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Background. Canopy structure, which can be defined as the sum of the sizes, shapes and relative placements of the tree
crowns in a forest stand, is central to all aspects of forest ecology. But there is no accepted method for deriving canopy
structure from the sizes, species and biomechanical properties of the individual trees in a stand. Any such method must
capture the fact that trees are highly plastic in their growth, forming tessellating crown shapes that fill all or most of the
canopy space. Methodology/Principal Findings. We introduce a new, simple and rapidly-implemented model–the Ideal Tree
Distribution, ITD–with tree form (height allometry and crown shape), growth plasticity, and space-filling, at its core. The ITD
predicts the canopy status (in or out of canopy), crown depth, and total and exposed crown area of the trees in a stand, given
their species, sizes and potential crown shapes. We use maximum likelihood methods, in conjunction with data from over
100,000 trees taken from forests across the coterminous US, to estimate ITD model parameters for 250 North American tree
species. With only two free parameters per species–one aggregate parameter to describe crown shape, and one parameter to
set the so-called depth bias–the model captures between-species patterns in average canopy status, crown radius, and crown
depth, and within-species means of these metrics vs stem diameter. The model also predicts much of the variation in these
metrics for a tree of a given species and size, resulting solely from deterministic responses to variation in stand structure.
Conclusions/Significance. This new model, with parameters for US tree species, opens up new possibilities for
understanding and modeling forest dynamics at local and regional scales, and may provide a new way to interpret remote
sensing data of forest canopies, including LIDAR and aerial photography.
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INTRODUCTION
Forest canopy structure–which can be defined as the sum of the

sizes, shapes and relative placements of the tree crowns–is central

to all aspects of forest ecology and dynamics. On the one hand, the

canopy structure sets the light environment experienced by

individual trees, which is known to be a primary determinant of

their growth, mortality and fecundity ([1], [2], [3], [4]). These

rates are the determinants of the dynamics of species composition,

succession and coexistence ([5], [2]). On the other hand,

competition for canopy space drives the growth rates, densities,

and size distribution of canopy trees, and hence the dynamics of

carbon fluxes, carbon storage, timber yields and self-thinning (e.g.

[6] pages 213–258). Importantly, the canopy structure itself is set

by the sizes, shapes and positions of the crowns of the individual

trees. Therefore, canopy structure both determines, and is

determined by, interactions among individual trees, defining

a feedback that is central to any detailed understanding of forest

dynamics ([6] pages 195–398; [2]). Quite apart from its ecological

implications, the canopy is the boundary between the land surface

and the atmosphere, and so in vegetated regions its structure

determines surface properties such as albedo, canopy stomatal

conductance and surface roughness, which affect local and

regional climate ([7]; [8]; [9], [10]). And a detailed quantitative

understanding of canopy structure is required for applications as

diverse as estimating regional biogenic VOC emissions ([11]) and

remote sensing of forest structure (e.g.[12]).

There is currently no accepted method for scaling from the

properties of individual trees to canopy structure. How does the

density, size distribution, species, and allometry of the individual

trees, determine which trees are in the canopy, the distribution of

canopy heights, and the distribution of the total and exposed

crown areas? And therefore, how sensitive is canopy structure–and

hence forest ecology and dynamics, and forest ecosystem function–

to changes in the vital demographic rates of growth, mortality, and

recruitment, or to changes in disturbance rates?

The key challenge for any such model is to reconcile the fact

that the dimensions and shapes of individual trees are highly

correlated with size and species (e.g. see [13]), with the fact that

trees are extremely plastic and opportunistic in their growth ([14],

[15], [16], [17]). Because of this growth plasticity, canopy trees

form complex, irregular, tessellating crowns, that usually do not

grow into each other, and that tend to fill most or all of the canopy

space (e.g. [18]); whilst maintaining marked size-and species-

dependent patterns.
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Plasticity is acknowledged to be important in forest ecology

([17]) and in plant ecology in general ([19]), but it has been

included in spatial modeling of plant communities only rarely

([20], [21], [22], [23]). Previous approaches to simulating growth

plasticity in the context of canopy structure range from simple to

highly complex. Forest gap models ([5], [2], [24]) have opted for

the simplest approach, assuming no growth plasticity at all. Thus,

in these models trees adopt a rigid 3D crown shape that depends

on the species and size of the individual, but does not respond to

neighbors in any way. But this leads to predictions of canopy

structure that contradict observations. For example, the model

SORTIE ([2], [24]) reproduces the species composition of

northeast US old-growth stands quite well, but for the same

forests it predicts extensive interdigitation between adjacent

crowns, and too much open space in the canopy. Some

modifications to the rigid crown model have been made, by

allowing species to alter the position of a rigid crown in relation to

the stem base in response to neighbors ([21]), or adjusting the

shape of a fixed crown area ([25]). These approaches require a high

level of model complexity, but despite this they are not sufficient to

capture the combination of plastic crown sizes, irregularity, and

space-filling that characterizes real canopies.

Distinct from the forest gap models, some models in the forestry

literature have included an explicit consideration of growth

plasticity in crown size and shape. The simplest of these models

(the Shell model:[26], [27]) allows for only one form of growth

plasticity: dropping shaded foliage. The inclusion of this behavior

makes the Shell model considerably more realistic than models

with the rigid crown assumption, especially because it guarantees

a perfectly filled canopy. But it also makes the Shell model orders

of magnitude more computationally intensive, and therefore

impractical for long-term or large-scale modeling (a similar level

of computational intensity is required by the methods outlined in

[21] and [25]). An alternative class of models simulates growth at

the level of the branch, rather than the individual tree (e.g. [20],

[28]), but these models are more complex still.

In this paper, we introduce a simple individual-based model of

canopy structure–the ideal tree distribution model, ITD–with tree

form (height and crown shape), growth plasticity, and space-filling,

at its core. The model is based around assumptions of

opportunistic growth and optimal foraging, hence the reference

to the ideal free distribution IFD ([29]). Taking a limit of perfect

plasticity makes the ITD spatially implicit, meaning that although

it is derived from a consideration of spatial processes, it can be

implemented without any information on the spatial locations of

individuals. This means that the ITD can be implemented

extremely rapidly, allowing for parameter estimation using

inversion methods, as is done here. We use measurements of

crown size and shape from over 100,000 individual trees to

parameterize the model for 250 North American tree species. We

compare the predictions of the fitted model to the data, and find

that the model captures the key patterns of inter- and intraspecific

variation in crown size and shape exhibited in the various forest

types of the region.

The analysis presented here is the first of a group utilizing the

ITD model. Strigul et al. (in review) gives the theoretical

foundation for the ITD, showing how it can be derived from the

Shell model ([26], [27]); explaining mathematically how it leads to

a set of so-called macroscopic equations which can be derived

explicitly from the properties of trees of different species, to the

dynamics of stands; and solved analytically for equilibrium and

select transient behaviours. An additional theory paper (Adams et

al. in review) uses the macroscopic equations from Strigul et al. (in

review) to explore the dynamics of species invasion, giving the

conditions necessary for coexistence, founder control, species

dominance, and neutrality, in terms of the life history and

biomechanical parameters of the competing species. Purves et al.

(unpublished) uses a large forest inventory database for the Lake

States of the eastern US to estimate these parameters for different

species on different soils, showing that the macroscopic equations,

and the analytical results in Adams et al. (in review), can give

accurate predictions for the 100-year dynamics of biomass, size

distribution and species composition, and their dependencies on

soil. The fact that these results were made possible by the ITD is

further evidence of the importance of canopy structure to forest

dynamics.

METHODS

Definition of canopy structure
The canopy structure of a stand of trees can be defined as the sum

of the sizes, shapes and spatial arrangement of the individual

crowns. These sizes, shapes, and positions, and hence canopy

structure itself, are often highly complex, and are likely to depend

on many additional details not considered here. We focus on three

readily-observed features of an individual tree’s crown with

immediate functional significance. First, a tree crown is either in

the canopy (i.e. at least some of the crown has no other tree’s

branches above it) or in the understory (i.e., it can only receive

light that has passed through the crown of another tree). We refer

to this division as canopy status (in or out of the canopy implying

canopy status = 1 or 0 respectively). Second, each crown has

a projection area (hereafter crown area), defined as the area of

ground lying directly underneath the crown (hereafter, we work

with crown radius, defined as the radius of a circle with the same

area as the crown area). Some or all of this crown area is exposed

(exposed crown area, ECA). Third, each crown has a crown depth,

defined as the vertical distance between the top of the crown and

the lowest living foliage. For the purposes of the analysis presented

here, we consider the canopy structure of a stand q to consist of the

canopy status for every tree in q, together with the crown areas and

crown depths of those trees in the canopy. The aim of this analysis

is to find a simple model that predicts these metrics for each tree in

a stand, given the size and species identity of all trees in the stand.

Model description
Our canopy model, which we refer to as the ideal tree distribution

model, is described in detail in Appendix S1. The central

assumptions behind the ITD are that (1) the total of the exposed

crown areas of the canopy trees in a stand, is logically constrained

to be less than or equal to the ground area; (2) if trees are

sufficiently plastic in their growth, there should also be no unused

canopy space, such that the total of the exposed crown areas is

exactly equal to the ground area; (3) competition for canopy space is

fundamentally height-structured, such that for any stand at any

time, there is a critical canopy height Z* such that any foliage above

Z* is in the canopy, with all other foliage in the understory.

Then, all that is needed is to solve for the value of Z* that makes

condition (2) true. Given the value of Z*, the canopy status of an

individual tree i is set: if i is taller than Z* it has some exposed

foliage, it which it case it can is classified as a canopy tree (canopy

status = 1: see above). Otherwise i has no exposed foliage, and can

be classified as an understory tree (canopy status = 0). For canopy

trees, the crown radius and crown depth are given by trimming the

potential crown (see below) at Z*+Vbias,j where Vbias,j a depth bias

specific to species j (see below).

The ITD is most easily understood for the special case where

the trees have perfectly flat-topped, disc-like crowns, and no depth
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bias. In this case, all that is necessary is to sum the potential crown

areas of the tallest tree, then the next tallest tree, and so on, until

this sum equals the ground area. The height of the last tree added

to the sum is Z*. All trees included in the sum up to this point (i.e.,

all trees at least as tall as Z*) are assigned to the canopy and given

a total, and exposed crown area, equal to their potential crown

area; whereas the remaining trees (i.e., trees shorter than Z*) are

assigned to the understory. This ‘flat top’ version of the ITD

retains the key feature of height-structured, density-dependent

competition for canopy space, and yet is simple enough to be open

to mathematical analysis solving for (for example) the equilibrium

Z* in monocultures, and the identity of the late-successional

dominant species (Strigul et al. in review; Adams et al. in review;

Purves et al. unpublished). Moreover, it gives accurate predictions

of canopy status in the tropical forest BCI (Bohlman unpublished).

However, here we consider the general version of the ITD, where

the crowns can take an arbitrary shape and species can exhibit

a depth bias. This version performs better than the flat top version

in predicting canopy status and crown dimensions in eastern US

forests (comparison not shown), albeit it at the cost of analytical

tractability in the context of a dynamic model.

To understand the general version of the ITD, assume that each

tree has a potential crown, defined as the shell of foliage that it

would adopt if there were no competition with neighboring trees.

The potential crown for tree i is a function Ri(Z), which describes

the crown projection radius of a tree’s crown at height Z above the

ground, as a function of the species and size of the tree. This is

simply the radius of the circular shadow that the canopy would

project, with the sun directly overhead, on to a flat surface held at

height Z above the ground. For a tree with a conical crown shape,

this radius would be a linear function of the distance below the top

of the crown.

Second, assume that, given the value of the stand canopy height

Z*, each tree retains only that part of its potential crown that is

above Z*+Vbias,j, dropping all remaining foliage, where Vbias,j is

a species-specific depth bias. Under these assumptions, each

individual responds to its effective canopy height Z*+Vbias,j, but Z*

retains two absolute definitions: Z* is the height that any tree must

exceed to be classed as a canopy tree, and Z* is the height that any

foliage must exceed to count as exposed. Under this scheme, any

proposed value of Z* implies a value for the sum of the exposed

crown areas of all of the trees in the stand. This sum decreases

monotonically with increasing Z*, guaranteeing a unique value of

Z* that satisfies the condition that this sum is equal to the ground

area (see above). The value of Z* then sets the canopy status, total

and exposed crown area, and crown depth, of each tree.

Finally, it should be noted here that the ITD can be formally

derived from the Shell model (see Strigul et al. in review). This is

illustrated in Figure 1. In common with the ITD, the Shell model

assumes that each tree has a potential crown, and that trees retain

only that part that is not shaded by other trees. However, in the Shell

model, trees are given no flexibility in the horizontal placement of

their crowns, or the foliage within the crowns. This means that, in

effect, the canopy height Z varies across space, such that a tree of

a given species and size would be in the canopy if it was in one

location, but in the understory if it was in another location; and that

canopy trees can adopt irregular crowns, as they experience different

canopy heights Z with different neighbours (Fig. 1a). The different

values of Z must be calculated on a grid of locations, with a resolution

fine enough to capture the variation in the size and shape of

individual tree crowns (each parcel of space must be assigned to an

individual tree). Therefore the Shell model cannot be used with data

that lacks the spatial locations of trees (such as the FHM data used

here). And even where locations are available, the model is

computationally demanding to implement, making it unsuitable

for the kind of inverse parameterization used here.

But, with the inclusion of additional growth plasticity into the

Shell model, the spatial variation in Z approaches zero. Taking

Figure 1. The ITD model, which is spatially implicit, can be derived from the Shell model (a, b), a spatially explicit model that predicts canopy
structure from the size and species of individual trees in a stand ([26], [27], and see Strigul et al. in review). In the Shell model trees drop shaded
foliage, which trims the potential crowns (a) to produce a set of tessellating realized crowns with variable join heights Z (b). Under this scheme some
trees are predicted to have no crown area, corresponding to understory trees that must be dealt with separately (two smallest trees in figure). The ITD
model assumes that, through additional growth plasticity (e.g. angled trunks, as shown) all join heights Z become equal to a constant value Z* (c). The
version of the ITD model presented in this paper includes a species-specific depth bias Vbias,j such that trees of species j trim their potential crowns at
an effective join height Ẑ = Z*+Vbias,j, illustrated in (d). With or without this bias, the value of Z* can be found rapidly, requiring orders of magnitude
fewer calculations than the spatially explicit Shell model. In (d) two canopy trees are drawn overlapping in the understory. The ITD makes the
assumption that growth plasticity is sufficient to avoid any such overlap, but it is spatially implicit and so does not specify how this would be
achieved in a given stand.
doi:10.1371/journal.pone.0000870.g001
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a limiting assumption of perfect plasticity then leads to ITD, which

assumes a single join height Z* for all locations in the stand.

FHM data
We parameterized and tested the ITD model against field

measurements of canopy status, crown radius, and crown depth,

taken from over 100,000 trees as part of the USDA Forest Health

Monitoring (FHM) inventory (see [30], [31]). The FHM data covers

the coterminous US. The data available at time of download

(November 2004) included two time periods (6 years up to and

including 1999, and 3 years post-1999). We extracted 6675 plots,

containing records for 147,995 living trees, from the pre-1999 data;

and 2353 plots, with 63,702 trees, from the post-1999 data. We

excluded plantation plots, and plots that were listed as overlapping

more than one stand. Within the FHM plots, data were collected

from 4 or more separate sampling points. Trees larger than 5 inches

dbh (i.e. 12.7 cm) were sampled from a radius of 7.32 m around

each point, with a radius of 2.1 m for trees 1–5 inches.

For each tree, a number of observations were provided in the

FHM, including species, stem diameter (dbh), crown class, and

crown ratio (see below for definitions of these measures). The pre-

1999 data provided, for trees larger than 5 inches (i.e. 12.7 cm), two

measures of crown projection diameter, but no observed height data.

For these data we generated a height value from a height-dbh

allometry (Appendix S2). The post-1999 data provided observed

heights for all trees, but no crown diameter measurements.

Observed canopy status Ui
(obs) ( = 1 if tree i has any foliage in the

canopy, and 0 otherwise) was generated from crown class, which

measures the position of a tree in the canopy. We set Ui
(obs) = 0

where crown class was 5 (‘overtopped’) and to 1 otherwise. For

each tree with crown diameter information (i.e. trees over 5 inches

dbh in the pre-1999 data), we calculated a value for observed

crown radius Ri
(obs)(m) from D(obs)

i,1 (m) and D(obs)
i,2 (m): D(obs)

i,1

referring to the largest available crown diameter; D(obs)
i,2 referring

to the diameter measured at 90u to D(obs)
i,1. We calculated

observed crown area ai
(obs) (m2) by assuming an elliptical shape:

a
(obs)
i ~p:(D(obs)

i,1 =2):(D(obs)
i,2 =2) ð1Þ

and calculated Ri
(obs) (m) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a

(obs)
i =p)

q
. Thus, Ri

(obs) is the radius

of a circle with the same area as the ellipse defined by D(obs)
i,1and

D(obs)
i,2. An observed crown depth Vi

(obs) was generated for each

tree by multiplying the height of the tree (observed, or from an

allometry) by the crown ratio recorded in the field (crown ratio is

defined as the length from the top of the crown to the lowest

foliage, divided by tree height).

Parameter estimation
We used maximum likelihood methods ([32]) to estimate species-

specific parameters for the ITD for 250 North American tree

species. At the center of the parameter estimation was a goodness-

of-fit criterion (in this case the log-likelihood) consisting of

a comparison of model predictions with observations for all

available canopy status, crown radius and crown depth data.

Parameter estimation consisted of adjusting parameters to

maximize this goodness-of-fit, with standard methods available

to estimate the uncertainty in each parameter (Appendix S3).

The predictions of the ITD model for a given stand are

determined by the height, potential crown shape, and depth bias,

of each individual in the stand (Fig. 1). Values of dbh and height

were available for each tree in the data (see above). Thus, the

parameters to be estimated consisted of those determining crown

shape–i.e. the parameters in the function Ri(Z) introduced above–

and the depth bias parameter Vbias,j. For crown shape, 4 parameters

were required to describe the potential crown shape of canopy

trees, with 2 more to describe understory crown dimensions

(Table 1). In addition to these 7 parameters, we required 3

statistical parameters to describe unaccounted-for variation in the

crown metrics (Table 1: Appendix S3). Thus, a straightforward fit

for the full parameter set (hereafter the full fit) required 10 free

parameters for each species, or 2500 free parameters in total.

The large number of parameters, the inclusion of rare species with

few data, and the need for parameter interpretation, motivated

a search for approaches with fewer free parameters. To this end we

developed the single-axis scheme, which reduces the interspecific

variation in crown shape parameters to variation in a single species-

specific trait score Tj, thus requiring only one free parameter per

species. The approach is similar to the way a PCA analysis reduces

multidimensional variation to a small number of axes. The scheme

can be applied to any analysis estimating multiple parameters for

multiple species, and can be extended to include multiple trait axes

(see Appendix S3). This parameter estimation scheme required only

two free parameters per species: Tj to set the potential crown shape

and statistical parameters, and the depth bias parameter Vbias,j. For

comparison, we also ran parameter estimations assuming a single

crown shape for all species, and/or a single value of Vbias,j for all

species, and compared the results with the full fit and the single-axis

fit using information criteria (Table 2).

Predicted-observed comparison
Once parameters had been estimated, a prediction for each of the

three crown metrics (canopy status, crown radius, crown depth) was

provided for each tree i in each inventory plot q, by implementing the

ITD model in combination with the data for that plot, using the

Table 1. Parameters used in the ITD model, and in parameter estimation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parameter

D0,j, D40,j Maximum potential crown radius (m) of a tree with dbh 0 cm, 40 cm, of tree of species j.

Mj Crown ratio at which the maximum radius is realized.

Bj Curvature of crown radius vs distance from top of tree (,1 gives convex; = 1 linear; .1 concave).

Rus,j Crown radius (m) of understory tree.

Vus,j Crown depth (m) of understory tree.

Tj Trait score (0–1) of species j (used in the single axis parameter estimation scheme).

Vbias,j Distance above Z* (m) of the base of the crown of trees of species j.

sj, rj , wj Statistical parameters describing variation in observed canopy status, crown radius, and crown depth, given model predictions.

doi:10.1371/journal.pone.0000870.t001..
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..
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estimated parameter values for the crown shape and depth bias

parameters (MLE estimates). For each species j, we calculated the

mean predicted, and mean observed, canopy status across all trees in

all plots, and the mean predicted, and mean observed, crown radius

and crown depth for canopy trees. In addition, within each species

we recorded the slopes from ordinary least squares (OLS) linear

regressions of predicted crown radius vs dbh, and observed crown

radius vs dbh (canopy trees only in both cases).

RESULTS

Alternative parameter estimation schemes
Parameter estimation schemes without species-specific crown

shapes, or without species-specific biases, were strongly rejected

by the analysis (Table 2). Both information criteria (AIC and BIC)

indicated that the ‘best’ statistical model in this case was the full fit,

which included 10 free parameters per species. However, we opt to

report the parameter estimates generated by using the single-axis

scheme for crown shape, in conjunction with species-specific

values for Vbias,j, requiring two free parameters per species. This

choice was made for three reasons. First, examination of the model

predictions showed clearly this option could recover the key

interspecific patterns in canopy status, crown size and crown shape

observed in the data (see below). Second, many species are rare,

having very few data: for example 38 species have fewer than 30

data in total. For these species 10 parameters almost certainly

constitutes overfitting, compromising the predictive ability for the

rarer species when used in novel situations. Third, one aim of the

analysis was to generate a concise set of parameters that might

lend themselves to interpretation in the future. However, we

recognize that parameter estimates from the full fit scheme may be

more appropriate for making predictions for the more common

species in novel data sets. Therefore, any readers interested in

using the parameter estimates from the full fit scheme are invited

to contact the lead author for the values.

Interspecific variation in crown shape
Two species-specific parameters were estimated from the data: the

trait score Tj and the depth bias Vbias,j. The full set of these two

parameters for each of the 250 species in the analysis is given in

Tables S1, S2 and S3 including, for each parameter, the MLE

estimate and the 95% confidence intervals. Under this scheme, the

6 crown shape parameters, defining the size and shape of the

potential crowns of canopy and understory trees, were forced to be

perfectly correlated with each other across species, because they

were all set by the value of Tj (see Appendix S3). The scheme

estimated that the interspecific correlation between the potential

crown shape parameters R0,j, R40,j, Rus,j and Bj was positive (Table

S2). Thus, the scheme estimated that the best single axis of

variation between the potential crown shapes of these trees

stretches from species with generally narrow, columnar crowns

(low Tj), to species with generally wider, more gently curved

crowns (high Tj) (see Fig. 2). Pictorial representations of the

estimated crown shapes looked reasonable (Fig. 2), including for

such unusual species such as Black Spruce (Picea mariana) which has

a notably narrow, columnar shape (Petrides 1998).

Across all species, Tj varied widely (90% of values within the range

0.14 to 0.86) corresponding to a large variation in crown shape

parameters. For example R40,j, which is the maximum potential

crown radius of a tree with dbh 40 cm, had a 90% range of 1.72 to

7.96 m. Caution is needed here because many of the species in the

analysis were rare, resulting in highly uncertain estimates for species-

specific parameters, which will tend to increase the apparent

interspecific variation. However, a large range of parameter

estimates was seen even in the 30 most common species (e.g. 90%

range for R40,j 2.54 to 5.63 m). The average depth bias Vbias,j was

slightly negative (20.70 m) implying that, on average, species tend to

carry a small amount of extra foliage down into the understory

(Fig. 1d). But Vbias,j varied very widely across species, with some

species exhibiting substantially negative values (90% range 26.47

to+4.90 m for all species; 22.71 to+4.62 m for the 30 most

common). A negative value of Vbias,j implies that species j carries the

bottom of its crown above the canopy height Z*.

The interspecific variation in parameters was statistically

significant, as indicated by the many pairs of species with non-

overlapping credible intervals in either Tj or Vbias,j (Fig. 2 and

Table S3: a pair of non-overlapping 95% intervals corresponds to

significant difference at p,0.0025). This helps to explain why

parameter estimates without species-specific crown shapes were

rejected (Table 2). The parameter variation in both Tj and Vbias,j

was continuous, with no indication of aggregations of species

corresponding to distinct functional groups for crown shape or

depth bias. There was substantial overlap between the estimated Tj

and Vbias,j values of conifer and broadleaf species.

Predictive ability: interspecific variation
The fitted model reproduced the most important aspects of

interspecific variation in crown size and shape (Fig. 3). For species

Table 2. Comparison of nine alternative parameter estimation schemes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Crown shape

Full fit Single-axis One-shape

Species-specific 2500 2157869 516 2174885 259 2191063

320739 344977 350803 355805 382643 385154

Vbias,j Global 2251 2159991 267 2179104 10 2196224

324481 346296 358742 361330 392469 392566

Fixed at 0 2250 2168456 266 2183036 9 2197192

341410 363215 366704 369283 394401 394488

Crown shape parameters were either estimated separately for each species (full fit); reduced to single axis of variation requiring one free parameter per species (single-
axis); or reduced to a single crown shape for all species (one-shape). Depth bias Vbias,j was either estimated separately for each species; set to a single value for all species
(global); or fixed at 0. The table gives, for each scheme, the number of free parameters (top left), the maximum log-likelihood (top right), and the value of the AIC and
BIC information criteria (bottom left bottom right respectively). Numbers are given to the nearest integer. Lower values of AIC and BIC indicate statistically superior
models.
doi:10.1371/journal.pone.0000870.t002..
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with at least 100 crown class observations (i.e. fraction of trees with

some foliage in the canopy), the observed average canopy status had

a mean of 0.560 (with range 0.169 to 0.976). This compares to

a mean model prediction of 0.556, and a mean absolute deviation

between the model prediction and observation of 0.096 (i.e., model

within 10% of observed for an average species). A similar accuracy

could be seen for the other metrics. For species with at least 30

observations of crown radius, the average crown radius had an observed

mean of 2.65 m (with range of 1.40 to 4.22 m), compared to a mean

model prediction of 2.68 m; and the mean deviation between the

model prediction and observation was 0.118 m (i.e. predicted crown

radius wrong by 12 cm for an average species). The observed OLS

slope of crown radius vs dbh had an average of 0.0692 m cm21, with

range 0.0217 to 0.2198, compared to a mean model prediction of

0.0696; for these slopes, the mean absolute deviation between model

and observed was 0.0145 (i.e. 0.01 m radius per cm dbh). The

observed average crown depth had a mean of 8.630 m (range 2.02 to

18.82), compared to a mean prediction of 8.632; and the average

absolute deviation between the model and observed average crown

depth was 0.834 m.

Predictive ability: inter-individual variation
The model also captured the key features of inter-individual

variation in crown size and shape within a species (Figs. 4, 5). For

all species, larger trees were more likely to be in the canopy, but

the slope and curvature of the relationship varied greatly between

species (see examples given in Fig. 4). For those species with

sufficient data to assess the fit between predictions and observa-

tions, the correspondence between model predictions and

observations was extremely close (examples given in Fig. 4). This

match included non-intuitive results such as the fact that, for many

species, the smallest trees were more likely to be in the canopy

than were trees of intermediate size (e.g. Populus tremuloides and

Quercus rubra in Fig. 4).

In addition, the model predicted substantial variation in both

crown radius and crown depth for a given species and dbh (Fig. 5).

Such variation could have been recreated easily by simply

implementing the ‘noise’ parameters describing unaccounted-for

variation, thereby introducing unexplained random variation to

each model prediction; but this was not done here. Instead, the

predicted variation was deterministic, resulting solely from the

variation in the calculated value of Z* from plot to plot, which itself

was driven solely by observed variation in the neighborhoods

experienced by trees of a given species and dbh.

For crown depth, the predicted variation was close to that

observed, showing that this variation can be explained solely as the

deterministic reaction of trees to variation in their neighborhoods. For

crown radius, the predicted variation, though substantial, was less

than observed. This is likely to reflect some combination of the model

missing processes that might affect crown radius (e.g. soil type); and

measurement error for crown radius, both of which are included

implicitly in the parameters that govern unexplained variation.

DISCUSSION

The ITD as a model of canopy structure
The ITD model is evidently able to provide accurate predictions

for canopy structure, given data on the individual trees, in a wide

variety of forest types, even where only two parameters (Tj and

Vbias,j) are allowed to vary between species (Figs 3–5). For a given

species, the value of these two parameters, in combination with

species-specific height-dbh parameters, predicts average canopy

status, crown radius and crown depth (Fig. 3); the within-species

relationships between these 3 metrics and dbh (Figs 4, 5); and

much of the observed variability for a given dbh (Fig. 5). Thus the

ITD model appears to be a relatively parsimonious model,

reconciling different species-specific patterns of canopy structure,

and crown size and shape, in a wide variety of forest communities,

into a simple modeling framework. As such, we hope that it may

Figure 2. Estimated potential crown shapes for 10 common species and 10 rare species with contrasting estimated crown shapes. Each species is
shown at the average height, and average dbh, of that species observed in the data. The full potential crown shape is shown as the grey dashed lines;
the solid lines give the realized crown shape drawn at the average observed crown ratio of the species in the data, so the solid lines give a picture of
the realized crown shape of a typical individual of the species. Species are given in order of the MLE estimate for the trait score Tj (95% confidence
interval for Tj given in parentheses), which is one of the two species-specific parameters estimated, the other being the depth bias Vbias,j (see
Appendix S3). Taxus distichum (var. nutans) is not native to the US, but was found in the inventory data.
doi:10.1371/journal.pone.0000870.g002
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act as an important step toward a deeper understanding of canopy

structure in forests, and possibly in other plant communities.

In evaluating the significance of these results, it is important to

bear in mind that describing these patterns with separate

allometries would require at least nine species-specific parameters

(i.e. for canopy status vs dbh, crown radius vs dbh, and crown

depth vs dbh, including the unexplained variation in each),

whereas the results presented here used only two free parameters.

More importantly, standard allometries predict metrics from dbh

alone (e.g. [33], [34] for crown area), and are therefore

fundamentally incapable of capturing the fact that the metrics

depend on the state of the forest stand within which a tree is found.

For example, an allometry of canopy status vs dbh would make

a tree of a given dbh equally likely to be in the canopy, whether it

was found in an open field, a young stand, or an old growth forest.

Allometries can be modified to take into account some measure of

stand density (such as basal area), but this requires additional

parameters, and the appropriate stand metrics and functional

forms are not known. Compared to this, the ITD gives a simple,

biologically reasonable formulation that naturally captures com-

petition for canopy space, and that appears to work quite well in

a wide range of forest types (Figs 3–5). On the other hand, the

conceptual differences between the ITD and the use of standard

allometries should not be overstated. Like standard allometries, the

ITD assigns a crown shape to each tree–the potential crown

shape–which is a simple function of species and size. The

advantage of the ITD is simply that it allows for interactions

between these potential shapes, to give plasticity in the realized

crowns. This then leads naturally to a prediction of which trees are

in or out of the canopy.

Model limitations
The form of the ITD model presented here suffers from a variety

of limitations. This includes the lack of time lags in the response of

canopy structure to changes in the size and density of trees, such

that newly-vacated canopy space becomes filled instantly. In

contrast, it is known that tree-fall gaps can take several years to

close (e.g. [35]). Also, the potential crown shapes are assumed to

be invariant to variation in soils, climate or light environment,

whereas they may be variable (e.g. [36]); individuals are assumed

to switch instantly between canopy and understory forms, whereas

they may show more gradual, and potentially complex, shifts; and

the ITD assumes infinite horizontal growth plasticity, whereas

trees are obviously highly constrained. These limitations are not

dealt with here, because the intention was to provide a simple

model that may or may not require modification in the future. In

addition, the available observations (the FHM forest inventory

data) provided no significant evidence of problems in the model

predictions. Therefore, although the current model limitations

may prove to be crucial for some applications, their signature is

apparently not present in the measurements that are typically

taken in forest inventories. As such, their solution appears to

require alternative, field-based, observational or experimental

approaches. We also note that our analysis did not rule out the

possibility that a different model structure could have provided an

equally good fit to the data, which further motivates detailed field

observations of the key processes determining forest canopy

structure.

Remote sensing of forest structure
A primary goal of the remote sensing of forests is to infer

properties of forest stands (the species, sizes and spatial densities of

the individual trees, and hence the basal area and biomass of forest

stands: hereafter referred to as stand structure), from aircraft-or

satellite-borne optical (e.g. [37], [38]) and LIDAR returns (e.g.

[39], [40], [41], [42], [43]). The ITD provides a general and

rapidly-implemented way to predict these canopy properties from

stand structure, and it therefore has the potential to improve the

interpretation of remote sensing data. For example, LIDAR

returns can provide measurements of canopy height (i.e. the height

of the canopy above the ground). In a general sense a taller forest

canopy indicates not only taller individual trees, but also trees with

larger dbh (because individual height and dbh are positively

correlated), along with a lower density of trees (since stand density

tends to be negatively correlated with the average size of

individuals both within stands of a given species, and among

stands of different species: [44]). The ITD can provide quantitative

predictions of these relationships for a given forest type. For any

given structure (i.e. a list of the species, sizes and densities of

individual trees), the ITD predicts not only the maximum canopy

height (the height of the tallest tree), and the minimum canopy

height (Z*), but it also predicts the exact probability distribution of

canopy heights. At the heart of the ITD is the function aq
(tot,Zq)

which, for a stand q, gives the total exposed crown area (ha ha21)

vs distance from the ground, Zq (Appendix S1). This function is

exactly equal to the probability of a given LIDAR measurement

returning a canopy height greater than Zq (also see Fig 1d).

Therefore the ITD can be used to assess which species, densities

Figure 3. Observed vs predicted average crown metrics for the 75 US
tree species with at least 100 measurements of observed canopy
status (top left), and the 135 species with at least 30 measurements
of observed crown radius and crown depth (remaining panels). The
most common third of the species in each panel are shown in black,
with remaining species in grey. Predictions are from implementing the
ITD model for each FHM forest inventory plot. The parameter
estimation allowed two free parameters for each species j. Observations
for species j were generated by averaging all available canopy status
data for j, and all available crown radius and crown depth measure-
ments for canopy trees of species j. Slope refers to slope from a least-
squares linear regression of either observed canopy radius vs dbh, or
predicted canopy radius vs dbh.
doi:10.1371/journal.pone.0000870.g003
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Figure 4. The relationship between dbh and average canopy status for 6 species of contrasting allometry and life history, predicted (grey) and
observed (black). The values are the fraction of individuals within the appropriate dbh class that had some foliage in the canopy. Values are only
given where there were at least 30 trees in the dbh class for the species. The parameter estimation allowed only two free parameters for each species.
Values in parentheses are the successional age of the species, calculated after [50]: high values indicate a late successional species. The successional
age of Picea engelmanni should not be compared with the other species in the figure because it is the only western species: its successional age is
greater than the average for western species, indicating that is late successional.
doi:10.1371/journal.pone.0000870.g004

Figure 5. The relationship between dbh and crown radius and crown depth, for 4 common US tree species of contrasting crown shape and
allometry: predicted (grey) and observed (black). For each species and metric, data from 300 randomly selected individuals are shown. The
parameter estimation allowed two free parameters for each species. Values in parentheses are successional ages: see legend for Fig. 4.
doi:10.1371/journal.pone.0000870.g005
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and sizes of trees are consistent with a given sample of LIDAR

returns. This method would engage with the whole sample of

return heights, rather than summary statistics such as the mean

height. And the ITD would not require fine-resolution data in order

to extract the locations and heights of individual trees; it could be

used equally well with LIDAR samples spread coarsely over a wide

area. Similarly, analysis of aerial photography data can provide

estimates of the density of trees in the canopy, and the probability

distribution of their exposed crown areas, ECAs. For any given stand

structure, the ITD predicts both of these properties.

In both cases, it should be possible to use a formal probabilistic

framework to compare the ITD and the remote sensing data to

estimate stand properties from given canopy properties. The ITD

does require height allometry and crown shape parameters for

each species, and these are, at present, only available for North

American trees (Table S3); but these parameters could be derived

using forest inventory data from other parts of the world using the

methods outlined here.

Understanding and predicting forest dynamics
The key to understanding, and therefore predicting, the dynamics

of mesic forests is the process of density-dependent competition for

canopy space, and hence light. This is recognized in forest gap

models–the only models that have hitherto been successful in

predicting the community dynamics of mixed species forests (e.g.

[5], [2]). In these models, complex light-tracing algorithms are

used in combination with crown allometries to calculate the degree

of shading cast by, and experienced by, different individuals.

Growth and mortality are then functions of the level of light

incident on each individual. And in forestry it has long been

recognized that both crown class (a more general measure of

canopy status) and crown ratio are important predictors of the

growth and mortality of individual trees.

But modeling the process of height structured competition in

a quantitative manner that allows for a rigorous understanding

and predictive ability for forest dynamics has remained elusive. In

part, this has been due to a lack of data with which to

parameterize models of canopy structure, and/or the effects of

canopy structure on the growth, mortality and reproduction of

individuals. This was especially true for measurements that are

hard to take (e.g. exposed crown areas, leaf densities, understory

light), for rates that are slow and therefore require large sample

sizes (e.g. mortality rates for canopy trees), and for rare species.

However, this problem is rapidly being overcome by the

appearance of large forest inventory data sets, which contain

observations of growth rates, and mortality and reproductive

events (e.g. the USDA FIA contains millions of tree records for the

US alone: see [11]) and measurements relevant to canopy

structure (e.g. the FHM data used here). Satellite-and aerial-

photograph derived data sets could be larger still.

A more fundamental limitation has been the lack of a simple

quantitative model relating the state of a forest stand (the species,

sizes and densities of trees) and canopy structure, and hence

competition for canopy space and light. This relationship

appeared to be complex and spatially explicit, and hence

computationally expensive and mathematically intractable. Forest

gap models have utilized computationally intensive light-tracing

algorithms to generate predictions for incident light levels

experienced by the center of the crown of each individual (e.g.

[2]). But even these models have lacked a biologically-derived

formulation for competition between the largest canopy trees,

which cast little shade on each other, but which compete for

canopy space (and yet large trees are responsible for most of the

carbon fixation, and hence NPP and carbon storage, of forests).

Approaches to understanding competition between large trees in

forest gap models have been limited to phenomenological

neighbourhood models ([45], [46], [47]). This work has lead to

important new discoveries in forest ecology, but neighbourhood

models require the estimation of parameters for every pair of

species (i.e. interaction-specific parameters), and there is no reason

to expect them to recover the fundamental fact that stand level

NPP is limited by the total available canopy space. In contrast,

a class of forest models derived from the Shell model (e.g. TASS,

see [48]) is ideally suited to understanding competition between

canopy trees, but this is at the cost of an extremely computation-

ally intensive 3D tessellation algorithm.

Being spatially explicit, the ITD can be implemented much

more rapidly than the canopy component of either forest gap

models, or the Shell model. Moreover it can be used in

conjunction with data that is not spatially explicit (e.g. most forest

inventory data, including the FHM and FIA). Similarly to the

Shell model, the ITD is all about dividing up canopy space and so,

in common with it, it naturally captures competition between large

trees: growth can simply be a made a function of exposed crown

area, ECA ([49]). This allows for realistic competition between

large trees whilst constraining stand-level productivity, without the

need for interaction-specific parameters. The dynamic model that

results from replacing the canopy structure component of

a standard forest gap model (SORTIE: [2], [24]) with the ITD, is

also rapid to implement, and becomes analytically tractable for such

metrics as equilibrium density, basal area and biomass, patterns of

self thinning, and the invasion of monocultures by other species

(Strigul et al. in review). And yet it can reproduce the dynamics of

SORTIE, provided that SORTIE is first made more realistic by the

inclusion of extra growth plasticity (Strigul et al. in review).

Thus, the combination of forest models based on the ITD, with

large forest inventory data sets, may represent a first step toward

a rigorous understanding and predictive ability for forest dynamics.

In recent work we show that this can lead to accurate predictions for

the 100-year dynamics of biomass, size distribution and species

composition, and their dependency on soil type, for the forests of the

Lake States of the eastern US (Purves et al. unpublished). Perhaps this

approach can be extended to make the model parameters explicit

functions of climate and soil, leading to a rigorous, individual-based

understanding of observed regional variation in forest structure and

species composition. If so, defensible predictions of the nature and

timescale of forest responses to climate change and other

anthropogenic perturbations could be within reach.

SUPPORTING INFORMATION

Appendix S1 Derivation and description of the ideal tree

distribution (ITD) model

Found at: doi:10.1371/journal.pone.0000870.s001 (0.34 MB

DOC)

Appendix S2 Estimation of species-specific height-dbh param-

eters

Found at: doi:10.1371/journal.pone.0000870.s002 (0.05 MB

DOC)

Appendix S3 Parameter estimation scheme

Found at: doi:10.1371/journal.pone.0000870.s003 (0.28 MB

DOC)

Table S1 Summary of ITD parameter estimates the single axis

scheme, with the additional free parameter Vbias,j. Parameters

marked with * were fit as species-specific free parameters; for

species j, parameters marked with {double dagger} depended only

on the value of Tj. Parameter Mj was fixed at 0.95 for each species
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j, as shown. By definition, 5% of the species have values for

parameter P above the 90% range for P, and 5% have values

below the range. This interval was calculated for each parameter,

either using only the 30 most common species, or all species, as

shown.

Found at: doi:10.1371/journal.pone.0000870.s004 (0.06 MB

DOC)

Table S2 Parameters for converting the trait score for species j,

Tj, to crown shape parameters (see eq. S3.3). Parameters marked

fixed were not estimated, but fixed at the values given. Other

parameters were fit as global free parameters, as part of the single-

axis scheme. These values can be used with eq. S3.3 to assign

species-specific crown shape parameters to species j, from the value

of the trait score Tj given in Table S3.

Found at: doi:10.1371/journal.pone.0000870.s005 (0.04 MB

DOC)

Table S3 ITD model parameters for the 250 tree species

represented in the FHM data, together with height-dbh param-

eters for North American tree species not present in the FHM

data. The height Hi (m) of a tree of species j, with dbhi in cm (or

diameter at root collar, drci) can be calculated as Hi = 10ˆ[aj,dbh+

bj.log10 (dbhi)], or as Hi = 10ˆ[aj,drc+bj.log10 (drci)] . The parameter Tj

can be used in conjunction with Table S2 to generate species-

specific crown shape parameters for species j. Vbias,j is a species-

specific parameter required by the ITD model. The numeric code

used to identify species in US Forest Service forest inventories is

given. 95% confidence intervals are given for Tj and Vbias,j in

parentheses.

Found at: doi:10.1371/journal.pone.0000870.s006 (0.46 MB

DOC)
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