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Flowering time in Arabidopsis thaliana is controlled by a large number of genes and various environmental factors, such as
light and temperature. The objective of this study was to identify flowering time quantitative trait loci (QTL) under growth
conditions simulating seasonal conditions from native geographic locations. Our growth chambers were set to simulate the
spring conditions in Spain and Sweden, with appropriate changes in light color, intensity and day length, as well as
temperature and relative humidity. Thus the Sweden-like spring conditions changed more dramatically compared to Spain-like
spring conditions across the duration of our experiment. We have used these conditions to map QTL responsible for flowering
time in the Kas-1/Col-gl1 recombinant inbred lines (RILs) across two replicate blocks. A linkage map from 96 RILs was
established using 119 markers including 64 new SNPs markers. One major QTL, mapping to the FRIGIDA (FRI) locus, was
detected on the top of chromosome 4 that showed significant gene6seasonal environment interactions. Three other minor
QTL also were detected. One QTL mapping near FLOWERING LOCUS M (FLM) showed an epistatic interaction with the QTL at
FRI. These QTL6environment and QTL6QTL interactions suggest that subtle ecologically relevant changes in light,
temperature, and relative humidity are differentially felt by alleles controlling flowering time and may be responsible for
adaptation to regional environments.
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INTRODUCTION
Flowering time is a critical step in the life of annual species such as

Arabidopsis thaliana. The proper timing of reproduction to coincide

with suitable environments is important for its survival and

interactions with other ecological factors. The major environmen-

tal cues that affect flowering time are light and temperature, which

change daily through seasons and vary with geographic locations.

The diversity of flowering time and responses to environmental

variables in wild accessions of A. thaliana [1–3] suggest that A.

thaliana has precise and diversified mechanisms controlling

flowering time across geographic locations and seasons.

A. thaliana provides a great opportunity to determine the genetic

basis of flowering time and response to environments. Many genes

controlling flowering time have been identified (see the flowering

web http://www.salk.edu/LABS/pbio-w/flower_web.html and

reviews by [4–7]), and a genetic network has been outlined which

includes four main pathways: photoperiod, vernalization, auton-

omous, and gibberellin [8]. Longer days act via the photoperiod

pathway and an extended period of winter-like temperature act via

the vernalization pathway to accelerate flowering time by releasing

repression caused by the floral inhibitor Flowering Locus C (FLC).

Functional alleles of another gene, FRIGIDA (FRI), promote the

accumulation of FLC mRNA, which delays flowering. The

autonomous pathway also promotes flowering by negatively

regulating FLC. Ambient growth temperature may affect flowering

time through an autonomous pathway [9]. In addition to FLC,

another MADS (MCM1/AGAMOUS/DEFICIENS/SRF1)-box

gene, FLOWERING LOCUS M (FLM), similar in amino-acid

sequence to FLC, also acts as an inhibitor of flowering in the Ws

accession [10]. The Col allele at FLM delays flowering compared

to the null flm, including the natural null allele in the Nd accession

[11].

Natural genetic variation in A. thaliana for flowering response

under different environmental conditions has been observed

including photoperiod, vernalization and ambient temperature

[1–3,12,13]. A latitudinal cline in flowering time was observed in

the European accessions of A. thaliana when grown over winter in

a common garden in Rhode Island. This cline however was only

seen in accessions that lacked common FRI deletion polymorph-

isms [3]. This may be due to a latitudinal cline in vernalization

sensitivity: the southern accessions were more sensitive to

vernalization than the northern accessions [2]. Since environmen-

tal factors such as light and temperature are correlated with

latitude, the latitudinal clines for flowering time and vernalization

sensitivity are suggestive of natural selection acting on flowering

time. Direct tests are difficult as field studies are influenced by

many random factors. It may be difficult to see modest genetic

effects of evolutionary significance and when identified may

correspond to the particulars of a given year rather than the

standard local conditions.

Generally, flowering time is accelerated by longer days, higher

temperature [14], and vernalization, conditions associated with
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the more favorable conditions of spring and summer. How plants

integrate signals from these environmental cues to decide when to

flower is essential to survival. In natural conditions, a major

environmental cue is the continuous seasonal changes of light,

including the sunrise and sunset times perceived as changes in light

quality and intensity. Such dynamic changes are distinct from

traditional studies of fixed photoperiod, light quality and intensity.

In nature, temperature also cycles during the day and changes

predictably during the season, in coordination with light. These

seasonal changes in light and temperature are a unique fingerprint

of a particular geographic location. Standard lab experiments of

long day vs. short day, with and without vernalization at constant

temperature do not capture the changing seasonal patterns unique

to local conditions. Thus to identify the loci involved in local

adaptation to predictable seasonal environmental cues of day

length, temperature, light color, and humidity, experiments should

be performed under controlled settings simulating these multivar-

iate conditions.

Our experiments aim to recreate seasonal conditions to study

the flowering time QTL and their interactions with geographic

locations within the spring season. This general approach of

simulating natural conditions in the lab provides a compromise

between simple environmental contrasts in the lab and the

unpredictable complexity of field studies. However, the de-

manding dual strategy of lab and field studies is also warranted

[15,16]. We used Kas-1/Col-gl1 recombinant inbred lines (RILs)

(Somerville lines) in this study as a test case before moving to local

populations. The parents Kas-1 and Col-gl1 differ in flowering

time [17]. The results confirmed the quantitative nature of genetic

variation in flowering time and the major role of polymorphisms in

the FRI gene in flowering time variation. QTL6environment

interactions suggested that seasonal changes affect flowering time

differentially via alleles known to control flowering time. We

propose that such interactions may be responsible for adaptation

to regional environments. Additionally, epistasis between the loci

near FLOWERING LOCUS M (FLM) and FRI suggest a novel

interaction between loci known to control natural variation of

flowering time in A. thaliana.

MATERIALS AND METHODS

Growth Chambers
Experiments were conducted within two walk-in growth chambers

(AR-916, Percival Scientific, Inc. Perry, IA) that were pro-

grammed to simulative ideal seasonal conditions in Madrid, Spain

and Stockholm, Sweden, respectively (Fig. 1). Sunrise and sunset,

light spectrum, temperature and relative humidity were pro-

grammed to cycle throughout the day and the season according to

30 year seasonal averages (modeled as described in the supple-

mental data http://naturalvariation.org/KasCol). The experi-

ment began on May 1st settings in both Spain and Sweden. In

brief, sunrise and sunset changed every day throughout the season,

light intensity and spectral mixture changed every six minutes

throughout the day as did temperature and relative humidity.

Sunrise and sunset times were generated from mathematical

models as a function of latitude, longitude, time zone, and day of

year (http://www.sci.fi/,benefon/sun.php3). The light quality

spectrum and intensity were recreated using far-red (700–750 nm),

red (630–700 nm), cool-white (520–600 nm), and blue (400–

500 nm) fluorescent bulbs on electronically dimmable ballasts

based on the solar spectrum model. The ratio of blue light to red

light varied from 0.2 at sunrise to 1.1 at noon and the ratio of red

light to far-red light varied from 0.95 at sunrise to 0.65 at noon.

Daily temperature variation was modeled based on a general

empirical profile fitted over several days. Temperature increased

at sunrise, reached maximum shortly after noon and decreased

again until sunrise. The amplitude of the curve spans the daily

minimum and maximum temperature for the location of interest.

Figure 1. Side by side walk in Growth Chambers running Sweden (left) and Spain (right) simulated seasonal conditions. Days until flowering was
recorded for 1123 plants in total seen growing in two blocks on the right and left side of each chamber.
doi:10.1371/journal.pone.0000105.g001
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Data on minimum and maximum daily temperatures were

obtained from Weather.com. The relative humidity changed with

temperature maintaining constant total humidity.

Plant Materials
A set of 128 F6 Kas-1/Col-gl1 recombinant inbred lines (RILs) and

the two parental lines (Somerville lines) were obtained from the

Arabidopsis Biological Resource Center (Columbus, OH). Four-

teen lines were reordered from the Arabidopsis Biological

Resource Center (ABRC) due to an inconsistency between

previous studies [17,18] and 96 lines were included in the final

data set.

Experimental design and flowering time

measurements
The two walk-in growth chambers mimiced two geographic

locations, Sweden and Spain. There were two blocks in each

location labeled Sweden 1, Sweden 2, Spain 1, and Spain 2. Seeds

were stratified for 24 hours at 4uC. Initially one to two seeds were

planted in each pot of the 469-well flat and thinned to a single

seedling after germination. Within each block, 12 lines were

planted per 469-cell flat, with 3 pots for each line. Lines were

arranged randomly across flats. In total, 12 flats contained 142

lines (128 plus the 14 duplicate lines). This set of 12 flats was

replicated an additional 3 times so that four sets of 12 flats were

placed in the four blocks. Flats were rotated within the block at

a rate of approximately 2 flats per week. Individual pots in each

flat were also occasionally rotated within the flat. Plants were

watered daily by hand and additional water was provided using

an automatic watering system. Each single plant in a pot was

bar-coded with a unique identifier which allowed individual

tracking of flowering time measured as days to flowering (DTF) i.e.

the number of days from sowing until the appearance of the first

floral buds monitored almost daily.

DNA extraction and SNP genotyping
Genomic DNA was extracted using MagAttract 96 DNA Plant Kit

(Qiagen Inc., Valencia, CA) and KingFisher 96 (Thermo Electron

Corporation, Waltham, MA). One plant from each line of the RIL

set including the parents and the duplicate lines were genotyped at

65 single nucleotide polymorphism markers by Sequenom (San

Diego, CA). Markers were a subset of those described at http://

naturalvariation.org/geno.html.

Preparation of data files
After SNP genotyping, one marker was dropped from further

analysis because of severe segregation distortion likely due to

duplicate amplification. After cluster analysis (hclust in R,

complete linkage method) of the genotypic data generated from

64 SNP markers, lines with genotypes inconsistent with previous

reports [17,18] were removed and those with identical genotypes

were merged. 18 lines had inconsistent genotypes or were likely to

be mislabeled and were excluded from the further analysis:

CS84873, C84875, CS84902, CS84904, CS84907, CS84910,

CS84912, CS84914, CS84924, CS84925, CS84930, CS84947,

CS84970, CS84974, CS84981, CS84991, CS84992, and

CS84993. Two lines had identical genotypes (CS84943 =

CS84945). The phenotypes for identical lines (including the five

duplicate lines and the two identical genotype lines) were merged

together. Three lines with less than six measurements of the

phenotypic data were also excluded from further analysis. Finally

96 RILs in total were used in the genetic linkage map and QTL
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mapping. Marker genotypes and raw phenotypic data are

available as supporting information at http://naturalvariation.

org/KasCol.

Genetic map
The genotypic data for the 96 RILs from the 64 SNP markers and

the previous 55 markers [18] was analyzed together using

GMendel 3.0 [19]. Most of the marker orders were consistent

with the physical map (AGI sequence map) of the Col sequence

(see supporting information). Map distances were obtained from

GMendel 3.0 using the Kosambi map function. The final map was

rendered using MapChart 2.1 [20].

QTL analyses
QTL analyses were performed in bQTL, R package (http://

hacuna.ucsd.edu/bqtl). Interval mapping and analysis of posterior

probabilities using Bayes model averaging over different, multi-

gene QTL models were carried out separately in the four blocks

(Table 1). We present the results of the multigene linear Bayes

models with 2-cM scanning resolution. The false discovery rate

(FDR) posterior odds threshold was obtained by sorting the results

of 400 genotype phenotype permutations scans [21]. Four QTL

were detected at 1% FDR, SNP21607030 (Chr1), SNP21607175

(Chr3), MSAT4.39 (Chr4), and SNP44607955 (Chr4). These

were included as main effect background markers in subsequent

complete pairwise epistasis scans performed in each of four blocks.

Significant epistasis was identified in Spain 2 at a P,0.05 genome-

wise threshold set by 500 permutations. In the final analysis, QTL,

environment, QTL6QTL, and QTL6environment interactions

were included as fixed effects with block and flat as nested random

effects in a single linear mixed-effects model testing each plant

separately. RIL was not treated as a random factor in this model.

The R scripts, raw data, and other supporting materials are

available at http://naturalvariation.org/KasCol.

RESULTS

Genetic map in Kas-1/Col-gl1 RILs
A linkage map (Fig. 2) was established using 119 markers including

64 new SNP loci and 55 previously genotyped markers [18]

among 96 Kas-1/Col-gl1 RILs. The total genetic distance covered

by these 119 markers was 492.9 cM with the largest gap of 22.5

cM on chromosome 3. Forty-six (39%) markers showed segrega-

tion distortion (P,0.05), especially on three regions: the top of

chromosomes I and IV, and the middle of chromosome III, where

more lines with Col-gl1 alleles than Kas-1 alleles in these three

regions. Significant segregation distortion of some regions in the

Kas-1/Col-gl1 RILs seen here, were also detected in previous

studies [17,18]. Segregation distortions of markers have also been

seen in other A. thaliana RIL populations [13,22,23]. This

distortion could be due to inadvertent selection of the lines in

this mapping population, biases in genotyping error, and/or due

to loci containing underlying sterility or incompatibility factors

[24–27].

Flowering-time variation in Kas-1/Col-gl1 RILs
The histograms of the RIL flowering-time reveal continuous,

quantitative genetic variation with greater variation in the Spain

environment (Fig. 3). The parental line Kas-1 flowered later than

Col-gl1 (63.665.5 vs. 35.562.9 in days) across the four experi-

mental blocks. An analysis of variance showed that the flowering-

time was significantly different among the 96 Kas-1/Col-gl1 RILs

(P,0.01) but the main effect of two ‘‘geographic locations’’,

Figure 2. Genetic map of the Kas-16Col-gl1 RIL population. Distances are in centimorgans using the Kosambi map function. Data for the 55 markers
from Wolyn et al. (2004) were merged with 64 SNP markers.
doi:10.1371/journal.pone.0000105.g002
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Sweden and Spain (P.0.05) was not. Significant interactions of

RILs6geographic locations and RILs6blocks were detected

(P,0.01). Since the block effect was significant, QTL were

separately mapped under the four block environments in the

following analyses.

Identification of flowering-time QTL,

gene6environment interactions, and epistasis
BQTL mapping was carried out independently in four blocks since

blocks within Sweden and Spain environments had significant

effects. Four QTL were detected using Linear Bayes analyses at

1% FDR (Fig. 4), and their effects were estimated separately in the

four individual blocks (Table 1) or together in the full model

(Table 2, analysis details described in the methods). Kas alleles

delayed flowering at two QTL (chr4. 89659 bp and chr4.

5591486 bp) while promoted flowering at the other two QTL

(chr1. 27650179 bp and chr3. 5140894 bp) compared to Col

alleles. We next tested all possible marker and 1 cM marker

interval pairs for interactions with experiment-wise threshold of

P = 0.05 by 500 permutations [28]. A significant epistasis was

identified between a marker at the QTL on chromosome 1, SNP

21607030 which is 1.3 Mbp above FLM, and a marker at the first

chromosome 4 QTL, MSAT 4.39 which is 0.18 Mbp above the

FRI locus.

The QTL and environment main effects, QTL6QTL in-

teraction, and all QTL6environment interactions were tested in

the final linear mixed-effects model with block/flat as random

factors (Table 2). The four QTL were still significant in the joint

analysis (P,0.05). The major QTL near FRI on chromosome 4

showed a strong QTL6environment and minor QTL6QTL

interaction (Table 2). Col is known to carry a deletion at FRI [13].

In Figure 5, three models are presented showing that FRI’s effect

can be detected as a main effect (fig 5A) but also responds to both

environment (Fig. 5B) and genotype (Fig. 5C). The likely

functional Kas allele at this QTL delayed flowering-time by

17.4 days in Spain as compared to the Col loss of function allele

(Table 2, Fig 5A). In the colder Sweden-like environment the effect

of the functional Kas allele was reduced by 6.6-days. Thus the

magnitude of FRI’s effect is environment-dependant, and Kas

FRI’s effect is reduced in the colder Sweden conditions (Fig. 5B).

Additionally, the presence of an effect of FLM on flowering time

was dependant on FRI genotype (Fig. 5C). Kas FLM promotes

flowering in a Col- fri null background, but has little effect when in

a functional Kas-FRI background.

DISCUSSION
In this study, simulated seasonal environments resembling Sweden

and Spain with variable diurnal light, temperature, and relative

Figure 3. Distribution of flowering time among 96 Kas-16Col-gl1 RILs. Flowering time was measured as days until flowering in Sweden (upper) and
Spain (lower) across two replicated blocks. The means and standard deviations of parents (Col-gl1 and Kas-1) are shown by arrows and lines,
respectively.
doi:10.1371/journal.pone.0000105.g003
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humidity were set up in two walk-in growth chambers. Under

these conditions, four QTL responsible for the difference in spring

flowering-time between Kas-1 and Col-gl1 were mapped in 96

Kas-1/Col-gl1 RILs using 119 molecular markers. The Kas allele

of a large effect QTL at the FRIGIDA (FRI) locus, delayed

flowering time as did another minor QTL, while at two other

minor QTL Col alleles delayed flowering time. A significant

QTL6environment interaction was detected at FRI. The effect

was dampened in the cooler Sweden-like environment implying

that subtle changes in light quality, rate of change of day length,

and temperature are differentially integrated at the genetic level

and thus may be responsible for adaptation to regional abiotic

cues. The Kas-1 FRI allele does not carry common deletions while

Col-gl1 FRI carries a loss of function deletion polymorphism [13].

It is very likely that the FRI indel polymorphism is the molecular

basis of the first chromosome 4 QTL (Figure 4).

The significant epistasis between markers SNP 21607030 and

MSAT 4.39 suggests a potential interaction between the alleles

of FLM and FRI, which has not been reported before. FLM is

a MADS-domain gene on chromosome 1 and delays flowering

time similar to it close homologue the FLC MADS-domain gene

[10]. Our earlier study [11] showed that Col FLM delays

flowering compared to null flm alleles, such as found in the Nd

ecotype. In the present study, the Kas FLM allele lacks floral

repressor function compared with Col FLM, similar to the Nd

null allele. This allelic variation however is only seen in the Col-

fri null allele background which differs from the well known

positive effect of FRI on FLC. FLM is a candidate gene for the

Figure 4. QTL map of days to flower (DTF) in Sweden (black line) and Spain (red line). Analysis of posterior probabilities was based on Bayes model
and the interval at each point represented 2-cM scanning resolution. Solid lines show block 1 and dashed lines show block 2 each modeled
separately. The dotted green horizontal line corresponds to 1% false discovery rate (FDR) set by 400 permutations. The multigene model averaged
Bayesian QTL model fits 1 to 10 genes models. The relative weight of each model is shown (see R/bQTL package and supplementary data for a more
detailed explanation).
doi:10.1371/journal.pone.0000105.g004
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chromosome 1 QTL; however, on the Col reference sequence,

the NGA692 marker is slightly closer to FLM (,120 kb below)

compared to SNP 21607030 marker, but is less tightly linked

with the chromosome 1 QTL. The epistasis between markers

linked to the FLM and FRI loci is suggestive and warrants

further study. Creating near isogenic lines that differ for the Kas

and Col alleles at FLM in functional and non-functional FRI

backgrounds would allow us to confirm the predicted genetic

basis of the epistasis identified in this study. If confirmed, the

epistatic relation described here between FRI and FLM reveals

a novel regulatory evolution that is similar to the FRI-FLC pair

[29,30].

The QTL and QTL6environment interaction detected in this

study suggest that natural-like environments can reveal potentially

ecologically important variation in relevant traits such as flowering

time. In addition to contrasting geographic locations at ranges of

latitudes as we have done here, the approach can be applied to

other contrasts. For example seasons (e.g. spring and fall) can be

compared thus allowing experimentation addressing the basis of

the life history strategies of winter and summer annual growth

habits. We believe that abiotic seasonal and geographic cues are

the major predictable local environmental signals to which A.

thaliana must adapt in order to succeed. Thus, quantitative trait

loci identified under such conditions are more likely to be

ecologically relevant and reflect the genetic basis of differences in

life history between locally adapted populations.
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Table 2. The effects of QTL and QTL6Environment on flowering time in the final model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Marker name
a

Chr. Position
a

cM
a

QTLb QTL6Environmentb

2a* SE p-value 2a* SE p-value

21607030 chr1.27650179 99.3 24.7 0.9 ,0.0001 1.1 1.3 0.3978

21607175 chr3.5140894 14.1 22.2 0.8 0.0043 21.1 1.1 0.3019

MSAT4.39 chr4.89659 0 17.4 1.2 ,0.0001 26.6 1.7 0.0001

44607955 chr4.5591486 28.8 5.3 0.8 ,0.0001 0.2 1.2 0.8477

216070306MSAT4.39 chr1.276501796chr4.89659 – 3.7 1.7 0.0299 0.5 2.4 0.8461

EnviSweden{ – – 1.1 1.8 0.5932 – – –

aThe first three columns indicate the nearest marker locus, chromosome position in bp, and the genetic distance calculated using Kosambi map function in GMendel.
bThe fixed QTL effects, environment effects, QTL6environment, and QTL6QTL6environment interactions were tested using linear mixed-effects model with block/flat

as random factors.
*2a represents the effect of Kas/Kas over Col/Col homozygous 2 allele substitutions. SE is standard error, n = 1123 plants in the full experiment.
{The environment effect on flowering time suggested the RILs tend to flower late in Sweden than Spain but not statistically significant.
doi:10.1371/journal.pone.0000105.t002..
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Figure 5. Main effects, Genotype6Environment, and Epistasis. Effects described below are illustrated by the arrows in each panel A) Modeling the
main effect of FRI shows the large floral repressing effect of the Kas FRI allele. B) Modeling the environmental interaction shows that Kas FRI has less of
an effect in the cooler Sweden conditions. C) Including the interaction term for FLM6FRI reveals that in the Col fri background Kas FLM promote
flowering while in the Kas FRI background Kas FLM has little effect. Error bars show 95% confidence intervals estimated from the standard residual of
each model across 1123 plants in the experiment. Abbreviations: Sp (Spain), Sw (Sweden), C (Col), K (Kas).
doi:10.1371/journal.pone.0000105.g005
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