, and previously tested negative

for BPA. Use of plastic in the assay was limited to pipet tips

(previously established not to leach BPA).

Behavior Tests
Habituation and behavior tests were conducted in the dark

(between 1300 and 1800 hours) under red light. Behaviors were

recorded and later scored by an observer blind to sex and

treatment group.

Juvenile social interactions. On PN20, the day before

weaning, mice were singly housed in a novel standard mouse cage,

with bedding but no food or water, for 1 hour to habituate to this

novel environment. After habituation, mice were returned to their

home cages with their siblings and dam. On PN21 mice were

again habituated to the test room in a clean standard mouse cage

for 1 hour then placed into another clean cage with a same age,

sex and treatment mouse from another litter. Social interactions

were recorded for both mice for 30 minutes. Mice were evaluated

for a number of social and non-social behaviors using Noldus

Observer (5.0) software (Noldus, Leesburg, VA, USA). Details on

our methods and scoring are published [40,41]. The social

behavior categories included total amount of time spent

displaying; side-by-side sitting, grooming their partners or

engaged in side-by-side non-grooming interactions (including

digging or manipulating bedding). Non-social behaviors

consisted of time spent exploring the cage, self-grooming, and

sitting alone. Some behaviors are of short duration, and thus it is

more appropriate to score their frequencies. The frequencies of

interactive behaviors we recorded included acts of nose-to-nose or

anogenital sniffing, crawling over or under the other mouse,

pushing the other mouse, approaching the other mouse head-on

and following the other mouse. After these interactions mice were

housed singly for the duration of the behavioral testing schedule.

Low Dose BPA Genes and Behavior
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Elevated plus maze. On PN22, each mouse was tested on

the elevated plus maze as previously described [42]. Behavior was

recorded for 10 minutes. The total time spent in the closed and

open arms and the numbers of crosses through the middle were

scored. Time spent in the middle of the maze was calculated based

on the total duration of the test less the time in the two arms. The

open arm was subdivided into proximal and distal halves and time

in each was recorded.

Social preference tests. On PN24, mice were habituated to a

testing room for one hour then placed into the center section of a

three-chambered Plexiglas box (76.2 cm 6 26.67 cm 6 17.78 cm),

divided by black Plexiglas walls and backed by black Plexiglas so that

the center section was darkened on 3 sides with 2 openings leading to

the outer chambers each containing a small metal cylinder with a

round top (10.16 cm diam. 6 13.97 cm) and vertical bars (spaced

1 cm apart), hereafter referred to as a ‘‘jail cell’’. Mice were habituated

to the test box in the center section with both doors closed for 10

minutes. After 10 minutes the doors were opened and the mouse was

allowed to freely explore all three chambers for an additional 10

minutes. Mice were once again closed into the center section and a

novel adult male was randomly placed in one of the jail cells. The use

of an adult male is based on work by others in the field [43,44]. The

doors were opened to allow mice to explore all three chambers and

data were collected for 10 minutes. The time spent in each chamber,

the time spent sniffing each jail cell, and the numbers of entries into

each side were all scored by an observer blind to sex and treatment

group (adapted from [43,44] and described in detail [16].

Quantitative real time PCR
Total RNA was isolated from the brain tissue of male and

female embryos (E18.5; n = 5–6/group) from dams given control

or BPA-supplemented diet. cDNA was generated from 500 ng of

total RNA by reverse transcription with iScript cDNA kit (Bio-

Rad). Real time PCR was performed using the iCycler iQTM

System (Bio-Rad) according to the manufacturer’s instructions for

TaqMan and SYBR Green based detection. Samples were run in

quadruplicates in either one or two plates. The average of the four

replicates was used for data analysis. TaqMan probes for Esr1,

Esr2, Gper, Oxtr and B2M (control gene) were obtained from

Applied Biosystems (Carlsbad, CA). SYBR Green primers were

designed for Gria1, Grin2a, Grin2b, Dnmt1, Dnmt3a, Dnmt3b, Slc1a1

and ß-actin (control gene). Primer sequences for these genes can be

found in Table 1. Quantification of candidate gene expression

levels was calculated based on the threshold cycle (Ct) for each well

using the provided software and normalized to B2M for TaqMan

assays and ß-actin for SYBR Green assays as endogenous controls.

Statistical analysis
All data were analyzed using NCSS (2001). For behavioral data, we

used two-way ANOVA with sex and diet as factors. Significant results

were assessed by Fisher Exact post-hoc tests that adjust significance

levels to take multiple comparisons into account. For gene expression

data, normalized gene expression was calculated using the delta-delta

Ct method [45]. We used two-way ANOVA with sex and diet as

factors and significant results were assessed by Fisher’s post hoc tests

with Bonferroni’s corrections for multiple comparisons.

Results

Plasma levels of BPA comparable to human exposure
levels

Supplementing phytoestrogen-free chow with a low dose of BPA

(1.25 mg per kg diet), increased blood BPA levels in gestating dams.

Serum BPA levels in pregnant dams on control phytoestrogen-free

diet was barely detectible at 0.09960.014 ng/ml (n = 3). However,

serum BPA levels in dams fed 1.25 mg/kg BPA supplemented

phytoestrogen-free diet were four fold higher at 0.4360.002 ng/ml

(n = 2). Thus this dose produces BPA exposure well within the range

detected in human maternal blood, 0.3 to 18.9 ng/ml [2].

Gestational BPA exposure affects social interactions
particularly in females

Several of the behaviors observed were sexually dimorphic. In

general, males spent more time engaging in non-social behaviors,

while females spent more time in social contact. Males spent more

time exploring the cage and sitting alone (F1,63 = 6.8, 4.91,

respectively p,0.05 at least) as compared to females. In contrast,

females spent more time sitting side-by-side than did males

(F1,63 = 3.92, p = 0.05, Figure 1 and Table 2).

Interactions between diet and sex were noted for several other

behaviors and in all cases the interactions were caused by differences

between BPA and control females. Side-by-side interactions that did

not include grooming (F1,63 = 8.13, p,0.006) were exhibited for a

longer duration by BPA exposed females as compared to the control

females (p,0.05). An example of this behavior is sitting together in a

corner and sifting through the bedding. An interaction in the

numbers of times one mouse followed its partner was found

(F1,63 = 5.01, p,0.03). Again, BPA treated females performed

following more often than control females (p,0.05). Lastly, self-

grooming also showed an interaction (F1,63 = 5.51, p,0.02) caused

by differences between BPA and control females. Of interest this

non-social behavior was exhibited for a longer time by control than

BPA treated females. In general these results suggest that BPA

treated females are more interactive than controls.

Diet affected the frequencies of nose-to-nose contacts, and

numbers of approaches. For both of these contact behaviors mice

exposed to BPA displayed more than controls (F1,63 = 3.99, 3.82

respectively; p,0.05). No differences were noticed in the duration of

time spent grooming the partner, ano-genital sniffing, crawling and

pushing. These behaviors were also exhibited in very low amounts.

Table 1. Primer Sequences for SYBR Green qPCR assays.

Primer Sequence
Primer
Efficiency

ßactin Forward GCCACCAGTTCGCCATGGAT 103%

ß actin Reverse TCTGGGCCTCGTCACCCACATA

Dnmt1 Forward CCGCAGGCGGCTCAAAGACTT 99%

Dnmt1 Reverse GCTCCCGTTGGCGGGACAAC

Dnmt3a Reverse CTGGAAGGTGAGTCTTGGCA 89%

Dnmt3a Forward GAGGGAACTGAGACCCCAC

Dnmt3b Forward AGCGGGTATGAGGAGTGCAT 103%

Dnmt3b Reverse GGGAGCATCCTTCGTGTCTG

Gria1 Forward TCCACTAGACCACCATCCCTTTTGT 91%

Gria1 Reverse ACAGAGCCTGCAAACCATGGGT

Grin2a Forward TGGTATTGCCGGCCCTTCTGGT 85%

Grin2a Reverse TCACGTCGTGGCTGTGACCCA

Grin2b Forward TTCTATCCCCGGCATCCAGCG 110%

Grin2b Reverse CGTGGAGCGTGGTCATTCCCA

Slc1a1 Forward ATGTCAATGGGGGCTTCGCGG 100%

Slc1a1 Reverse AGATGGCTCCTGTGGAGACGCC

doi:10.1371/journal.pone.0025448.t001
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BPA did not affect social preferences or anxiety in
juveniles

Social preference in this task was sexually dimorphic in the

juvenile mice. Investigation of an adult C57BL/6J male was

greater in males as compared with females (F1,66 = 4.43, p,0.05)

and no activity differences were detected as the number of times

that mice crossed between the three sections of the test box did not

vary by group (Table 3). Gestational exposure to BPA did not

affect social preference for the stimulus animal, nor did it alter the

sexual dimorphism observed in controls. Anxiety, assessed in the

Figure 1. Mean +/- SEM behaviors displayed during a reciprocal social interaction task. Juvenile male and female mice were exposed to
control (phytoestrogen-free chow, black histograms, n = 15 males and n = 13 females) or BPA supplemented chow (gray histograms, n = 21 males and
n = 18 females) during gestation. A) Total amount of time in seconds spent exploring the cage. B) Duration of side by side sitting (seconds). C)
Amount of time spent self grooming (seconds). D) Duration of side by side interactions (seconds). * Sex effect; males are significantly different from
females, p,0.05. # Significantly different from control females, p,0.05.
doi:10.1371/journal.pone.0025448.g001

Table 2. Mean +/2 SEM time spent (in seconds) or frequencies of different types of behavior in a 30- minute social interaction
test.

Control Male n = 15 BPA Male n = 21 Control Female n = 13 BPA Female n = 18

Groom partner (s) 31.269.9 17.869.8 27.6613.0 20.264.5

Side by Side Sitting (s) 698.9678.0 621.8678.6 917.56110.3 ! 750.1684.7 !

Side by Side behaviors
other than grooming (s)

557.16 40.5 457.1645.9 394.76 53.3 599.0663.4 *

Self Groom (s) 87.1617.6 118.5620.8 166.0649.4 74.1616.7 *

Sit Alone (s) 12.0612.0 ! 66.1626.1 ! 10.469.3 0.060.0

Explore (s) 389.2649.7 ! 500.5648.9 ! 283.2679.8 335.5644.5

Anogenital Sniff 0.160.1 0.360.1 0.160.1 0.260.1

Nose-Nose Sniff 1.960.4 3.160.6 # 1.760.5 2.760.6 #

Crawl 1.160.3 0.960.3 0.760.3 1.260.4

Follow other animal 0.6760.23 0.3360.12 0.2360.12 0.8960.31 *

Push 0.260.1 0.560.2 0.260.1 0.260.1

Approach 3.260.5 4.260.7 # 2.860.7 4.960.9 #

! Significant effect of sex p,0.05,
* Significantly different from the same sex control p,0.05,
# Significant effect of diet p,0.05.
doi:10.1371/journal.pone.0025448.t002
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elevated plus maze, did not differ between the groups. The time

spent in the open arms, closed arms and the number of crosses

between arms were similar in all groups (Table 4).

BPA exposure affects gene expression
Two very interesting candidate genes were affected by diet and

sex. Expression of the glutamate transporter, Scl1a1, was sexually

dimorphic (F1,18 = 4.58, p,0.05) with females having higher

mRNA than males, and a significant interaction between diet

and sex (F1,18 = 5.84, p,0.04, Figure 2) was noted. The

interaction was caused by the female BPA group, which had

higher expression levels than any other groups. Expression of the

oxytocin receptor indicated a trend for an interaction (F1,18 = 4.14,

p = 0.06; Figure 2). This trend was caused by the BPA male group,

which had significantly less Oxtr mRNA than any other group

(p,0.05, Figure 2).

BPA can bind estrogen receptors and also affects methylation of

DNA. We examined expression of three estrogen receptor genes,

Esr1, Esr2, and Gper; none of which was impacted by diet or sex

(Table 5). We also quantified mRNA for the three DNA

methytransferase genes; Dnmt1, Dnmt3a and Dnmt3b. Both Dnmt1

and Dnmt3a genes were responsive to diet and/or sex. BPA

exposure increased expression of Dnmt3a as main effects of diet

were observed (F1,18 = 5.13, p,0.04). At embryonic day 18.5,

Dnmt3a expression was also sexually dimorphic (F1,18 = 5.49,

p,0.04) with males having more mRNA than females. Dnmt1

expression exhibited a trend for interaction between sex and diet

(F1,18 = 3.68, p,0.07) produced by a lowest amount of mRNA in

brains of BPA exposed females as compared with all other groups

(p,0.05, Figure 2). Expression of GluR1, Grin2a and Grin2b were

not influenced by sex or diet (Table 5).

Discussion

Our goal was to assess the effects of BPA on several behaviors in

juvenile mice using a very low dose of BPA, within a range

comparable to humans. We also limited exposure to the

gestational period when most neural development occurs. We

did so not only to limit the exposure time but also to remove the

complicating effects that BPA may have on maternal behavior

[16,39]. Thus by fostering all pups to dams on control diet, we

control for the potential contribution of differences in maternal

care. Needless to say fostering introduces a new set of issues, which

we controlled for here by fostering all the animals used in the

experiments. Incorporating BPA in chow we produced tonic levels

in mouse dams comparable to humans and we assume these were

also achieved in the embryos. BPA readily crosses the placenta

[46,47], exposing fetal tissues to concentrations close to those in

maternal placenta [48]. Furthermore, in its inactivate conjugated

form, BPA, can be unconjugated and re-activated in the fetus [47].

Thus, our dosing method is a highly relevant for studying the

effects of gestational BPA exposure and subsequent behavioral and

genomic profiles. Using a dose well below the LOAEL, given only

during gestation, we detected several effects of BPA in diet on

juvenile social behaviors as well as embryonic gene expression in

whole brain, which may underlie the observed behavioral effects.

Our most striking findings were in females exposed to BPA

during a juvenile dyadic social interaction task. This is an ‘‘open-

ended’’ task used to identify social, non-social, play-soliciting and

investigative behaviors between pairs of mice of the same sex and

age [40,41]. BPA exposed females displayed increased social

interactions. They engaged in more side-by-side interactions and

followed each other more than pairs of control females. They also

displayed less self grooming, a non-social behavior. Moreover, in

two other measures of partner interactions; nose-to-nose investiga-

tions and approaches, BPA treated animals were more gregarious

than controls. Together, these results suggest that gestational

exposure to BPA in female mice increases social investigations

and interactions. BPA exposure, particularly when restricted to

critical brain developmental periods, alters the sexually dimorphic

brain and in certain behaviors, females appear to be more sensitive

to the effects of BPA. For example, BPA exposure decreased the

number of tyrosine hydroxylase (TH) positive cells in females,

eliminating the sexual dimorphism in the anteroventral periven-

tricular region of the hypothalamus [11]. Females exposed to BPA

during the period of brain sexual differentiation were less reactive

and explored a novel environment less than control females [49].

Amphetamine-induced conditioned place preference is also dis-

rupted in female mice exposed to BPA during gestation while males

displayed no change in place preference [50]. In rats, BPA exposure

at various time points during gestation and after birth affects

juvenile social behaviors. In juvenile females, BPA increased both

non-social and social investigation [15]. When tested with males,

juvenile females exposed to BPA exhibited reduced play and social

grooming. In a study comparing male and female rat juvenile social

behavior, BPA reduced social interest in both sexes but a lower dose

exposure increased social approach and interactions in females [17].

Our data add to these conclusions showing that in juvenile female

mice, even at very low doses, BPA in utero increases their display of

social interactions.

Interestingly in the present study, juvenile males were less social

than females, exhibiting higher levels of cage exploration and

sitting alone than did females. Females on the other hand spent

more time in side-by-side sitting than did males. Sex differences

have been reported in normal C57BL/6J juvenile mice tested in

the same manner reported here [41]. In that study, males engaged

in more social interactions, and females performed more play

soliciting. In CD-1 mice, on several tasks, BPA exposure reduced

Table 3. Mean +/- SEM time spent in one of three chambers in a 3-chambered preference test with an adult mouse stimulus
animal.

Sociability Score Time with Mouse (s) Time in Empty (s) Time in Center (s)

Control Male n = 15 140.5640.7 * 321.0626.5 * 180.5618.2 98.4620.3

BPA Male n = 21 51.6644.0 * 252.2628.5 * 200.6619.0 143.7620.8

Control Female n = 13 15.2655.1 245.4629.3 230.2629.9 124.3621.3

BPA Female n = 18 -0.8630.8 212.1621.9 213.0620.2 177.2630.8

Sociability Score = time with mouse minus time in empty.
*Effect of sex, p,0.05.
doi:10.1371/journal.pone.0025448.t003
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the sex differences observed in controls [49]. Several procedural

differences between these studies likely cause the variation in

results. In the present studies, all mice were reared on a

phytoestrogen-free chow, as opposed to normal rodent chow

containing phytoestrogens. Phytoestrogens in chow can enhance

sex differences in the brain and in behavior [51,52,53,54,55].

Second, mice in the present study were fostered at birth and we

cannot exclude the possibility that fostering may have as yet

unidentified effects which alter the display of sex differences. The

few studies directly assessing the effects of fostering on maternal

rearing behavior have conflicting results [56,57] but raise the

possibility that C57BL/6J dams may lick and/or groom the

fostered pups more than their biological pups.

In a preference task, juvenile males spent more than 50% of

their time in the chamber with an adult male mouse instead of the

empty chamber. Exposure to BPA at the current dose did not

significantly alter these behaviors. However a 40-fold higher BPA

dose decreased male social preference in the identical task [16].

Likewise we did not find any effects of sex or BPA on elevated plus

maze behavior in the current study. Yet again, exposure to the 40-

fold higher BPA dose decreased time in the middle, increased time

in the closed arm, and tended to decrease time in the outer most

portion of the open arm [16], indicating that BPA at this high dose

increased anxiety-related behaviors in the plus maze. These data

demonstrate that different juvenile behaviors are affected by

different doses of BPA.

There are several potential mechanisms underlying the sex-

specific behavioral responses to BPA exposure. Males, but not

females, experience a surge of testosterone (and estradiol) during

the last few days of gestation [52]. Thus endogenous estrogens may

Table 4. Mean +/2 SEM time spent in different sections of the elevated plus maze during a 10 minute test.

Open (s) Distal Open (s) Closed (s) Center (s) # Crosses

Control Male n = 15 78.965 36.663 399.8612 121.4610 23.862

BPA Male n = 21 75.566 34.464 407.7612 116.869 23.161

Control Female n = 13 80.0615 33.568 410.9623 109.1611 22.863

BPA Female n = 18 77.968 33.964 409.8615 112.269 22.762

No significant differences were found in any anxiety phenotype in juvenile mice exposed to BPA.
doi:10.1371/journal.pone.0025448.t004

Figure 2. Mean +/- SEM mRNA expression measured with qPCR in embryonic day 18.5 brain relative to control males and
normalized to beta-2 microglobulin or beta-actin (n = 5–6/group). Black bars indicate groups exposed to control, phytoestrogen-free diet.
Gray bars indicate groups exposed to BPA during gestation. A) Oxytocin receptor (Oxtr). B) Neuronal glutamate transporter (Scl1a1). C) DNA
methlytransferase 1 (Dnmt1). D) DNA methyltransferase 3a (Dnmt3a). *Significantly different from all other groups, p,0.05.
doi:10.1371/journal.pone.0025448.g002
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out-compete BPA, for example, for estrogen receptor binding sites

in males but not in neonatal females that are not experiencing an

endogenous hormone surge. Another possibility is that genes on

sex chromosomes may interact with BPA [58]. Our embryonic

gene expression results tend to support the first potential

mechanism. We assayed expression levels of estrogen receptor

(ER) genes in E18.5 brains to ask if BPA would affect their

expression. We selected this embryonic age because it is when

brain sexual differentiation occurs under the influence of sex

differences in blood levels of testosterone and brain levels of

estrogens [21,52]. We hypothesized that if BPA acted via one or

more ER it might down regulate this receptor, perhaps in a

manner similar to the natural ligand. However, we found no

changes in any of the ER or putative ER genes based on BPA

exposure. This does not mean that BPA did not act as a direct

ligand for one or more of the ERs. In fact it is likely that BPA did

influence ERa since the oxytocin receptor is an ERa target gene

and we noted changes in Oxtr mRNA [59,60]. In neonatal cortex,

estradiol hypermethylates ERa [61] and perhaps the same thing

occurs here, but, given that we assayed mRNA in whole brain and

ERa expression is not global we may have missed BPA induced

changes in expression.

Another mode of BPA action is via direct changes DNA

methylation [29]. We assayed the three known DNA methyl-

transferases, enzymes responsible for the deposition of methyl

groups onto cytosines when followed by a guanine. Dnmt3a, a gene

responsible for de novo methylation, was altered by BPA exposure

wherein the sex difference in control animals (male.females) was

not present in BPA exposed brains because BPA increased Dnmt3a

expression in females. Dnmt3a has been implicated in rewarding

behavior and neuronal plasticity in the adult mouse accumbens

[62]. Dnmt1 is the most abundant DNA methyltransferase and is

believed to be responsible for the maintenance of DNA

methylation. Interestingly, Dnmt1 gene was decreased by BPA in

female embryo brains and we speculate that the drop in this gene

might be related to the higher levels of Slc1a1 in these same brains.

In male mice, exposed to low doses of BPA that are probably

comparable to ours, mRNA for ERb and several of the NMDA

receptors were decreased in hippocampus at day 21 and 56 [33].

In addition in male rats, LTD and LTP were disrupted by a dose

of BPA higher than ours [63]. These effects were attributed to

functional alterations in dopamine, glutamatergic, and metabo-

tropic glutamate receptors, but in our study none of the genes we

assayed, related to the later two pathways, were affected by BPA.

Of course, our treatment period was shorter than theirs; in both

studies dams were placed on the BPA diet around E7 and pups

stayed on the diet through weaning. Moreover, we examined

mRNA at a different time point, but none of the three genes

(Gria1, Grin2a, Grin2b and Esr2) were affected by diet in our study.

Despite the lack of change in NMDA and AMPA receptors, the

largest gene expression effect was noted for Slc1a1, one of the

glutamate transporter genes, and interestingly its expression was

elevated in brains of females exposed to BPA. Slc1a1 is found

throughout the cortex, hippocampus and basal ganglia [64] and

functions to buffer local glutamate at excitatory synaptic

connections [65]. Behavioral characterization of the Slc1a1 null

mouse is not extensive but with age these animals appear to have

impairments in self-grooming and spatial learning [66]. In humans

single nucleotide polymorphisms (SNPs) within this gene have

been associated with repetitive behaviors and anxiety in children

with ASD [67], mental retardation [68] and obsessive compulsive

disorder [69,70,71,72]. The last candidate gene we examined, the

oxytocin receptor, has long been associated with the display of

social behavior in rodents [34]. A polymorphic region of the

oxytocin receptor (OXTR) in humans has been associated with

empathy and stress reactivity [73]. Additionally, many have

speculated that OXTR is involved with autism spectrum disorders.

Two genome wide association studies in autistics patients show

linkage associations to chromosomal region 3p25.3, which

contains OXTR [74,75]. Together, our findings that in utero

BPA exposure alters expression of Oxtr and Slc1a1 suggest a

potential mechanism through which early life exposure to BPA

can alter normal signaling in the brain and effect adult

neurological disorders such as the pathophysiologies associated

with ASD, obsessive compulsive disorder and mental retardation.
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