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Abstract

Most of the position weight matrix (PWM) based bioinformatics methods developed to predict transcription factor binding
sites (TFBS) assume each nucleotide in the sequence motif contributes independently to the interaction between protein
and DNA sequence, usually producing high false positive predictions. The increasing availability of TF enrichment profiles
from recent ChIP-Seq methodology facilitates the investigation of dependent structure and accurate prediction of TFBSs.
We develop a novel Tree-based PWM (TPWM) approach to accurately model the interaction between TF and its binding site.
The whole tree-structured PWM could be considered as a mixture of different conditional-PWMs. We propose a
discriminative approach, called TPD (TPWM based Discriminative Approach), to construct the TPWM from the ChIP-Seq data
with a pre-existing PWM. To achieve the maximum discriminative power between the positive and negative datasets, the
cutoff value is determined based on the Matthew Correlation Coefficient (MCC). The resulting TPWMs are evaluated with
respect to accuracy on extensive synthetic datasets. We then apply our TPWM discriminative approach on several real ChIP-
Seq datasets to refine the current TFBS models stored in the TRANSFAC database. Experiments on both the simulated and
real ChIP-Seq data show that the proposed method starting from existing PWM has consistently better performance than
existing tools in detecting the TFBSs. The improved accuracy is the result of modelling the complete dependent structure of
the motifs and better prediction of true positive rate. The findings could lead to better understanding of the mechanisms of
TF-DNA interactions.
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Introduction

Transcription factors are group of proteins that participate in

gene regulation by binding to specific short DNA sequences,

known as transcription factor binding sites (TFBS). Accurate

identification of the TFBSs is the first and perhaps the most critical

step in modeling the gene regulatory mechanisms from datasets

generated by recent high-throughput approaches, such as ChIP-

Seq/chip [1]. TFBSs are usually short and degenerated at multiple

positions. Although numerous computational approaches to

predict the TFBSs have been proposed in recent years, the high

false positive rate is still a problem. The problem of predicting

TFBSs still remains as one of the hard problems in computational

biology [2,3,4,5,6]. Depending on the representation of the

TFBSs, the computational prediction methods fall into three

broad classes: the PWM-based approaches [7,8], consensus

sequences-based or regular expressions-based approaches

[9,10,11] and feature-based methods [12,13].

Generally, PWM-based approaches assume independence

between the base positions of the sequence motif and suffer from

high false positive rates. However, recent studies have shown that

the independent assumption is not true and modeling the

dependencies in TFBSs could lead to better predictions [14].

Examples include feature-based method [13,15], HMM-based

method [16,17], Markov Chain based method [18]. These

methods could account for the strong nearest-neighbor (adjacent

or local) dependencies, but still fail to incorporate potentially

important longer-range interactions.

Long-range dependency in the DNA motif could be important

due to the 3-D structure of the TFBS-proteins binding complex

[19]. The 3-D structure of the complex makes the cooperation

between non-adjacent nucleotide positions possible. Several

approaches have been proposed to incorporate such dependency.

Examples include Optimized Markov chain model [20], MDD

[21], PVLMM [22], Bayesian Network [23], Generalized PWM

[24], non-parametric method [25]. Generalized PWM extends the

original PWM model to include pairs of correlated positions and

uses MCMC algorithm to sample in the model space. Optimized

Markov chain model reorders the nucleotides positions of the

motif such that the most significantly dependent positions become

pairs of adjacent positions, and then a Markov model is trained

using the reordered training sequences.

In addition, the recent experimental studies have shown that a

particular transcription factor may have different binding profiles

under different condition, for example in the presence of different

co-regulators, which suggests that the overall binding profile could

be context-dependent or a mixture of different subclasses [26].

Previous studies showed that for factors which bind to divergent

binding sites, mixture of multiple PWMs increase performance of

the prediction [27,28]. The potential cluster structure could make
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the dependent structure of the motif complicated. Thus, there is a

growing need to develop methods to model the biological

complexity of binding sites sequences beyond a single independent

model, especially methods which could efficiently and robustly

utilize the huge information provided by ChIP-Seq/chip exper-

iments.

Although the Bayesian network modeling can capture the

complicated dependent structure of the TFBS, the structure

learning of the network is very complex and time-consuming, and

the predicted network is very unlikely to be the true model [29].

Both MDD and PVLMM can also capture the complicated

dependent structure. MDD iteratively splits the training data into

a binary tree and different conditional independent models are fit

to the leaf nodes of the tree. PVLMM extends the optimized

Markov model by introducing variable length Markov models,

which allow for different order of dependency in the reordered

motif. However, all the existing methods are developed on a set of

aligned exact known TFBSs or splice sites. None of these methods

are optimized for analysis of large set of TF binding profiles

derived in ChIP-seq experiments.

ChIP-Seq experimental methodology combines chromatin

immunoprecipitation (ChIP) of a protein with massive parallel

sequencing of the retrieved genomic sequences, which are mapped

back to the reference genome to obtain significant peaks [1,30].

The sequences within those peaks are expected to be enriched with

TFBS of the corresponding TF of interest. ChIP-Seq is a genome

scale experiment, which provides a comprehensive analysis of

protein-DNA interactions. The sequence enrichment profiles

provide excellent opportunity to model the dependent structure

of the TFBS motif. However, with ChIP-seq technology, TF

bound genomic regions cannot be identified solely on the presence

of sequence enrichment on a genomic location, due to the non-

specificity of the antibody, indirect binding of TF through protein-

protein interactions, sequencing error, etc. Further computational

analyses are needed to extract precise TFBS location. Most of

existing computational approaches are not designed for processing

huge data sets. Applying them on all the sequences are very time

consuming. In practice, usually just the top candidate peaks are

submitted to those algorithms, rather than using all of the

sequence data from significant peaks [31].

Recently, several groups have started to develop prediction tools

utilizing the huge information provided by ChIP-Seq. HMS

extends the generalized PWM method to incorporate peak height

information to aid motif identification. In order to handle a large

number of input sequences and increase computational speed, it

uses a novel Gibbs sampling method, where the motif alignment

variables are sampled from a small proportion of top sequences,

rather than from all sequences [32]. ChIPMunk is an iterative

algorithm which can take into account the peak shape from ChIP-

Seq data and extract the single optimal motif from large data sets

like ChIP-Seq [33]. Gapped PWM examines the flexibility to

allow variable length motif models utilizing the ChIP-Seq data

[34]. However none of these methods can model the long range

dependency between different positions in the binding sites. The

huge amount information generated by ChIP-Seq experiments

gives an excellent opportunity to refine those PWMs stored in

transcription factor databases, like TRANSFAC [35] or JASPAR

[36]. Usually the stored PWMs come from a limited number of

experimentally verified TFBSs and do not truly reflect the general

binding affinity of transcription factors. A recent study refined

those stored PWMs based on a discriminative approach, however

they assume independent motif models and do not utilize the vast

information provided by ChIP-Seq experiments [37]. To this end,

we developed a novel Tree-based PWM approach to accurately

model the binding profile and also proposed a discriminative

approach (TPD) to construct it from the ChIP-Seq data.

The paper is organized as follows. In section 2, we describe how

to construct the TPWM and then the detailed implementation of

TPD. In section 3, we evaluate the performance of TPD on both

simulated and real biological data.

Methods

Modelling motif dependent structure by TPWM
Here we describe a Tree-based PWM approach to model the

dependent structure of a motif. This approach is inspired by the

maximal dependence decomposition (MDD) method discussed in

[21], which seeks to account for the most significant non-adjacent

as well as adjacent dependencies in the pre-mRNA splicing

signals, using an iterative subdivision of the sequence data.

TPWM is inspired by MDD but has been augmented by a

number of critical modifications that make it suitable for

modelling TFBS.

MDD can model long-range interaction and capture the most

significant dependencies between positions, provided sufficient

data are available to do so reliably. MDD assumes the consensus

sequence of a motif, which defines exactly what sequences of

letters constitute a match, is known and a Bernoulli random

variable at each position of the motif to model whether the

sequence letter at this position is consistent with the consensus

sequence or not. MDD also applies the chi-square test to measure

the dependence between any two positions. However, chi-square

test may fail when there are zeros in the contingency table (the

asymptotic distribution of the test statistic is no longer chi-square).

In the following proposed TPWM approach, we assume the

consensus sequence of the true motif is unknown and a

multinomial random variable at each position to model the

possible nucleotides at that position. We also utilize total variation

distance or Hamming distance [32], instead of chi-square, to

measure the dependence.

Let ldenote the motif length and Ni i~1, . . . ,lð Þ be a

multinomial random variable, whose possible values are the 4

nucleotides at position i of the motif. Given a set of n aligned

TFBSs denoted by D, each of which has length l, the following

four steps are applied:

(i) For each pair of positions i,j with i=j, first estimates the

distribution of the bivariate random variables Ni,Nj

� �
under null

hypothesis (independent between position i and j): P̂P Ni~ð
x,Nj~yÞ~ gx ið Þ

n

gy jð Þ
n

where gx ið Þrepresents the number of

TFBSs whose i-th position is occupied by nucleotide x. Then

estimates the distribution of Ni,Nj

� �
under alternative (these two

positions are dependent): �PP Ni~x,Nj~y
� �

~
gxy i,jð Þ

n
, where

gxy i,jð Þ represents the number of TFBSs whose i-th and j-th

positions are occupied by nucleotides x and y, respectively.

(ii) Calculate the Hamming distance between the two kinds

of estimations in (i) as HD i,jð Þ~
X

x[ A,C,G,Tf g

X
x[ A,C,G,Tf g

gx(i)

n

gy(j)

n
{

gxy(i,j)

n

����
����: Larger HD(i,j) denotes stronger depen-

dency between position i and j.
(iii) For each position i calculate the sum Si~

X
i=j

HD(i,j),
which can be considered as a measure of the amount of

dependence between the variable Ni and the nucleotides at all

other positions of the motif.

(iiii) Choose the value i1such that Ni1 is dependent with at least

one of the other positions and Si1 is a maximal. Position i1 is called

maximal dependent position. Then partition D into four subsets

according the nucleotide at position i1: DA, all sequences which

TFBS Profile Refining from ChIP-seq Data
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has nucleotide A at position i1; and DC , DG and DT which has

nucleotide C, G and T at position i1 respectively. Only those

subsets which have the number of sequences larger than a preset

minimum value are considered as splitting branches. The preset

minimum value is used to avoid unreliable estimations of the

conditional probabilities after further subdivision.

Next repeat the four steps on the splitting branches and on

branches thereof, and so on, yielding a tree based PWM (each

non-leaf node has at most four children). The height of this tree is

at most l{1 and this process of subdivision is carried out

successively on each of those splitting branches until no significant

dependencies between positions in a branch are detected (Here,

the positions iand j are considered to be dependent if

HD(i,j)w0:2[32] ). Thus a leaf node is not split either due to

no dependency detected or the number of the sequences in each of

the subsets is less than the preset minimum value.

Finally, separate independent PWM models are derived for all

the leaf nodes of the tree, and these are combined with the

probability distributions at each non-leaf node to form a composite

model. This TPWM is updated by the discriminative approach

proposed in the following section.

TPD Algorithm
Recently, an algorithm to refine a motif that best discriminates

between a positive set of sequences and a background one, using

ChIP-chip data was presented [37]. The proposed algorithm

controls the false positive rate by fixing the percentage of binding

sites predicted in the background dataset (or negative dataset). In

that paper 30% was chosen by the authors based on the best

compromise between the positive and the negative sets.

Here, we propose an alternative discriminative approach (TPD)

to construct the TPWM from an initial input PWM using ChIP-

Seq data. Instead of fixing the false positive rate, we utilize

Matthew Correlation Coeffication (MCC) to determine the best

separation between the positive and negative sets. The MCC is

defined as follow:

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p ,

where TP,TN,FP and FN stand for true positive, true negative,

false positive and false negative, respectively.

The main inputs of the algorithm are two sets of sequences: Sz,
supposed to contain the sequences enriched with binding sites, and

S{,supposed to contain sequences that do not have any binding

sites. In addition to Szand S{, by utilizing an initial PWM and a

predefined set of false positive rates G, the algorithm outputs a

TPWM, which best discriminates Sz and S{: This algorithm first

constructs TPWM for each false positive rate in G, and then outputs

the best TPWM that has the largest MCC value. The flowchart of

the proposed algorithm is presented in Figure 1, and we assume that

each sequence in Sz may contain at most one binding site.

For each of the inner iteration, the aligned TFBSs (D) are obtained

by scanning every sequence in the positive set Sz using current

TPWM and the cutoff value identified by scanning S{ correspond-

ing to the current false positive rate p: The convergence of the inner

iteration is achieved if the KLD value is less than a given threshold,

0.001 in our case. The initial PWM is given by the corresponding

motif patterns stored in TRANSFAC or JASPAR databases.

Results

Synthetic Datasets
To evaluate the ability of TPD for identifying the correct motif

under different conditions, we conducted extensive simulation

studies. We consider two simulation scenarios: (i) generating the

nucleotides of the motif independently, (ii) assuming dependency

in some positions.

Independent motif model Simulations. With respect to

the independent model, following the simulation scheme employed

in [38] , four motif models are manually created (Figure S1 and

Table S1 ), representing two different motif widths (10 bp and

20 bp) and two different degrees of conservation (strong and weak)

measured by
1

l

Xl

i~1

X4

j~1

pij log2 4pij

� �
, where pij denotes the

elements in the PWM matrix (if pij is zero, then that term is

taken as zero). The logo plots are generated using R package

‘seqLogo’ [39]. Finally, two different motif abundance schemes

(Table S2) were considered for a total of eight combinations in the

simulation study. ‘‘Abundant scheme’’ means that each sequence

Figure 1. Flowchart of TPD algorithm.
doi:10.1371/journal.pone.0024210.g001
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contains the motif with probability equal to 0.8, while ‘‘weak

scheme’’ with probability equal to 0.5. Totally, there are eight

simulation settings, which cover a wide range of scenarios.

For each setting, we simulate 10 test datasets. Each dataset is

generated in the following manner. A set of 3000 sequences, each

of length 200 bp, are generated from a third-order Markov model

with parameters estimated from the collection of 5 kb promoter

sequences of UCSC known genes in the human genome [40].

Following the abundance schemes mentioned previously, we then

insert the corresponding motif into the sequences of the test data

set at random positions. Ten negative datasets are generated by

randomly shuffling the sequences of the 10 test datasets once using

Fisher-Yates shuffle algorithm.

We then run TPD on the positive and the corresponding

negative datasets, using the consensus sequences of the corre-

sponding motif model as the initial input. We select HMS,

ChIPMunk (the two latest motif discovery algorithms) and the

well-known motif discovery tool, MEME as benchmark algorithms

for comparative analysis. To have a fair comparison, the consensus

sequence is also used as prior input of MEME. The HMS is used

with the -nobase option to specify a uniform prior distribution for

the motif start location and with the independent setting option,

dep = 1. All the other parameters are set to be recommended

values by the authors. ChIPMunk is set to be in simple mode.

We compare performance on motif pattern prediction accuracy,

which is defined as the sum of the absolute differences between the

true probabilities and their predictions: d~
Xl

i~1

X4

j~1

pij{p̂pij

�� ��,

where p̂pij denotes the prediction of pij : The lower the dis, the

better performance of the method achieves. The performances of

different methods under each setting are shown in Figure 2. The

missing bars under some settings indicate that the corresponding

methods fail to identify the true motif. ChIPMunk performs

significantly worse if the abundance level is low and performs

relatively better under the weak motif model. HMS performs well

for strong motif models and fails to identify the correct motif for

both weak cases. TPD does not detect any dependent positions for

any test dataset. Both TPD and MEME outperform the others and

Figure 2. Performance comparison on simulated data with independent motif model. The y-axis represents the sum of the absolute
differences between the true probabilities and their predictions from the corresponding motif finding methods. The error bar represents the standard
deviation of the differences across 10 datasets (A) Independent, motif width = 20 bp. (B) Motif width = 10 bp.
doi:10.1371/journal.pone.0024210.g002
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reliably identify the true motifs under all settings. It can be

concluded that TPD and MEME are competitive under

independent models.

Dependent motif model Simulations. With respect to the

dependent motif model, totally we create six different motif

patterns, representing different motif widths, different motif

information content and different numbers of correlation

positions (Table S3).

The dependent motif patterns are manually generated by setting

some positions in the independent motif models correlated together.

For the motif model with width equal to 10, two positions are set to

be correlated together and the joint distributions of these two

positions are specified in Table S4. For the motif model with width

equal to 20, four or six positions are set to be correlated together

(Table S5 and Table S6). Totally we have six different motif

patterns and similar to the independent simulation study, two

different motif abundance schemes are considered for a total of 12

combinations in the ‘‘dependent’’ simulation study.

In this simulation study, we run HMS with option ‘‘dep = 3’’ to

specify up to 3 correlated positions. Both MEME and ChIPMunk

assume that all the positions are independent and are used as the

same parameter setting as the independent scenario. The motif

pattern prediction accuracy is defined as the sum of the absolute

differences between the true marginal probabilities and their

predictions. TPD outperforms all the other methods for width = 20

(Figure 3A and 3B). Both TPD and MEME successfully identify

the correct motifs under all situations. For width = 10 and strong

motif pattern, MEME outperforms TPD based on the accuracy of

estimating marginal probabilities. The accuracy based on

marginal probabilities does not reflect the predicted dependent

Figure 3. Performance comparison on simulated data with dependent motif model. The y-axis represents the sum of the absolute
differences between the true probabilities and their predictions from the corresponding motif finding methods. The error bar represents the standard
deviation of the differences across 10 datasets. (A) Motif width = 20 bp, 6 correlated positions (B) Motif width = 20 bp, 4 correlated positions (C) Motif
width = 10 bp, 2 correlated positions.
doi:10.1371/journal.pone.0024210.g003
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structure. The dependent structures obtained by TPD for the

setting of abundant, 20 bp width and strong motif pattern with 6

correlated positions are shown in Figure 4.

In Figure 4, the tree diagram is used to represent the dependent

structure of the identified motif pattern. The number in each node

of the tree denotes the identified maximal dependent position. The

Figure 4. TPWMs of the predicted simulated dependent motif model by TPD for the strong, abundant and 6 correlated positions
(3,4,12,13,19,20) model for each of the 10 test datasets.
doi:10.1371/journal.pone.0024210.g004

Figure 5. Comparison of ER-alpha motif patterns identified by TPD, MEME, HMS, and ChIPMunk, as well as known pattern stored in
TRANSFAC database.
doi:10.1371/journal.pone.0024210.g005
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non-leaf nodes are split at those positions. Each non-leaf node has

at most four branches, which are in the order of ‘‘A’’, ‘‘C’’, ‘‘G’’

and ‘‘T from left to right. ‘‘No’’ in some of the leaf nodes indicates

that there is no significant dependencies detected in this node, such

that no further splitting is necessary. Other leaf nodes are not split

due to the number of sequences in every subset is less than the

preset minimum value. For example, the first tree in Figure 4

shows that position 20 is the maximal dependent position based on

all the 3000 simulated sequences. For those sequences which have

nucleotide "A" at position 20, position 3 is the maximal dependent

position. Similar for those sequences which have "C" or "T" at

position 20, position 4 or 19 is the maximal dependent position.

Due to the number of sequences which have "G" at position 20 is

less than a preset minimum number, the "G" branch is missing.

For the subset of sequences which have "C" at position 20, there is

no further subdivision at position 4 because the number of

sequences in every further subset is smaller than the preset

minimum value. The subset of sequences which have "A" at

position 20 is splitted at position 3 and no significant dependencies

between positions in "G" branch are detected. Again the other

three branches are missing because the number of sequences is

smaller than preset minimum value. Figure 4 shows that only those

correlated positions in the true motif model are recovered by TPD

and the first split position is at 20 for all these ten predicted

TPWMs. The splitting positions at the second level of the trees

vary a little bit, since the random generation of the datasets. Some

of the leaf nodes are not split due to the small number of

sequences. We increase the total number of sequence from 3000 to

6000 for this simulation setting and run TPD again. The results

are shown in Figure S2. The predicted TPWMs in Figure S2 show

that more number of sequence fed to TPD could lead to the

prediction of more complete dependent structure. It can be

concluded that TPD can successfully detect the existing compli-

cated dependent structure of the motif, provided sufficient data are

available.

The better performance achieved by TPD is due to the

modelling of the complicated dependent structure within the motif

by TPWM and the accurate prediction of the true positive rate

based on the maximization of the MCC value (Table S7 and

Table S8).

Real ChIP-Seq Datasets
To further evaluate our method, we tested TPD on three

published ChIP-Seq datasets. The datasets were generated using

antibodies against the neuron-restrictive silencer factor (NRSF)

[41], CCCTF-binding factor (CTCF) [42] and Estrogen receptor

Figure 6. Comparison of CTCF motif patterns identified by TPD, MEME, HMS, and ChIPMunk, as well as known pattern stored in
TRANSFAC database.
doi:10.1371/journal.pone.0024210.g006
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Figure 7. Comparison of NRSF motif patterns identified by TPD, MEME, HMS, and ChIPMunk, as well as known pattern stored in
TRANSFAC database.
doi:10.1371/journal.pone.0024210.g007

Figure 8. Predicted TPWM by TPD for ER-alpha.
doi:10.1371/journal.pone.0024210.g008

TFBS Profile Refining from ChIP-seq Data

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e24210



alpha (ER-alpha) [32]. NRSF is an essential vertebrate zinc finger

TF involved in diverse functions, including repressing neuronal

genes in non-neuronal tissues, develop neurons in the brain,

smooth muscles development, and play important roles in cancers

or other diseases [26,43]. CTCF is an evolutionarily conserved

zinc finger TF, involved in a wide variety of functions, including

negative regulation of MYC, insulator activity and repressing the

insulin-like growth factor 2 gene [44]. ER-alpha is a ligand-

activated TF known to play important role in breast cancer

development. Thus, identifying the correct target genes of these

three TFs and refining the motif patterns of them are of significant

interest. The ChIP-Seq data sets are downloaded from www.sph.

umich.edu/csg/qin/HMS/ and the number of candidate se-

quences is 22159 for CTCF, 10049 for ER-alpha and 4982 for

NRSF.

Similar to the simulation study, we selected HMS, ChIPMunk

and MEME for comparative analysis. We also compared our

method to TRANSFAC stored PWMs. We fed the entire set of

sequences to all these four programs. MEME was used with –con

option with the corresponding consensus sequences from

TRANSFAC as prior input. HMS was used with two different

versions, HMS-INDEP and HMS-DEP. TPD was used with the

PWM stored in TRANSFAC database as initial input. The

identified motif patterns of these three factors are presented in

Figures 5, 6 and 7.

With respect to ER-alpha factor shown in Figure 5, HMS

obtained a more palindromic motif relative to TPD, but lower

information content. TPD and MEME achieve quite similar motif

patterns. The information content of the left half site of the motif

identified by TPD and MEME is between TRANSFAC PWM

and the one identified by HMS. The motif pattern identified by

ChIPMunk has a gap position with high information content

compared with the ones identified by other methods. With respect

to CTCF shown in Figure 6, all the motif patterns are highly

Figure 9. The conditional profiles of ER binding sites identified by TPD given that the nucleotide at position 10 is equal to A, C, G
and T, respectively.
doi:10.1371/journal.pone.0024210.g009

TFBS Profile Refining from ChIP-seq Data
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consistent. With respect to NRSF shown in Figure 7, the motif

model identified by TPD, MEME, HMS and ChIPMunk all are

less conserved relative to TRANSFAC PWM. The one predicted

by ChIPMunk has the lowest information content. Note that the

PWM used to generate the logo plot for either TPD or HMS is

computed based on all the binding sites identified by them,

respectively and can’t demonstrate the dependent structure of the

motifs. The dependent structure of the motif pattern (TPWM) for

ER-alpha identified by TPD is shown in Figure 8.

In Figure 8, each number in the rectangle next to some non-leaf

nodes denotes the number of TFBSs available at that node. The

first splitting position is 10 and totally 6291 sequences out of 10049

contain at least one TFBS for ER-alpha factor. That means the

predicted true positive rate is 6291/10049 = 0.626 and the largest

MCC value is achieved at that rate. The depth of the tree is 5 and

the tree stops growing due to not enough number of sequences at

each leaf node. The identified maximal dependent positions at

different nodes could suggest the existence of the long range

interactions and complicated dependent structure. To further

investigate the motif patterns at different branches of this tree, we

showed the logo plots of the motif models gained from the four

subsets after the first splitting (split at position 10) in Figure 9.

The four logo plots have the similar consistent sequences except

the splitting position 10, but the information content at several

positions varies significantly, especially the adjacent positions , 9

and 11 and some distant position 6, 14 etc. The identified motif

model of the largest ‘‘A’’ subset is more conserved compared to the

other three models. The complicated dependent structure

identified by TPD for ER-alpha could suggest that the overall

motif is a mixture of several subclasses. Similar conclusion could

be obtained for CTCF and NRSF (Figure S3, S4, S5 and S6).

Since the true motif is unknown, we used the enrichment of the

predicted motif as a criterion to compare TPD with others. This is

based on an assumption that among the multiple predicted motif

patterns, the one that is most enriched in the ChIP-Seq candidate

sequences relative to random control sequences is closest to the

true motif pattern [32]. We used a cross-validation scheme to

assess motif enrichment. The original positive dataset is equally

divided into two halves: a training set and a testing set. The

negative datasets are created by randomly shuffling the positive

sets once. We ran TPD on positive and negative training datasets,

using the PWM stored in TRANSFAC database as initial input.

HMS, MEME and ChIPMunk were applied on the positive

training dataset. We then switch the roles of these two halves and

repeat the process.

The ROC curves for the ER-alpha factor based on those

predicted motif patterns, as well as the ones stored in TRANSFAC

database are shown in Figure 10. Two versions of HMS are

Figure 10. ROC curves of TPD, HMS-DEP, HMS, ChIPMunk, MEME and TRANSFAC for ER-alpha transcription factors.
doi:10.1371/journal.pone.0024210.g010
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applied here. HMS-INDEP assumes that all positions are

independent and HMS-DEP allows up to triple intra-motif

dependency. The ROC curves for NRSF and CTCF are shown

in Figure S7 and S8. We then compute the AUCs and list them in

Table 1. TPD has best performance in terms of sensitivity and

specificity for both ER-alpha and CTCF transcription factors.

With respect to NRSF, TPD is next to ChIPMunk.

For the ChIP-Seq data analysis, all computations are conducted

on one node of a linux cluster (2.40 GHz CPU and 32GB RAM).

We ran both MEME and ChIPMunk in parallel version with 4

threads. The computational times for all the methods are shown in

Table 2. Note that the computational time for TPD does not

change much as the number of input sequences increases. We ran

TPD in a single core at this time and it could be easily

implemented to support multiprocessor execution. It is also worthy

of note that MEME with –con option is a potential good candidate

for ChIP-Seq data analysis if there are no correlated positions in a

motif.

Discussion

Due to the 3-D structure of the TFBS-proteins binding

complex, some non-adjacent nucleotide positions could interact

together to assemble the binding complex. This implies the

possible existence of long range dependency in the motif pattern.

Previous studies also have shown that the motif pattern of a single

TF could be a mixture of multiple subtypes [5,45]. The existence

of such multiple subclasses could be one of the mechanisms which

induce the complicated dependent structure of a single motif

model. With the increasing volume of ChIP-Seq data available, it

is possible now to investigate potential dependent structure existing

in some motif models.

In this paper, we proposed a novel approach, known as TPWM,

to model the interaction between DNA and transcription factor.

We also modified an existing discriminative approach to construct

the TPWM utilizing the corresponding PWM stored in TRANS-

FAC database as initial input and ChIP-Seq data. The simulation

study showed that TPD can reliably and accurately predict the

motif pattern. The output TPWM of TPD truly reflects the

dependent structure of the simulated motif. Further comparison

on real ChIP-Seq studies show that the identified motif patterns of

TPD are more enriched or competitive in the ChIP-Seq data

compared to recently developed ChIP-Seq data analysis tools,

HMS [32] and ChIPMunk [32]. The proposed method to

construct the TPWM from ChIP-Seq data requires initial input

of the corresponding PWM. Usually those PWMs can be obtained

from either TRANSFAC or JASPAR database [36]. If the PWM

is unknown for a TF, de novo motif discovery algorithms, such as

MEME, can be applied first to the top candidate peaks from

ChIP-Seq data and then the predicted PWM can be used as initial

input, and then feed all the ChIP-seq peaks to TPD to construct

the corresponding TPWM structure.

One interesting extension of our method would be to

incorporate variable length into the motif model. For example, it

is well known that p-53 family members bind to DNA sequences

with a variable spacer. In summary, we proposed a novel tree-

based PWM approach to model the dependent structure in the

TFBSs and successfully applied it on ChIP-seq datasets.

Availability and Implementation
An initial Perl implement of our algorithm can be downloaded

from http://bioinformatics.wistar.upenn.edu/TPD

Supporting Information

Figure S1 Four independent motif models for two motif
widths and two degree of conservation used in the
simulation study.

(TIF)

Figure S2 TPWMs of the predicted simulated depen-
dent motif model by TPD for the strong, abundant and 6
correlated positions (3,4,12,13,19,20) model for each of
the 10 test datasets (6000 sequences for each data set).

(TIF)

Figure S3 Predicted TPWM by TPD for NRSF.

(TIF)

Figure S4 Predicted TPWM by TPD for CTCF.

(TIF)

Figure S5 The conditional profiles of NRSF binding
sites identified by TPD given that the nucleotide at
position 11 is equal to A, C, G and T, respectively.

(TIF)

Figure S6 The conditional profiles of CTCF binding
sites identified by TPD given that the nucleotide at
position 17 is equal to A, C, G and T, respectively.

(TIF)

Figure S7 ROC curves of TPD, HMS-DEP, HMS and
TRANSFAC for NRSF factor.

(TIF)

Figure S8 ROC curves of TPD, HMS-DEP, HMS and
TRANSFAC for CTCF factor.

(TIF)

Table 1. AUC values of TPD, HMS-DEP, HMS-INDEP,
TRANSFAC, MEME and CHIPMUNK for different transcription
factors.

ER CTCF NRSF

TPD 0.788 0.941 0.795

HMS-DEP 0.766 0.934 0.788

HMS-INDEP 0.759 0.934 0.775

TRANSFAC 0.700 0.928 0.761

MEME 0.783 0.934 0.774

CHIPMUNK 0.774 0.935 0.809

doi:10.1371/journal.pone.0024210.t001

Table 2. Computational time of TPD, HMS-DEP, MEME and
CHIPMUNK for different transcription factors (in hours).

ER CTCF NRSF

TPD 20 23 11

HMS-DEP 11.5 30 5.5

MEME 9.5 .2 days 1.5

CHIPMUNK 8.5 38 10

doi:10.1371/journal.pone.0024210.t002
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Table S1 Four independent motif models for two motif
width and two motif strengths used in the simulation
study.

(DOC)

Table S2 Two motif abundances scheme used in
simulation table.

(DOC)

Table S3 Six dependent motif models for two motif
width and two motif strengths used in the simulation
study.

(DOC)

Table S4 The probability distributions for the depen-
dent motif patterns with width equal to 10.

(DOC)

Table S5 The probability distributions for the depen-
dent motif patterns with width equal to 20 and 4
correlated positions.

(DOC)

Table S6 The probability distributions for the depen-
dent motif patterns with width equal to 20 and 6
correlated positions.
(DOC)

Table S7 Predicted true positive rates by TPD for the
simulation study with independent motif models.
(DOC)

Table S8 Predicted true positive rates by TPD for the
simulation study with dependent motif models.
(DOC)
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