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Abstract

Background: Patients with Type 1 Diabetes (T1D) are particularly vulnerable to development of Diabetic nephropathy (DN)
leading to End Stage Renal Disease. Hence a better understanding of the factors affecting kidney disease progression in T1D
is urgently needed. In recent years microRNAs have emerged as important post-transcriptional regulators of gene
expression in many different health conditions. We hypothesized that urinary microRNA profile of patients will differ in the
different stages of diabetic renal disease.

Methods and Findings: We studied urine microRNA profiles with qPCR in 40 T1D with .20 year follow up 10 who never
developed renal disease (N) matched against 10 patients who went on to develop overt nephropathy (DN), 10 patients with
intermittent microalbuminuria (IMA) matched against 10 patients with persistent (PMA) microalbuminuria. A Bayesian
procedure was used to normalize and convert raw signals to expression ratios. We applied formal statistical techniques to
translate fold changes to profiles of microRNA targets which were then used to make inferences about biological pathways
in the Gene Ontology and REACTOME structured vocabularies. A total of 27 microRNAs were found to be present at
significantly different levels in different stages of untreated nephropathy. These microRNAs mapped to overlapping
pathways pertaining to growth factor signaling and renal fibrosis known to be targeted in diabetic kidney disease.

Conclusions: Urinary microRNA profiles differ across the different stages of diabetic nephropathy. Previous work using
experimental, clinical chemistry or biopsy samples has demonstrated differential expression of many of these microRNAs in
a variety of chronic renal conditions and diabetes. Combining expression ratios of microRNAs with formal inferences about
their predicted mRNA targets and associated biological pathways may yield useful markers for early diagnosis and risk
stratification of DN in T1D by inferring the alteration of renal molecular processes.
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Introduction

Diabetic nephropathy (DN) is the leading cause of End Stage

Renal Disease (ESRD) in the Western world, accounting for more

than 40% of cases. Patients with either type 1 (T1D) or 2 (T2D)

diabetes are at risk of DN, but the disease burden is higher in the

former group [1]. Hence a better understanding of the factors

affecting disease progression(2) from hyperfiltration to microalbu-

minuria(MA), dipstick positive macroalbuminuria, impaired filtra-

tion and ESRD in patients with T1D is urgently needed. The

molecular pathophysiology [2] of diabetic nephropathy is multi-

factorial, involving hemodynamic factors (Vascular Endothelial

Growth Factor, renin-angiotensin-aldosterone and endothelin

systems), proinflammatory (e.g. Interleykin IL-1, 6,18) and

profibrotic cytokines (such as Transforming Growth Factor beta,

TGFb) as well as other biochemical derangements (polyol, Protein

Kinase C). Nevertheless, the manner in which these diverse

molecular processes are regulated, resulting in distinct clinical

courses of individual patients remains poorly defined.

In recent years microRNAs (miRNAs), a family of short

(average of 22nt long), naturally occurring, small antisense non-

coding RNAs have emerged as important post-transcriptional

regulators of gene expression (see review [3]). First described in C.

elegans [4], they have since been discovered to be widely

distributed, endogenous controllers of gene and protein expression

by binding to the 39-untranslated region of specific mRNAs and
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interfering with protein synthesis by inducing mRNA degradation

or repressing translation [5,6]. A number of these miRNAs have

also been identified in the extracellular environment. As they may

regulate a significant portion of the transcriptome and proteome,

considerable attention has focused on miRNAs as mediators or

biomarkers of illness. Previous work in diabetic renal disease (see

reviews [7–10]) performed in cell cultures, animal models or

formalin fixed human biopsy material has linked a number of

miRNAs to the development of nephropathy. Nevertheless, there

have been no comprehensive studies examining miRNA signatures

in human urine in relation to either longitudinal clinical outcomes

and/or the level of urinary albumin, which is the current gold

standard for detecting and staging diabetic nephropathy in the

clinic. The goal of this pilot study is to identify the differences on

urinary miRNA profiles in patients with long standing T1D who

were either free from diabetic nephropathy or had developed

variable degrees of albuminuria after long follow-up. In addition,

by integrating experimentally verified alterations on urinary

miRNAs with miRNA target prediction databases, we translated

the changes of miRNAs into hypotheses about signalling pathways

associated with nephropathy induced by diabetes.

Materials and Methods

Patients and Samples
Urine samples from participants in the Pittsburgh Epidemiology

of Diabetes Complications (EDC) study were examined. The EDC

study is a historical prospective cohort which recruited patients

from Children’s University Hospital of Pittsburgh Registry of all

cases of T1D, diagnosed or seen within a year of diagnosis between

January 1st 1950 and May 31st 1980. Participants were followed

thereafter with repeat exams biennially for 10 years and again at

18 years. Follow up of all participants in the EDC was censored for

this analysis on December 31st 2000.

In the EDC, diabetic renal disease was characterized in terms of

its progression from a normoalbuminuric urine examination to

progressively higher amounts of albumin in the urine (microalbu-

minuria) to overt nephropathy. Microalbuminuria was defined as

20–200 mg/min in at least two of three timed urines (24hr,

overnight, and 4 hr clinic visit) and was further classified as

intermittent(IMA) or persistent (PMA) on the basis of subsequently

reverting to normoalbuminuria or persisting at least to microal-

buminuria level throughout further follow up respectively. Diabetic

nephropathy was defined as an albumin excretion rate .200 mg/min

in at least two of three timed urine collections (24-h, overnight,

and post-clinic). In the absence of urine, a serum creatinine

.2 mg/dl or renal failure was accepted as an alternative

diagnostic criterion for overt nephropathy. For the purpose of

this report we analyzed urine from matched samples of a) diabetic

patients who never developed microalbuminuria or nephropathy

after prolonged (25 year) follow – up vs. those with DN and b)

patients who developed IMA matched against EDC participants

who developed PMA. In the case of the N v DN group we

collected a single urine sample, while two samples were analyzed

from patients who developed microalbuminuria : a (baseline)urine

sample from the last visit which tested negative for albumin and

the subsequent (follow-up, albuminuric) sample which was

collected 2 years after the first. Matching in the 2 sample sets

was independently carried out on the basis of age, sex, duration of

disease and levels of Hemoglobin A1c (HBA1c) to account for

unmeasured confounders.

RNA Isolation
The RNA from urine was isolated using the miRNeasy kit

(Qiagen, Germantown, MD). In brief, 700 ml of QIAzol reagent

was added to 200 ml of urine sample. The sample was mixed in a

tube followed by adding 140 ml of chloroform. After mixing

vigorously for 15 seconds, the sample was then centrifuged at

12,0006g for 15 minutes at 4uC. The upper aqueous phase was

carefully transferred to a new collection tube, and 1.5 volume of

ethanol containing binding buffer from the kit was added and

mixed. The sample was then applied directly to a silica

membrane containing column and the RNA was retained and

cleaned by using buffers provided in the kit. The immobilized

cleaned RNA was then eluted from the membrane into a

collection tube with a low salt elution buffer or water. The quality

and quantity of the RNA was evaluated by 260/280 ratio and

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara

CA).

miRNA Profiling
In brief, the cDNA was generated from 20 ml of RNA using

buffer and enzyme provide in the Qiagen kit. After incubating the

cDNA synthesis reaction at 42uC for 60 minutes, the cDNA was

diluted to 8 ml with SYBR containing PCR reagents from

Exiqon and water. The plates were then loaded onto ABI

7900HT real-time PCR system and the threshold cycle (Ct) was

measured with standard methods. Exiqon miRNA qPCR panels

1 and 2 (Version 1) were used, that included probes for 748

unique miRNA. Each miRNA species was assayed once per panel

with the exception of miR-423-5p, miR-103, miR-191 and the

three non-coding RNA species U6, SNORD38B and

SNORD39A for which duplicate reactions was set up as per

panel manufacturer instructions. Although suggested as reference

genes (biological controls) by the panel manufacturer the 6

microRNAs/small nuclear RNAs were not used as referents

during normalization. Nevertheless their presence in multiple

technical replicates in any given panel, allowed us to derive panel

specific normalization factors which were applied to the raw

expression levels of all microRNAs. A single inter-plate calibrator

spiked in control (UniSP3) was run 6 times per plate and was used

to normalize the expression levels of all miRNAs included in each

of the qPCR panels. A second spiked in control (UniSP6) was

included in some but not all urine reactions as a dual positive –

negative control and was thus not considered in subsequent

analyses (including normalization). We also included a no-

template negative control in all assays (nine replicates per assay)

as per manufacture guidelines. To resolve discrepancies in the

nomenclature of miRNA species, we mapped names of miRNAs

present in the Exiqon plates to the most current ones in miRBase

(version 18, November 2011) and the associated MIMAT

accession numbers (Table S1).

Statistical Analyses
Quantification cycle (Threshold Crossing) Cq

visualization, signal analysis and normalization. In order

to classify individual patient samples and visualize the resemblance

in the corresponding profiles we applied Principal Component

Analysis (PCA) to the corrected Cq values obtained from the raw

Cq measurements after subtracting the quantification cycle

number of the spiked-in control. To handle missing data in the

expression of miRNAs across samples we applied a specific variety

of PCA, i.e. Probabilistic PCA (PPCA) [11] that combines the

Expectation Maximization (EM) with PCA to simultaneous

estimate missing expression values and the principal components

in the dataset. Results of PPCA were plotted as bivariate

Urine MicroRNA in T1D

PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e54662



scatterplots, in which each principal component is plotted against

all others. PPCA calculations were performed with the ‘‘pca-

Methods’’ package [12] in bioconductor [13].

To analyze the difference in miRNA expression within patient

groups, we quantified the relative expression level of each miRNA,

its normalized threshold cycle difference (DCq) i.e. the difference

Figure 1. Schematic representation of the normalization procedure and estimation of relative fold changes adopted in the
manuscript. Replicate qPCR reactions were analyzed with a hierarchical linear mixed model in order to estimate panel specific correction factors
that were subtracted from the raw Cq signals of unreplicated reactions (first step), while simultaneously estimating the difference (DCq) between an
experimental and referent state. In the second step, the DCq of the spiked in control was subtracted from the non-control DCq values to calibrate the
relative fold changes according to the Delta-Delta method. Both steps of the normalization procedure acknowledged the uncertainty implicit in
estimating the DCq of both control and non-control signals (shown as a density plot at the bottom part of the figure), by performing this subtraction
probabilistically i.e. by Monte Carlo methods.
doi:10.1371/journal.pone.0054662.g001
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between the quantification cycle in the experimental (E) and the

reference (R) state : DCq = Cq(E) – Cq(R), with positive DCq values

indicating lower concentrations. To ensure a sufficient amount of

data for downstream analyses, only those miRNAs that were

detected in at least 2/3 of patient samples in each comparison

were analyzed.

A mixed effects model was used simultaneously accounting for

matching patients within pairs while normalizing DCq values for

PCR related factors. Normalization of quantification cycle signals

occurred in two steps (Figure 1): first, we developed a regression

model that utilized the multiple replicates in the qPCR panels to

decompose the corresponding measurements into signal and

(panel/PCR) specific noise factors. Secondly, the difference in

the expression level of the spiked in (UniSp3) control was used to

calibrate relative fold changes (FC) by the Delta-Delta method [14,15]

as: FC = 22DDCq, where DDCq =DCq(miRNA) – DCq(UniSp3).

The parameters of the regression model were estimated from a

Bayesian probabilistic viewpoint, a decision justified by the

exploratory, hypothesis generating [16] nature of this work and

the amenability of the complex mixed models utilized to Bayesian

computational methods. In this study we used ‘‘objective’’,

likelihood-dominated, non-informative priors [17] due to the lack

of previous information that could be used to specify prior beliefs

for the levels of the miRNAs examined.

Bayesian models were programmed in the BUGS language

(Text S1 sections Bayesian Computations and WinBUGS code)

[18]. Statistics (means, standard errors) of posterior probability

MCMC samples were used to summarize inferences about

individual DCq values, while the degree to which each estimated

DCq differs from zero was quantitated by means of symmetric

pseudocontour probabilities which can be viewed as Bayesian analogs

of p-values [19]. 95% Posterior Density Credible (symmetric)

Intervals (CrI) were used to provide a range of values in which the

estimated DCq lie with a probability of 95%.

miRNA target functional profiling. To infer putative

targets of differentially expressed miRNAs we utilized three

different algorithms: miRanda (release August 2010) [20],

TargetSCan (release 6, November 2011) [21] and miRDB (version

4.0, January 2012) [22]. In order to declare a specific mRNA as a

target of a given miRNA species, we required that at least 2 of the

3 databases predict the latter to bind to the former. To leverage

the quantitative urinary expression profiles and miRNA target

database information into more concrete predictions we appealed

to a biochemical argument based on Hill plots. In this

approximation for the interaction between miRNA and mRNA,

the fraction of the bound sites (h) is related to the free ligand

concentration (L) and the dissociation constant (Kd) by the logistic

equation:

A change in the ligand concentration between an experimental

state (LE) and the reference (LR) is related to a change in the

fraction of bound sites which can be expressed in terms of the

relative fold change . Hence, by the above expression:

To the extent that miRNAs function as negative regulators of

mRNA translation a positive log-odds ratio (larger bound fraction)

would imply a propensity for the target mRNA expression to be

reduced in the experimental state.

To synthesize the evidence from multiple DDCt values of

miRNAs targeting a specific gene we used the means and standard

errors from the MCMC simulations as input to random effects meta-

analyses. Such techniques, allow one to test the hypotheses that a

given sample of DDCq’s (‘‘treatment effects’’) follows a distribution

with a mean that departs from zero. In such a case, one would

expect the mRNA profile to deviate to a direction opposite to the

Table 1. Patient Demographics.

Group A Group B

Clinical Classification Clinical Classification

Normal Overt Nephropathy Intermittent Microalbuminuria Persistent Microalbuminuria

N of subjects 10 10 10 10

Samples (collected) 10 10 20 20

Samples(profiled) 10 10 19 14

Age (yrs) 42.865.1 41.466 29.466.3 27.565.3

Women 5 5 5 5

Duration of Diabetes (yrs) 34.165.8 34.466.4 20.765.4 21.365.8

CAD (including MI) 3 1 0 1

Stroke 0 0 0 0

PVD 2 2 0 1

Peripheral Neuropathy 5 5 0 0

Proliferative Retinopathy 4 1 1 5

Hypertension 1 6 0 0

HgBA1c (%) 8.261.1 8.261.0 9.961.9 10.262.4

LDL-c (mg/dl) 103.5620.2 106.3644.2 100.3620.6 115.9657.5

ACEi or ARB therapy 1 8 0 0

LDL-c lowering therapy 1 5 0 0

Abbreviations: CAD (Coronary Artery Disease), MI (Myocardial Infarction), PVD (peripheral vascular disease), HgbA1c (Glycosylated Hemoglobin A1c), LDL-c (Low Density
Lipoprotein cholesterol), ACEi (Angiotensin Converting Enzyme Inhibitor), ARB (Angiotensin II Receptor Blocker).
doi:10.1371/journal.pone.0054662.t001
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miRNA distributional mean (under-expressed miRNA implies

overexpression of the cognate mRNA and vice versa). Hence, by

considering the log-odds ratios for all putative miRNA-mRNA

pairs we estimated functional expression profiles for the miRNA

targets for post hoc exploration (enriched term analysis) in the

REACTOME [23] and Gene Ontology Project [24].

Results

Patients and Measurements
Baseline characteristics of patients included in this study are

shown in Table 1. In total we studied 40 patients with T1D: 10

who never developed diabetic renal disease (N) matched against 10

patients who went on to develop overt nephropathy (DN), 10

Figure 2. Results of Principal Component Analysis applied to all urine samples analyzed in this study. To present the results of the five
dimensional PCA, we utilized bivariate projections in which each component is plotted against all e.g. the second plot in the first row plots the first
principal component (PC1) against the second (PC2). Each individual urine sample is color and symbol coded according to the disease classification at
the time it was collected. N: patients without nephropathy, DN: patients with overt nephropathy, IMA(B): normoalbuminuric samples from patients
who had intermittent microalbuminuria, PMA(B): last normoalbuminuric samples from patients who had persistent albuminuria, IMA: micro-
albuminuric samples from patients who had intermittent micro-albuminuria, PMA: micro-albuminuric samples from patients who had persistent
microalbuminuria.
doi:10.1371/journal.pone.0054662.g002
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patients with intermittent microalbuminuria (IMA) matched

against 10 patients with persistent (PMA) microalbuminuria. In

general, patients were well matched within each of the two

comparison groups (IMA vs. PMA, N vs. DN) in terms of their

demographics and glycemic control (HBA1c). Roughly 50% of

patients with DN and an equivalent proportion of patients without

renal disease had at least one diabetic complication (most

commonly peripheral neuropathy). On the other hand, patients

at the microalbuminuria group were free of diabetic complications

at the time of urine collection. The majority of the patients in this

cohort were not on inhibitors of the angiotensin system (i.e.

Angiotensin Enzyme Inhibitors or Angiotensin Receptor Blockers),

with the exception of patients with overt nephropathy who were

receiving them (8/10 patients). Furthermore, these patients were

more likely to receive additional agents for blood pressure control,

paralleling the severity of their renal disease.

Due to the insufficient amount of RNA, we did not obtain good

quality mRNA measurement in 6 samples from 3 patient pairs in

the PMA sub-group and one urine sample from the IMA group.

Nevertheless, reproducibility of un-normalized Cq signals from

Figure 3. Results of Principal Component Analysis rendered according to pair identification number. This figure utilizes the same
bivariate projection setup as Figure 2, but points are symbol coded according to the unique identifier used when matching patients into pairs. For
patients with MA who contributed two samples (one at the baseline and one at the microalbuminuric state) there are more than 2 points with the
same symbol.
doi:10.1371/journal.pone.0054662.g003
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urine in the rest of the samples was high (Dataset S1 for un-

normalized Cq values). The quality of miRNA measurements was

assessed by using the detection probability of controls (Fig. S1) and

the reproducibility of un-normalized signals in replicates present in

the qPCR panels (Fig. S2). The detection probability of negative

(BLANK) and positive (UniSp6 and UniSp3) controls matched the

expected ratios (0%, 50% and 100% respectively). The corre-

sponding Cq values for the spiked controls were much less variable

than those of endogenous (miRNAs and small RNA) controls

suggested by the platform manufacturer without evidence of

substantial inter-plate variability. Hence fold changes were

computed relative to the UniSp3 RNA for all subsequent

comparisons.

Principal Component Analysis

A global view of the changes in urinary miRNA profiles

according to the clinical classification was performed with PCA

and the results for the first five principal components (PC) are

shown in Figure 2. Samples from Group A (DN vs. N) were

grouped together in some projections (e.g. see second plot in the

first row depicting PC1 v.s. PC2 ), while in other projections (PC3

vs. PC4 show in the last plot from the left, second row) samples

from both comparisons grouped together. Although patients with

DN appear to form a cluster distinct from those who never

developed nephropathy (projections PC2 v.s.PC3-5, in the second

row) there was no obvious clustering structure in the profiles of

patients with MA at either the baseline or the microalbuminuric

state).

To explore whether patients who had been matched into pairs

had similar microRNA profiles we plotted the results of the PCA

according to the pair identifier. These results which are shown in

Figure 3 show that patients within pairs have similar profiles (the

distance between points with the same plotting symbol appears

smaller than the distance of points from patients from different

pairs). Taken together these data suggest that there global changes

in the miRNA profile associated with the different stages of

diabetic nephropathy. Furthermore, the clustering of profiles with

patient pairs suggests that there are other determinants of

microRNA expression which correlate with the variables we used

to match patients during sample selection.

Comparisons between IMA and PMA
219 miRNAs yielded measurable signals in .75% of the 33

urine samples profiled for this comparison. We observed only a

few differences in the baseline samples. Relative to the IMA group,

patients with PMA demonstrate decreased miR-323b-5p levels

(Fold Change (FC) 0.13, 95% CrI: 0.03–0.67, p = 0.014) and

increased levels of: miR-122-5p (FC: 7.45, 95% CrI: 1.77–32.05,

p = 0.006), miR-429 (FC: 4.72, 95% CrI: 1.14–19.86,p = 0.034), at

baseline.

Table 2 shows the miRNAs with altered levels in the MA samples

relative to baseline. Appearance of micro-albuminuria is associat-

ed with decreased levels of miR-323b-5p and increased urine

concentration of miR-429. In Table 3 we summarize the incremental

FCs of specific miRNA levels in microalbuminuric samples

between PMA and IMA patients. Of note, two miRNAs in the

PMA patients (miR-373-5p and miR-323b-bp) exhibit concentra-

tion changes that are in the opposite direction relative to the

changes observed when both IMA/PMA patients manifest MA.

There were no further changes observed in the levels of the

remaining miRNAs found to be different in Table 2, while only a

small number of miRNAs appear to show incremental concen-

tration changes in the microalbuminuric urine from PMA patients.

Table 3. Incremental differential expression of miRNAs
between albuminuric samples from patients with persistent
microalbuminuria (PMA) relative to patients with intermittent
microalbuminuria (IMA).

miRNA

Fold
Change 95% Credible Interval P

Under-expressed

hsa-miR-589-5p
hsa-miR-589

0.05 0.00–0.98 0.048

hsa-miR-373-5p
hsa-miR-373*

0.07 0.01–0.45 0.007

hsa-mir-520h 0.12 0.02–0.80 0.026

hsa-miR-92a-3p
hsa-miR-92a

0.14 0.02–0.98 0.048

Over-expressed

hsa-miR-323b-5p
hsa-miR-453

31.51 2.91–368.48 0.0044

hsa-miR-433 16.24 1.39–196.0 0.028

hsa-miR-17-5p
hsa-miR-17

14.82 1.09–214.0 0.044

hsa-miR-222-3p
hsa-miR-222

11.22 1.13–102.0 0.036

hsa-let-628-5p 7.59 1.07–52.2 0.044

For miRNAs whose name changed after the introduction of the 18th version of
MiRBase, we provide both the previous (in italics) and the recent (regular font)
name.
doi:10.1371/journal.pone.0054662.t003

Table 2. Differentially expressed miRNAs between
albuminuric and non-albuminuric (reference) samples from
patients with MA.

miRNA Fold Change 95% Credible Interval P

Under-expressed

hsa-miR-323b-5p
hsa-miR-453

0.07 0.01–0.42 0.0030

hsa-miR-221-3p
hsa-miR-221

0.15 0.03–0.80 0.0280

hsa-miR-524-5p 0.19 0.04–0.88 0.0350

hsa-miR-188-3p 0.28 0.08–0.98 0.0454

Over-expressed

hsa-miR-214-3p
hsa-miR-214

8.71 1.97–38.05 0.0050

hsa-miR-92b-5p
hsa-miR-92b*

8.65 1.11–67.46 0.0394

hsa-miR-765 7.22 1.78–30.98 0.0046

hsa-miR-429 5.92 1.42–23.94 0.0136

hsa-miR-373-5p
hsa-miR-373*

4.50 1.19–17.27 0.0296

hsa-miR-1913 4.37 1.30–15.47 0.0156

hsa-miR-638 3.71 1.02–13.81 0.0464

For miRNAs whose name changed after the introduction of the 18th version of
MiRBase, we provide both the previous (in italics) and the recent (regular font)
name.
doi:10.1371/journal.pone.0054662.t002
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Of note miR-324-3p, a demonstrated a trend towards a higher

incremental change in expression level (FC 2.90, 95% CrI: 0.53–

17.62,p = 0.11) in patients with PMA.

Comparisons between Patients with and without DN
283 miRNAs yielded measurable signals in .75% of the 20

urine samples from these 10 patient pairs. In Table 4 we

summarize the miRNAs with altered expression in the urine of

patients with nephropathy. With the exception of miRNA-221-3p,

which decreased similar to the comparison of follow up and

baseline MA samples, the remaining miRNAs did not demonstrate

altered expression in any of the previous comparisons. Finally,

there was a trend for miR-589 and miR-323b-5p to be increased

in the urine of patients with overt nephropathy. The correspond-

ing FCs were 2.99, (95% CrI: 0.81–9.95, p = 0.087) and 4.45,

(95% CrI: 090–29.1, p = 0.08).

miRNA Target Functional Profiling
Figure 4 summarizes the number of predicted mRNA targets

of the differentially expressed miRNAs in diabetic urine based on

the prediction databases. Analysis of enriched terms in REAC-

TOME (Table 5) suggest that the predicted miRNA targets map to

a distinct pathways involving growth factor signaling, apoptosis,

immunity, substrate metabolism, transmembrane transport and

certain non-kidney related terms. Furthermore, the identified

pathways overlapped considerably between the comparisons of

patients with overt nephropathy and normals, and follow-up v.s.

baseline samples from MA patients. In the comparisons within

baseline and follow-up MA samples we found only a few (,80)

targets mapping to annotated REACTOME pathways, thus

Table 4. Differentially expressed miRNA between patients
who developed overt diabetic nephropathy relative to
patients who did not.

miRNA Fold Change 95% Credible Interval P

Under-expressed

hsa-miR-221-3p
hsa-miR-221

0.25 0.07–0.86 0.0330

Over-expressed

hsa-miR-619 6.98 1.86–27.80 0.0030

hsa-miR-486-3p 6.43 1.36–26.66 0.0290

hsa-miR-335-5p
hsa-miR-335

5.81 1.70–20.71 0.0050

hsa-miR-552 5.47 1.19–27.50 0.0310

hsa-miR-1912 4.72 1.01–23.92 0.0490

hsa-miR-1224-3p 4.45 1.10–17.48 0.0430

hsa-miR-424-5p
hsa-miR-424

4.38 1.35–15.13 0.0130

hsa-miR-141-3p
hsa-miR-141*

3.81 1.29–11.17 0.0140

hsa-miR-29b-1-5p
hsa-miR-29b-1*

3.03 1.09–8.61 0.0370

For miRNAs whose name changed after the introduction of the 18th version of
MiRBase, we provide both the previous (in italics) and the recent (regular font)
name.
doi:10.1371/journal.pone.0054662.t004

Figure 4. Distribution of the number of mRNAs targeted by differentially regulated microRNAs in diabetic urine.
doi:10.1371/journal.pone.0054662.g004
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Table 5. REACTOME pathway terms enriched in targets of differentially expressed miRNAs.

Albuminuric vs Normoalbuminuric
in the MA group Overt vs Normal

Pathway P-value Fraction P-value Fraction

Signal Transduction

Signaling by SCF-KIT 0.006 18/76 0.001 41/76

Signaling by Insulin receptor 0.009 23/109 ,0.001 65/109

Signaling by NGF 0.016 38/212 ,0.001 119/212

Signaling by Rho GTPases 0.024 24/125 ,0.001 71/125

Signaling by ERBB4 0.027 16/76 ,0.001 45/76

Signaling by ERBB2 0.035 19/97 ,0.001 59/97

Signaling by PDGF 0.040 22/118 ,0.001 67/118

Signaling by VEGF 0.041 4/11

Signaling by EGFR 0.044 20/106 ,0.001 64/106

Dowstream signaling of activated FGFR 0.038 19/98 ,0.001 61/98

Signaling by BMP 0.001 16/23

Signaling by TGFb 0.004 11/15

DAG and IP3 signaling 0.010 20/31

PIP3 activates AKT signaling 0.020 15/26

RAF/MAP kinase cascade 0.031 7/10

Signaling by Notch 0.036 13/23

Interaction of integrin a5b3 with fibrillin 0.044 2/3

Interaction of integrin a5b3 with von Willbrand factor 0.044 2/3

Integrin cell surface interactions 0.024 40/85

Cell-Cell Communication 0.009 57/122

Cell Cycle

G0 and early G1 0.040 12/21

Metabolism

Metabolism of lipids and lipoproteins 0.022 51/305 0.005 132/205

Cysteine formation from homocysteine 0.016 2/2

Integration of energy metabolism 0.009 45/93

Metabolism of proteins

Post-translational protein modification 0.045 30/173 0.019 76/173

Transmembrane transport of small molecules 0.007 67/396 ,0.001 189/396

Membrane trafficking 0.032 40/84

Apoptosis

Caspase-8 is formed from procaspase-8 0.019 4/9

Gene Expression

RNA Polymerase II Transcription 0.050 19/101

Capping complex formation 0.039 7/26

Nuclear Receptor Transcription 0.005 28/51

Steroid hormones

Vitamin D (calciferol) metabolism 0.048 3/7

Activated AMPK stimulates fatty-acid oxidation in muscle 0.008 12/18

Neuronal System

Heterodimerization of CEACAMs 0.047 3/3

Transmission across Chemical Synapses ,0.001 66/108

Immune System

Interleukin-2 signaling 0.029 10/41

14-3-3 zeta binding allows recruitment of PI3K 0.033 5/15

Signaling by interleukins 0.002 54/105
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precluding a meaningful assessment with this structured vocabu-

lary. The results from Gene Ontology (GO) analysis (Datasets S2,

S3, S4, S5) were consistent with REACTOME, and also identified

enrichment of terms relating to nitrogen compound metabolism,

Golgi/membrane/ER vesicle recycling, ubiquitin-dependent deg-

radation, cell adhesion and cell adhesion. In addition, GO

analyses also suggested the enrichment of renal (GOBPID:

0072166, p = 0.03) and non-renal developmental (GOB-

PID:0048557, p = 0.0002, GOBPID:0060174, p = 0.002) path-

ways, myoblast determination (GOBPID:007518, p = 0.0002)

innate immunity (GOBPID:0002717, p = 0.001) and free radical

generation/oxidative stress (GOBPID:0071371/0071450-51,

p = 0.01).

Discussion

In this paper we report the changes of urinary miRNA spectrum

in T1D patients with different stages of albuminuria and

nephropathy. We found concentration changes on specific

miRNAs that may involve in specific pathways known to be

altered in various forms of renal diseases. Since the kidney is the

most likely source of these urinary miRNAs, we suggest that these

miRNAs may be of biological and clinical significance in T1D.

A global Principal Component Analysis viewpoint of the

microRNA profiles analyzed in this report suggests that there

are some differences in the expression of urinary microRNA which

appear to follow the clinical classification of patients and urinary

samples with respect to albumin excretion. The apparent

clustering of profiles from patients who had been matched into

pairs, suggests that there are other factors affecting urinary

microRNA besides the clinical classification of disease. Such

factors are likely related to the variables we used in patient

matching e.g. age, sex, and duration of disease and level of

glycemic control. This observation justifies post-hoc our decision

to explore specific microRNA signatures across the spectrum of

clinical classification of patients and samples using a matched case

control design.

Our matched case-control Bayesian analyses highlight a set of

27 differentially regulated miRNAs across different clinical stages

of diabetic renal disease. Previous work using experimental,

clinical chemistry or biopsy samples has demonstrated differential

expression of many of these miRNAs in a variety of renal

conditions: hypertensive nephrosclerosis (with an increase of miR-429

levels in human renal biopsies [25]), mouse models of chronic

renal injury (increased miR-214 levels [26]) and renal senescence [27]

(increased miR-335 levels). Other miRNAs have also been

implicated in immunologically mediated renal diseases such as

lupus nephritis(miR-429 [28], miR-638,miR-373-5p and miR-92b-

5p [29]), IgA nephropathy (miR-429 correlating with the level of

proteinuria and renal function [30]), and acute T cell rejection of renal

allografts (decreased miR-323-5p, miR-638/miR-373-5p [31]).

Based on miRNA target prediction databases, miRNAs showing

concentration changes in diabetic urine may regulate genes that

play key roles in renal physiology and pathophysiology: fibronectin a

key component of the extracellular matrix that accumulates in

diabetic nephropathy [32] (miR-17-5p [33] which is also regulated

in senescence models of renal proximal tubule epithelial cells [34]),

PKD2 responsible for polycystic kidney disease (miR-17-5p

[35,36]), Sod2, superoxide dismutase, a mitochondrial antioxidant

enzyme in renal mesangial cells(miR-335 [27]), Claudin-16 a key

component of the tight junction in the thick ascending limb (has-

miR-323b-5p [37]), the tumor suppressor protein PTEN which is

decreased in DN [38] (and is directly regulated by miR-221-3p/

222-3p [39] in heterologous systems), Abcg2 (a stem cell marker

[40] regulated by miR-520h [41]), Vhl (a tumor suppressor gene

involved in renal tumours targeted by miR-92a [42]). Hence, prior

research highlights a kidney related role for a number of the

miRNAs found to be differentially expressed in our analyses,

suggesting that these miRNAs may be important mediators of

renal damage rather than simple biomarkers of an underlying

injury process without pathobiological significance.

In addition, intriguing connections in heterologous systems have

been reported for other miRNAs highlighted in this report: miR-

221-3p/222-3p (neovascularization and vascular neointimal hy-

perplasia [43], Advanced Glycosylation End product mediated

vascular damage [44]), miR-424 (regulating angiogenesis in the

setting of hypoxia by targeting Cul2 [45] as well as Vegfr2 and Fgfr1

[46]). Many of these conditions have been recognized as clinically

important vascular complications of diabetes, often presenting

simultaneously with the development of nephropathy; hence one

may conjecture that the spectrum of urine miRNAs may allow one

to stratify the risk of diabetic patients for developing extrarenal

complications.

With the samples used in this study, we could not verify the

association of miR-192 with DN. Higher miR-192 levels have

been previously linked to renal damage in the streptozocin (T1D)

and the db/db (T2D) mouse nephropathy models [47] through

TGFb –mediated production of miR-192 by mesangial cells. More

recent evidence points towards a positive feedback loop for TGFb
production involving miR-192 and miR-200b/c in mesangial cells

[48]. On the other hand, decreased miR-192 was noted in biopsy

specimens of patients with advanced diabetic nephropathy, while

miR-192 expression was positively correlated with EGFR and

negatively correlated with the degree of fibrosis suggesting a

protective role for miR-192 [49]. In that report, miR-192

expression was predominantly localized to tubular epithelial cells

and TGF exposure was found to decrease both miR-192 and E-

cadherin mRNA levels. Hence it appears that miR-192 may be

Table 5. Cont.

Albuminuric vs Normoalbuminuric
in the MA group Overt vs Normal

Pathway P-value Fraction P-value Fraction

Hemostasis ,0.001 206/426

Platelet homeostasis 0.008 14/56

Platelet activation, signaling and aggregation 0.011 35/187

P-value: the p-value of the hypergeometric test unadjusted for multiple comparisons, Fraction: number of proteins in the pathway that are targets of differentially
expressed miRNAs over the total number of proteins in each pathway.
doi:10.1371/journal.pone.0054662.t005
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regulated differently in different renal cell populations, possibly in

a DN stage specific manner. This hypothesis is supported by

recent evidence which failed to detect alterations in miR-192

expression in microdissected glomeruli of Munich Wistar Fromter

rat model of spontaneous develop diabetic nephropathy [50].

Since the miRNAs in the urine originate from diverse cellular

sources in the kidney, the lack of a differential expression of miR-

192 in this report may reflect the cancelation of two diverging

(positive in mesangial, negative in tubular epithelial cells) signals

leading to an overall ‘‘null’’ effect.

Most of the identified miRNAs exhibited changes in one disease

state rather than showing a quantitative trend of increasing or

decreasing expression paralleling the severity of albuminuria. To

understand this pattern we examined the predicted targets of these

miRNAs and the corresponding pathways using structured

vocabularies for biological annotation. Despite the disparate

identity of the miRNAs, the mRNAs that are predicted to be

targeted by them map to pathways that have been previously

shown to be pathophysiologically relevant to DN: TGF (the

prototypical ‘‘renal-fibrosis’’ culprit [51]), PDGF (associated with

mesangial proliferation and fibrosis [52]) and FGF (clinical

predictor of progression in diabetic nephropathy [53]).

Our analyses suggest the involvement of NGF (Nerve Growth

Factor, a prototypical Central Nervous System trophic molecule)

in diabetic nephropathy. This may lead to a new direction toward

the development of T1D associated nephropathy since so far the

renal expression of NGF has been thought to reflect the level of

glycemic control [54]. Nevertheless, NGF has been recently shown

to be involved in tissue repair and fibrosis in liver, skin and lung

[55], and its involvement in non-diabetic renal disease has been

noted in a number of biopsy studies over the last 30 years [56], so

that the association of NGF with diabetic nephropathy appears

plausible.

Growth Factor as well as other pathways (e.g. cell-cell and cell-

matrix) are targeted from the microalbuminuric stage, while the

number of targeted genes in these pathways increased at the overt

nephropathy stage. Hence an ‘‘exposure-response’’ relation

appears at the target (mRNA) rather than the regulator (miRNA)

level. This relation stems from the overlapping, combinatorial,

binding specificities of miRNAs to their mRNA targets so that the

same pathways may be targeted by rather different sets of miRNAs

depending on the prevailing cellular context.

An interesting aspect of the targets associated with the miRNAs

identified in this study is the lack of an overwhelming association

between growth factor transduction pathways and the tempo of

MA. Rather, an association with tissue damage, innate immunity,

metabolic pathway and developmental program (re)-activation was

shown, suggesting that recurrent bouts of metabolic or free

oxidative stress may account for the persistency and possibly the

progression of MA to overt nephropathy. To the extent that these

statistically determined patterns are verified experimentally,

further development of miRNA target identification may have

potential clinical implications as an early diagnostic test for

diabetic renal disease or to select and or monitor response to

emerging therapies for diabetic renal disease; e.g. pentoxifylline

[57], pirfenidone [58] and bardoxolone [59] which interfere with

pathways implicated in our analyses.

The findings of our study should be interpreted in light of a

number of limitations. First, we analyzed urine samples from an

era in which current therapies for diabetic nephropathy (angio-

tensin converting enzyme inhibitors and angiotensin receptor

blockers) were not widely used early in the disease process. Hence

most of the patients with MA were not on ACEi/ARB inhibition

even though evidence from randomized trials suggest that these

agents delay the appearance of microalbuminuria [60,61]. On the

other hand, most patients with overt nephropathy were on such

agents with persistence of their macroalbuminuric state. Hence,

our findings reflect the natural urinary miRNA phenotype of the

early stages of diabetic nephropathy, the failing treatment one in

advance disease and are not proposed to be representative of

patients undergoing optimal treatment with these agents. Although

this would appear to represent a major limitation of this study, the

data presented here are rather unique in that they provide

information on both untreated patients as well as those failing

therapy, allowing some insight into the pathways that underline

treatment resistance to the current treatment paradigm. This is

exemplified by miR-324-3p which was apparently increased in

patients with PMA not receiving an ACEi in accordance with

recent animal data suggesting that this miRNA is a promoter of

renal fibrosis and is downregulated by ACEi inhibition. At the

same time, our patients with overt nephropathy showed no

tendency of this miRNA to change relative to controls (FC was

1.06 in this dataset) suggesting that some of the discordance in

miRNA profiles may be the result of therapies preferentially

affecting certain miRNA species but not others. Since this

investigation never intended to delineate treatment induced

changes in urine miRNA profiles, future studies should examine

both responders and non-responders at different points in time to

determine miRNA correlates of therapeutic success and failure.

Second, while our experience is no different from previous studies

examining urine miRNA profiles in renal transplantation [31,62],

systemic lupus [28] and chronic kidney disease [63], many of the

urinary miRNA signals in this analysis were of low magnitude

requiring a large number of PCR cycles and careful optimization

of qPCR conditions [64] to be detected. Third, we inferred the

renal origin of urine miRNAs yet the possibility that the latter

derive from other sources such as plasma cannot be ruled out. As

the approximate molecular weight of miRNAs (,6.2–7.2 kDa) is

below the permselectivity threshold of the glomerular filtration

barrier (, 60 kDa) it is possible that a substantial portion of

circulating plasma miRNAs is ultrafiltered in the urine. Never-

theless, a recent study in chronic kidney disease found a

dissociation between plasma and urine miRNA spectrum [63]

suggesting a substantial non-plasma source for urine miRNA. To

resolve these issues, simultaneous profiling of plasma and urine

should be undertaken, a task which was not possible in this report

due to the unavailability of plasma samples. Fourth, some of the

miRNAs identified as differentially regulated have been found to

play a role in non-diabetic renal disease, so that the reported

associations may lack disease specificity. We tried to overcome this

limitation by combining the changes in miRNA concentrations

with the simultaneous predictions of miRNA targets. Most of the

pathways identified have been linked to the development of

diabetic nephropathy among different animal models and clinical

studies which suggests the combination of using specific miRNA

levels and its interacting mRNA targets as a general approach to

enhance interpretability and specificity of miRNA profiles.

Furthermore, the use of panels of markers will be much more

informative and can potentially distinguish pathologies that

produce overlapping sets of markers.

In summary, a set of 27 differentially miRNAs were identified in

matched urine samples from T1D patients with different stages of

diabetic nephropathy, whose renal outcomes had been ascertained

after prolonged follow up. These miRNAs map to pathways of

known relevance to the development of diabetic renal disease,

strongly suggesting the renal source of the miRNAs. Our results

suggest that a number of miRNAs in urine may serve not only as

molecular signatures of distinct clinical phenotypes in diabetic
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nephropathy but also as early indicators of alterations in specific

biological processes in the kidney which can be of importance in

individualizing emergent therapies for diabetic kidney disease.

Further studies are needed to extend these observations in the

setting of T2D and clarify the potential utility of these miRNAs in

early diagnosis, risk stratification for progression and treatment

selection or monitoring.

Supporting Information

Figure S1 Detection probability (% of PCR reactions
which yielded a signal up to a maximum of 38 cycles/all
PCR reactions utilizing the same primer set) of micro-
RNA controls classified according to patient clinical
status. hsa-miR-103/191/423-5p: endogenous microRNA con-

trols in the Exiqon platform per manufacturer, U6/SNORD38B/

SNORD49A: small RNA (non- microRNA) endogenous controls,

BLANK: Empty PCR wells, UniSP6: Spiked Control (included in

50% of plates), UniSP3: Spiked Inter-plate Calibrator (included in

100% of plates).

(TIF)

Figure S2 Raw signals (Ct) of microRNA controls
classified according to patient clinical status and plate
(A or B) for each of the 53 qPCR panels used in this
study. hsa-miR-103/191/423-5p: endogenous microRNA con-

trols in the Exiqon platform per manufacturer, U6/SNORD38B/

SNORD49A: small RNA endogenous controls, BLANK: Empty

PCR wells, UniSP6: Spiked Control (included in 50% of plates),

UniSP3: Spiked Inter-Plate Calibrator (included in 100% of

plates). Signal reproducibility appeared to be higher for the spiked-

in controls than the endogenous ones; furthermore there did not

appear to be a substantial inter-plate difference to justify the use of

Inter-Plate Calibration.

(PNG)

Table S1 Names and accession numbers of microRNA
species analyzed in this study. miRBase names prior to the

18th release are included as well to facilitate comparison with

earlier literature. Retired entries in the 18th release of miRBase are

marked as‘‘DEAD’’; in the case of microRNA species not present

in a particular database a ‘‘NA’’ entry was included in the table.

(XLS)

Text S1 Supplementary Methods and Bayesian Soft-
ware Code.
(PDF)

Dataset S1 Un-normalized Cq values from individual
patient experiments.
(ZIP)

Dataset S2 GO term enrichment analysis of targets of
differentially expressed microRNAs in baseline (nor-
moalbuminuric) urine samples from patients with PMA
versus patients with IMA.
(ZIP)

Dataset S3 GO term enrichment analysis of targets of
differentially expressed microRNAs in follow up (micro-
albuminuric) urine samples from patients with PMA
versus patients with IMA.
(ZIP)

Dataset S4 GO term enrichment analysis in follow-up
versus baseline samples from PMA patients.
(ZIP)

Dataset S5 GO term enrichment analysis of targets of
differentially expressed microRNAs in urine samples
from patients with overt nephropathy versus patients
without nephropathy.
(ZIP)
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