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Abstract

Background: Prostate cancer is currently the most frequently diagnosed malignancy in men and the second leading cause
of cancer-related deaths in industrialized countries. Worldwide, an increase in prostate cancer incidence is expected due to
an increased life-expectancy, aging of the population and improved diagnosis. Although the specific underlying
mechanisms of prostate carcinogenesis remain unknown, prostate cancer is thought to result from a combination of
genetic and environmental factors altering key cellular processes. To elucidate these complex interactions and to contribute
to the understanding of prostate cancer progression and metastasis, analysis of large scale gene expression studies using
bioinformatics approaches is used to decipher regulation of core processes.

Methodology/Principal Findings: In this study, a standardized quality control procedure and statistical analysis (http://
www.arrayanalysis.org/) were applied to multiple prostate cancer datasets retrieved from the ArrayExpress data repository
and pathway analysis using PathVisio (http://www.pathvisio.org/) was performed. The results led to the identification of
three core biological processes that are strongly affected during prostate carcinogenesis: cholesterol biosynthesis, the
process of epithelial-to-mesenchymal transition and an increased metabolic activity.

Conclusions: This study illustrates how a standardized bioinformatics evaluation of existing microarray data and subsequent
pathway analysis can quickly and cost-effectively provide essential information about important molecular pathways and
cellular processes involved in prostate cancer development and disease progression. The presented results may assist in
biomarker profiling and the development of novel treatment approaches.
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Introduction

Prostate cancer is currently the most frequently diagnosed

malignancy in men and the second leading cause of cancer-related

morbidity and mortality in industrialized countries [1–3]. World-

wide, more than 650,000 new cases of prostate cancer are

diagnosed each year, accounting for 10% of all new male cancer

cases [4]. Furthermore, it is estimated that the incidence of

prostate cancer will even rise due to an increased life-expectancy,

aging of the population and improved and earlier detection [1,4].

Although the specific underlying mechanisms of prostate

carcinogenesis have not been unraveled yet, it is supposed that

prostate cancer results from a combination of genetic and

environmental factors, including several susceptibility genes for

inherited prostate cancer, ethnicity and family history, as well as

different dietary and life style factors [1,3,5–7].

Due to the complex etiology of prostate cancer, treatment

options for prostate cancer patients depend on multiple factors,

including a patient’s age and general health status, the prostate

specific antigen (PSA) level, as well as the tumor grade and status.

One treatment option for localized prostate cancer is radical

prostatectomy, the surgical removal of the prostate gland and

nearby lymph nodes. However, it is estimated that 25–40% of men

undergoing radical prostatectomy will have disease relapse, as

detected by increasing serum levels of PSA [8]. Another treatment

option for prostate cancer is androgen ablation therapy that has

become the standard treatment in advanced cases of prostate

cancer. It prevents testosterone production by the testes leading to

prostate cancer cell depletion and subsequent tumor regression in

the short-term. Androgen deprivation is either achieved by

surgical or chemical castration, which can be performed by the

administration of estrogens and gonadotropin-releasing agonists

and antagonists, and has been shown to be effective in the

treatment of advanced diseases. However, androgen depletion is

often associated with disease recurrence, as indicated by elevated

PSA levels. This recurrent form of prostate cancer is known as

androgen-independent, an essentially untreatable form of prostate

cancer that ultimately progresses and metastasizes. In this

aggressive type of prostate cancer, the administration of the most

effective standard chemotherapeutic regimens only leads to a

mean increase in survival time of two months [2,3]. Therefore, a
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major challenge in scientific research will be the elucidation of the

underlying mechanisms of androgen-independent prostate cancer.

Also deciphering the molecular networks that distinguish progres-

sive from non-progressive disease will shed light on the biology of

metastasizing prostate cancer and will ultimately lead to the

identification of novel biomarkers and treatment strategies.

Gene expression microarray technology has been the method of

choice for monitoring the complex expression patterns between

the numerous molecular players such as those involved in prostate

cancer. Bioinformatics tools, including quality control (QC) and

analysis of the generated data up to the biological pathway level,

are required to identify key genes and cellular pathways involved

in prostate cancer development and progression.

This study involves microarray data analysis using the open

source language R [9], applying QC and analysis tools by running

a standardized workflow developed at the BiGCaT department

(http://www.arrayanalysis.org/) to multiple datasets. An overview

of the workflow is depicted in Figure 1.

Datasets are selected from the public repository ArrayExpress

(http://www.ebi.ac.uk/arrayexpress/) based on their relevance to

ongoing cancer research focusing on prostate cancer [10].

Standardized QC, pre-processing, statistical analysis, and subse-

quent pathway analysis using PathVisio with WikiPathways

content [11,12] were applied to robustly identify key genes and

biological processes playing an important role in prostate cancer.

Ultimately, the adaptation of standardized procedures to multiple

datasets will ease and speed up data QC and analysis and as such

enhance biomarker profiling and accelerate the retrieval of novel

therapeutic targets in prostate cancer and other diseases. Joint

evaluation of existing relevant datasets is pivotal to efficient and

cost effective systems biology research, here illustrated by

extracting and validating the core processes involved in prostate

cancer etiology and progression.

Materials and Methods

Microarray Dataset Selection
We searched the open repository ArrayExpress (http://www.

ebi.ac.uk/arrayexpress/) of the European Bioinformatics Institute

for datasets meeting the following inclusion criteria: (i) investigat-

ing human prostate cancer; (ii) performed on the Affymetrix

GeneChip platform; (iii) providing raw data CEL files as well as

processed files. Based on these selection criteria, five different

datasets were selected. An overview of the characteristics of these

datasets is given in Table 1.

Figure 1. Standardized microarray data analysis workflow. Starting from the publicly available EMBL repository ArrayExpress: 1) Relevant
prostate cancer studies were selected and downloaded; 2) Quality control and data pre-processing steps were performed in the R environment.
Microarrays with insufficient sample quality, hybridization quality, signal comparability or array correlation were excluded; 3) For each included study,
statistical analysis was performed and pathway analysis was run with PathVisio to identify the biological processes involved; 4) Results were then
integrated and compared to literature findings.
doi:10.1371/journal.pone.0049831.g001

Unraveling Prostate Cancer by Transcriptomics Data

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e49831



The first dataset by Varambally et al. (ArrayExpress ID: E-

GEOD-3325) is composed of 19 Affymetrix Human Genome

U133 Plus 2.0 arrays investigating six individual benign prostate

tissue samples, seven primary prostate cancer samples, and six

metastatic prostate cancer samples that were obtained from radical

prostatectomy. The aim of the original study was to identify

alterations in human prostate cancer and to reveal signatures of

disease progression from clinically localized prostate cancer to

metastatic prostate tumors [13].

The second dataset is a subset of 46 Affymetrix Human

Genome U133A 2.0 GeneChips created from a gene expression

experiment by Wallace et al. (E-GEOD-6956). The goal of the

study by Wallace et al. was to perform a genome-wide gene

expression profiling of prostate tumors to ultimately determine

differences in tumor biology between African-American and

European-American patients. As the effect of ethnicity was not a

focus of our current study, only arrays concerning either normal

prostate tissue (11 arrays) or adenocarcinoma samples (35 arrays)

of European-American patients were selected [14].

The third dataset by Sun et al. (E-GEOD-25136) consists of 79

tissue samples obtained from patients with clinically localized

prostate cancer treated by radical prostatectomy. Thirty-nine

samples show disease recurrence as classified by three consecutive

increases of PSA levels after radical prostatectomy. Forty samples

are determined as non-recurrent samples based on undetectable

serum PSA levels (,0.05 ng/ml) over a period of at least five years

after radical prostatectomy. Gene expression analysis was

performed using Affymetrix Human Genome U133A GeneChips.

Furthermore, a computational analysis of the obtained gene

expression profile data was conducted to examine whether

advanced computational algorithms are able to derive more

accurate prognostic signatures for prostate cancer [15].

The fourth dataset by Best et al. (E-GEOD-2443) consists of 20

Affymetrix Human Genome U133A GeneChips comparing the

gene expression profiles of 10 androgen-dependent primary

prostate tumor biopsies with 10 androgen-independent prostate

cancer samples. The obtained expression profiles were originally

analyzed with regard to metabolic pathways, gene ontologies and

genomic alterations [16].

The fifth dataset by Gregg et al. (E-GEOD-20758) is composed

of six Affymetrix Human Genome U133 2.0 GeneChips

investigating cell-type specific gene expression patterns in prostate

cancer. Prostatic adenocarcinoma epithelial cell samples and

interstitial stromal cell samples of three individuals were obtained

from laser capture microdissection (LCM) and their differential

expression was analyzed. The identification of distinct gene

expression patterns in prostate tumor epithelial cells and adjacent

stromal cells was aimed to contribute to a better understanding of

potential cellular interactions in prostate cancer [17].

Microarray Data Analysis and Quality Control
Microarray data analysis was performed using the open source

language R (version 2.13.0) and R packages of Bioconductor 2.8

[9,18]. A variety of established array specific QC, visualization,

normalization and statistical methods were combined into one

workflow at the BiGCaT department (see http://www.

arrayanalysis.org/) including GCRMA normalization and En-

sembl ID based updated gene annotation from Brainarray (http://

brainarray.mbni.med.umich.edu) [19–21].

Linear modeling using the limma package was conducted to

compute the genes for each dataset that were significantly changed

between experimental groups, as defined by a p-value smaller than

0.05 and these genes were mapped to biological pathways using

PathVisio with WikiPathways content [11,12,21]. Using the

statistics function in PathVisio, an ordered list of Z-score ranked

pathways was generated based on the overrepresentation of

significantly changed member genes between experimental

groups. All pathways with a Z-score higher than 1.9 were included

in the biological interpretation, resembling a significance level of

0.05.

Statistical and pathway analyses were applied to the data

obtained by the standardized QC and normalization procedure

(‘reprocessed data’) as well as to the normalized data as provided

on ArrayExpress (‘published data’) for each dataset. The results of

the reprocessed data and the published data were compared to get

an overview of the overlap and differences in pathway analysis

results. Results of all datasets were combined to robustly identify

central biological pathways involved in prostate carcinogenesis. A

detailed description of the applied methods and bioinformatics

tools can be found in Appendix S1.

Results

Quality Control
It is necessary to assess the quality of microarrays and select

those having sufficient quality before running further analyses. To

control for the quality of each microarray within a dataset, several

metrics were computed, resulting in plots and bar diagrams as

illustrated in Figure 2 with examples of two of the datasets. A link

to the complete QC results can be found in Appendix S2.

The application of the standardized QC procedure to the

dataset by Varambally et al. [13] revealed overall sufficient quality

of the dataset. All indicators of sample quality, hybridization

quality, signal comparability and array correlation met the QC

criteria, so that no array needed to be excluded from the dataset.

Table 1. Characteristics of the selected datasets.

Dataset ArrayExpress ID Array type Number of samples

Varambally et al. E-GEOD-3325 Affymetrix Human Genome U133 Plus 2.0 19 (NP: 6, pPC: 7, mPC: 6) (20)

Wallace et al. E-GEOD-6956 Affymetrix Human Genome U133A 2.0 46 (NP: 11 (23), PC: 35 (21)

Sun et al. E-GEOD-25136 Affymetrix Human Genome U133A 79 (indolent: 40 (22), recurrent: 39
(24))

Best et al. E-GEOD-2443 Affymetrix Human Genome U133A 20 (AI: 10 (21), AD: 10 (21))

Gregg et al. E-GEOD-20758 Affymetrix Human Genome U133 2.0 6 (PC: 3, stromal cell samples: 3) (26)

The number of excluded arrays for each dataset using the standardized QC procedure is indicated in brackets. Abbreviations: NP: normal prostate, pPC: primary prostate
cancer, mPC: metastatic prostate cancer, AI: androgen independent, AD: androgen dependent.
doi:10.1371/journal.pone.0049831.t001
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The boxplot of raw intensities (Figure 2a) and the density

histogram of the log intensity distribution (Figure 2b) of each

array before normalization provide an overview of dataset quality.

Normalization was able to sufficiently remove smaller discrepan-

cies, leading to comparable distributions between all arrays

(Figure 2c). In Figure 2d, an MA-plot of one example array of

the dataset by Varambally et al. before and after normalization is

shown. MA-plots allow comparison of the log-intensity of each

array to the dataset median and identification of intensity-

dependent biases. The y-axis of the MA-plot shows the difference

in logged intensity of one array to the reference median array,

which is called M (minus). The x-axis indicates the average log-

intensity of the arrays, which is called A (add). Assuming that the

majority of genes are unchanged, the MA-plot should be spread

symmetrically around the x-axis (y = 0). Furthermore, normaliza-

tion is expected to correct for intensity-dependent biases.

QC of the dataset by Wallace et al. [14] indicated four arrays

with an aberrant behavior. One array in the prostatic adenocar-

cinoma group and three arrays in the control group of normal

prostate tissue did not fulfill the QC criteria and were removed

from further analysis. After excluding the four indicated poor

quality arrays and performing QC with the remaining arrays, data

of sufficient quality were obtained.

QC of the dataset by Sun et al. [15] revealed six arrays of

insufficient quality (two arrays in the non-recurrent and four

arrays in the recurrent group) and two arrays (one array per group)

with suspicion of low quality. In order to make sure that only data

of sufficient quality meeting the QC criteria were kept for further

analysis, all indicated arrays were removed and QC was

performed again revealing overall sufficient quality of the

remaining arrays.

QC of the dataset by Best et al. [16] clearly indicated two arrays

of insufficient quality that did not meet the QC criteria and had to

be excluded from further analysis. In each experimental group one

array was removed, QC was performed again and data of

sufficient quality fulfilling the QC criteria were obtained.

QC of the dataset by Gregg et al. [17] investigating cell-type

specific gene expression patterns in prostate cancer revealed low

quality of the whole dataset. The boxplot of raw intensities

(Figure 2e) and density histogram of log intensities (Figure 2f)

before normalization indicated strong differences between the

arrays. The density histogram of log intensities after normalization

is depicted in Figure 2g. The MA-plots before and after

normalization of an example array selected from the dataset by

Gregg et al. are shown in Figure 2h, indicating low quality of the

array. Normalization was unable to correct for intensity-depen-

dent biases and to center the MA-plot on the x-axis. Based on the

limited number of arrays in the dataset and the fact that several

arrays in both experimental groups did not fulfill the QC criteria,

it was decided to exclude the entire dataset from further analysis.

Pathway Analysis
Pathway analysis is considered to ease data interpretation and

most importantly to lead to more robust results compared to only

Figure 2. Overview of the QC results of two selected datasets. Several QC results of the dataset by Varambally et al. comparing arrays of
benign prostate tissue (maroon), primary prostate cancer (blue) and metastatic prostate cancer samples (green) are shown in panel a-d. Several QC
results of the dataset by Gregg et al. comparing arrays of prostatic epithelial (maroon) with interstitial stromal cell samples (teal) are depicted in panel
e-h. a) Boxplot of raw intensities; b) density histogram of log intensities before normalization; c) density histogram of log intensities after
normalization; d) MA-plot before (upper panel) and after normalization (lower panel) of one example array of the dataset by Varambally et al.; e)
boxplot of raw intensities; f) density histogram of log intensities before normalization; g) density histogram of log intensities after normalization; h)
MA-plot before (upper panel) and after normalization (lower panel) of one example array of the dataset by Gregg et al.
doi:10.1371/journal.pone.0049831.g002
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providing a signature of differentially expressed genes. Concor-

dantly, it was expected that differences in the results of statistical

analysis between the processed data using the standardized

procedure and the processed data from ArrayExpress are

mitigated by performing analysis at the level of biological

pathways.

To this end, pathway analysis using PathVisio was performed to

study changes at a biological process level, using pathway content

from WikiPathways. Results were compared between the pro-

cessed data obtained using the standardized procedure and the

processed data downloaded from ArrayExpress. For the biological

interpretation, only significant pathways with a Z-score higher

than 1.9 in at least one of the comparisons were included.

Pathway analysis of the dataset by Varambally et al. [13] was

performed based on the result of statistical analysis comparing

differences in gene expression patterns between primary prostate

cancer and benign prostate tissue and between metastatic and

primary prostate cancer. The comparison between benign prostate

tissue and primary prostate cancer revealed 16 biological pathways

to be significantly changed and involved in the development of

primary prostate cancer. These pathways and their calculated Z-

scores are summarized in Table 2.

Pathway analysis of the published data from ArrayExpress

detected 7 significantly altered pathways with a Z-score higher

than 1.9, including e.g. the ‘‘Cholesterol Biosynthesis’’, ‘‘Gluta-

thione metabolism’’, and ‘‘Delta-Notch Signaling Pathway’’.

PathVisio results of the reprocessed data indicated 12 signifi-

cantly changed pathways involved in prostate carcinogenesis, such

as the ‘‘Cholesterol Biosynthesis’’, ‘‘Hedgehog Signaling Path-

way’’, and ‘‘Selenium’’ pathway, amongst others. Three matches

in significant pathways between the reprocessed data and the

published data could be detected (Table 2), namely the

‘‘Cholesterol Biosynthesis’’, ‘‘Hedgehog Signaling Pathway’’, and

the ‘‘Calcium Regulation in the Cardiac Cell’’ pathway. Except

for the ‘‘Calcium Regulation in the Cardiac Cell’’ pathway, these

pathways are expected to be involved in prostate cancer initiation,

whereas the latter obviously is not involved in prostate carcino-

genesis, but is composed of several sub-processes and regulators,

such as the Na+/K+ATPase, the Na+/Ca2+exchanger, and

regulators of G-protein signaling that might also be altered during

prostate carcinogenesis.

Pathway analysis of the published data comparing metastatic

with primary prostate cancer revealed 25 significantly changed

pathways, while 20 significantly altered pathways in the repro-

cessed data could be detected. A summary of these pathway

analysis results is given in Table 3.

A considerable overlap in pathways between the reprocessed

data and the published data could be detected, where 14 complete

matches in pathways were identified (Table 3). Several of those

matches were found in pathways being expected to be involved in

prostate cancer development and progression to metastatic

disease, such as the ‘‘Cell cycle’’, ‘‘G1 to S cell cycle control’’,

‘‘DNA damage response’’, and ‘‘Apoptosis’’ pathway. Other

matches in pathways were indicated in the ‘‘Androgen Receptor

Signaling Pathway’’, and pathways involved in the immune

response, like the ‘‘T Cell Receptor Signaling Pathway’’ and the

‘‘B Cell Receptor Signaling Pathway’’.

Pathway analysis of the dataset by Wallace et al. [14] focusing

on differences in gene expression between prostatic adenocarci-

noma and benign prostate tissue identified 17 significantly altered

pathways playing an essential role in prostate carcinogenesis.

These pathways and their calculated Z-scores are summarized in

Table 4.

PathVisio analysis of the published data indicated 16 signifi-

cantly altered pathways, like e.g. the ‘‘Cytoplasmic Ribosomal

Proteins’’, ‘‘Electron Transport Chain’’, and the ‘‘EGFR1

Signaling Pathway’’ (Table 4). Pathway analysis of the reprocessed

data after QC revealed 5 significant pathways. PathVisio results

clearly identified four overlapping pathways that were found in the

reprocessed data after QC, as well as in the published data. These

Table 2. PathVisio results of significant pathways found in the dataset by Varambally et al. comparing processed data provided by
ArrayExpress with the reprocessed data.

Pathway Z Score (ArrayExpress) Z Score (Standardized processing)

Cholesterol Biosynthesis 4.14 3.65

Glutathione metabolism 2.67 1.59

Striated Muscle Contraction 2.17 0.78

Endochondral Ossification 2.12 1.32

Delta-Notch Signaling Pathway 2.12 0.68

Hedgehog Signaling Pathway 2.10 2.53

Calcium Regulation in the Cardiac Cell 1.96 2.29

Eicosanoid Synthesis 1.53 1.94

Prostaglandin Synthesis and Regulation 1.34 2.51

Id Signaling Pathway 1.14 2.52

Selenium 0.98 2.84

Nicotine Activity on Dopaminergic Neurons 0.69 2.25

Cytoplasmic Ribosomal Proteins 0.10 2.48

Irinotecan Pathway 0.07 2.57

Ganglio Sphingolipid Metabolism 20.21 2.47

Sulfation 20.34 1.95

Pathway analysis is based on a comparison between benign prostate tissue and primary prostate cancer. Only significant pathways with a Z-score .1.9 in at least one of
the two analyses are included. Significant Z-scores are depicted in bold; matches in pathways between the analyses are in italics.
doi:10.1371/journal.pone.0049831.t002

Unraveling Prostate Cancer by Transcriptomics Data

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e49831



pathways included the ‘‘mRNA processing’’, ‘‘Electron Transport

Chain’’, ‘‘Oxidative phosphorylation’’ and ’’Translation Factors’’

pathways (Table 4) and appeared to contribute to prostate

carcinogenesis.

As depicted in Table 5, pathway analysis of the dataset by Sun

et al. [15] comparing gene expression profiles of non-recurrent

prostate cancer with disease relapse revealed 17 significantly

altered pathways, but no match in pathways between the

reprocessed data and the published data could be detected.

Pathway analysis of the published data identified 14 significantly

changed pathways (Table 5). Several of those indicated pathways

with a Z-score higher than 1.9 were expected to be involved in

prostate cancer recurrence, including the ‘‘Angiogenesis’’, ‘‘G1 to

S cell cycle control’’, ‘‘Cell cycle’’, and ‘‘DNA damage response’’

pathway. After standardized processing, PathVisio results indicat-

ed three pathways, the ‘‘GPCRs, Class B Secretin-like’’, ‘‘Inflam-

matory Response Pathway’’ and ‘‘Cholesterol Biosynthesis’’

pathway, as being significantly dysregulated in disease relapse.

PathVisio analysis of the dataset by Best et al. [16] investigating

differences in gene expression profiles of androgen-dependent and

androgen-independent prostate cancer unraveled 15 significant

pathways probably playing an essential role in prostate cancer

progression to a more aggressive, androgen-independent type. The

results of pathway analysis of the reprocessed data and the

published data are shown in Table 6.

Pathway analysis of the reprocessed data after QC detected 10

significantly changed biological pathways (Table 6). PathVisio

results of the published data indicated 8 significantly changed

pathways. Three overlapping pathways could be detected between

the reprocessed data and the published data. These pathways

included the ‘‘Cytoplasmic Ribosomal Proteins’’, ‘‘Hypertrophy

Model’’, and ‘‘Electron Transport Chain’’ pathway, which appear

Table 3. PathVisio results of significant pathways found in the dataset by Varambally et al. comparing processed data provided by
ArrayExpress with the reprocessed data.

Pathway Z Score (ArrayExpress)
Z Score (Standardized
processing)

Cell cycle 4.11 5.52

G1 to S cell cycle control 3.82 4.67

Glucuronidation 3.77 0.62

B Cell Receptor Signaling Pathway 3.65 2.21

Androgen Receptor Signaling Pathway 3.63 3.74

Signaling of Hepatocyte Growth Factor Receptor 3.51 2.48

T Cell Receptor Signaling Pathway 3.26 2.06

EGFR1 Signaling Pathway 2.94 1.80

Wnt Signaling Pathway 2.85 2.49

Apoptosis 2.83 3.38

IL-3 Signaling Pathway 2.81 1.16

Wnt Signaling Pathway NetPath 2.44 1.55

IL-7 Signaling Pathway 2.43 1.40

FAS pathway and Stress induction of HSP regulation 2.38 0.48

Delta-Notch Signaling Pathway 2.34 2.27

DNA damage response (only ATM dependent) 2.34 1.56

Toll-like receptor signaling pathway 2.28 1.93

TGF-beta Receptor Signaling Pathway 2.27 2.07

p38 MAPK Signaling Pathway (BioCarta) 2.23 0.66

Senescence and Autophagy 2.16 1.72

Wnt Signaling Pathway and Pluripotency 2.08 2.07

Insulin Signaling 2.06 0.38

DNA damage response 1.94 2.68

miRNAs involved in DDR 1.93 2.10

Focal Adhesion 1.91 0.71

Endochondral Ossification 1.69 2.49

Nucleotide Metabolism 1.68 2.29

Myometrial Relaxation and Contraction Pathways 1.55 2.24

DNA Replication 1.27 3.45

One Carbon Metabolism 0.88 2.41

Angiogenesis 0.68 1.90

Pathway analysis is based on a comparison between primary prostate cancer and metastatic prostate cancer. Only significant pathways with a Z-score .1.9 in at least
one of the two analyses are included. Significant Z-scores are depicted in bold; matches in pathways between the analyses are in italics.
doi:10.1371/journal.pone.0049831.t003
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Table 4. PathVisio results of significant pathways found in the dataset by Wallace et al. comparing processed data provided by
ArrayExpress with the reprocessed data after quality control.

Pathway Z Score (ArrayExpress)
Z Score (Standardized
processing)

Cytoplasmic Ribosomal Proteins 7.36 0.17

Electron Transport Chain 5.24 5.21

EGFR1 Signaling Pathway 4.64 1.35

mRNA processing 4.52 4.37

TNF-alpha/NF-kB Signaling Pathway 3.88 1.05

Oxidative phosphorylation 2.96 4.00

Signaling of Hepatocyte Growth Factor Receptor 2.94 0.82

Androgen Receptor Signaling Pathway 2.78 0.57

Translation Factors 2.48 2.06

IL-9 Signaling Pathway 2.44 20.34

T Cell Receptor Signaling Pathway 2.36 0.37

Non-homologous end joining 2.35 1.36

Proteasome Degradation 2.25 1.02

Serotonin Receptor 4/6/7 NR3C signaling 2.23 20.49

Notch Signaling Pathway 2.22 20.89

Fatty Acid Biosynthesis 1.90 20.34

Insulin Signaling 1.49 1.91

Pathway analysis is based on a comparison between normal prostate tissue and prostatic adenocarcinoma. Only significant pathways with a Z-score .1.9 in at least one
of the two analyses are included. Significant Z-scores are depicted in bold; matches between the analyses are in italics.
doi:10.1371/journal.pone.0049831.t004

Table 5. PathVisio results of significant pathways found in the dataset by Sun et al. comparing processed data provided by
ArrayExpress with the reprocessed data after quality control.

Pathway Z Score (ArrayExpress)
Z Score (Standardized
processing)

miRNAs involved in DDR 3.30 21.22

Angiogenesis 2.42 0.22

IL-2 Signaling Pathway 2.39 20.94

FAS pathway and Stress induction of HSP regulation 2.35 20.66

T Cell Receptor Signaling Pathway 2.33 1.27

p38 MAPK Signaling Pathway (BioCarta) 2.27 21.81

B Cell Receptor Signaling Pathway 2.24 0.20

Serotonin Receptor 4/6/7 NR3C signaling 2.21 20.59

IL-5 Signaling Pathway 2.07 20.69

G1 to S cell cycle control 2.04 22.49

Cell cycle 1.98 NaN

TCA Cycle 1.96 NaN

Type II interferon signaling (IFNG) 1.96 20.07

DNA damage response 1.95 21.08

GPCRs, Class B Secretin-like 0.17 2.95

Inflammatory Response Pathway 0.13 2.30

Cholesterol Biosynthesis 20.99 1.91

Pathway analysis is based on a comparison between recurrent and non-recurrent prostate cancer. Only significant pathways with a Z-score .1.9 in at least one of the
two analyses are included. Significant Z-scores are depicted in bold. A NaN value commonly occurs when none of the genes in the pathway is present in the dataset.
doi:10.1371/journal.pone.0049831.t005
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to be linked with disease progression to androgen-independent

prostate cancer.

Discussion

An extensive literature search was performed in order to

substantiate the pathway analysis results. Pathway analysis

identified several signaling cascades and cellular processes that

were overrepresented between the different datasets. These

pathways and processes seemed to be characteristic for prostate

cancer initiation and progression and could be assigned to three

main biological processes, including cholesterol biosynthesis,

epithelial-to-mesenchymal transition (EMT) involving epidermal

growth factor receptor (EGFR) signaling, and an increased

metabolic activity. Therefore, the final biological interpretation

focused on these cellular processes, and their potential contribu-

tion to prostate cancer development.

Cholesterol Biosynthesis
Several experimental and epidemiological studies provide strong

evidence that the cholesterol biosynthesis plays a pivotal role in

prostate cancer development and progression [22,23].

Several studies have shown that cholesterol has the potential to

accumulate in solid tumors and that cholesterol homeostasis gets

disturbed in the prostate with advancing age and with the

transition from a benign to a malignant state. Cholesterol

accumulation in prostatic tumors likely occurs by several

mechanisms, such as an increased cholesterol uptake from the

circulation, loss of feedback regulation due to downregulation of

low density lipoprotein receptors, and an upregulation of specific

components of the mevalonate (cholesterol synthesis) pathway, like

the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reduc-

tase [23]. Therefore, elevated cholesterol levels in prostate cancer

cells have been indicated to be the result from an aberrant

regulation of the cholesterol metabolism [24]. These findings are

in concordance with the pathway analysis results, as the

‘‘Cholesterol Biosynthesis’’ signaling pathway was found to be

significantly altered during prostate cancer initiation and trans-

formation of benign prostate tissue to primary prostate cancer

(Table 2). Furthermore, the cholesterol metabolism appeared to be

involved in prostate cancer recurrence (Table 5).

As cholesterol uptake and synthesis are linked with the cell cycle,

the association between cholesterol, other lipogenic mechanisms

and androgen action suggests the possibility that lipid products of

these pathways play a role in androgenic stimulation of prostate

cancer growth [23]. The lipid metabolism is a major target of

androgenic signaling and is therefore tightly controlled by

androgens in the normal prostate. Androgens are known to

stimulate lipogenesis in prostate cancer cells directly by increasing

the transcription of specific genes encoding lipogenic enzymes,

such as the fatty acid synthase (FAS) and HMG-CoA reductase

[22,23]. For example, increased levels of FAS are associated with

tumor formation and elevated levels of fatty acids have been

identified to alter signaling processes at the plasma membrane.

Furthermore, high FAS expression has been associated with an

aggressive biological behavior, as the highest FAS levels are

detected in androgen-independent bone metastasis [22,25].

Recent studies investigating genes under transcriptional control

of the androgen receptor revealed more than 300 androgen-

responsive transcripts. The majority of these transcripts encode

proteins that are involved in lipid metabolism. The androgen

receptor is responsible for the recruitment of a group of

transcription factors that drive the expression of the enzymes

involved in lipid metabolism. These sterol response element

binding proteins (SREBPs) consist of three related transcription

factors, SREBP-1a, SREBP-1c, and SREBP-2 that have been

indicated as critical regulators of androgen-regulated lipogenesis.

SREBP-1c has been identified as being primarily responsible for

the transcription of fatty acid biosynthesis genes, such as FAS,

while SREBP-2 regulates genes of the cholesterol synthesis

Table 6. PathVisio results of significant pathways found in the dataset by Best et al. comparing processed data provided by
ArrayExpress with the reprocessed data after quality control.

Pathway Z Score (ArrayExpress)
Z Score (Standardized
processing)

Cytoplasmic Ribosomal Proteins 9.59 6.46

Catalytic cycle of mammalian FMOs 3.37 0.44

Hypertrophy Model 2.86 2.88

Electron Transport Chain 2.72 2.13

IL-1 Signaling Pathway 2.41 20.41

Focal Adhesion 1.99 1.00

Nifedipine 1.97 0.69

Complement and Coagulation Cascades KEGG 1.90 1.20

Selenium metabolism/Selenoproteins 1.80 2.05

TGF-beta Receptor Signaling Pathway 1.30 2.88

ErbB signaling pathway 1.02 1.95

DNA damage response 0.82 2.18

Translation Factors 0.77 2.48

Blood Clotting Cascade 0.32 2.36

Oxidative Stress 0.11 2.08

Pathway analysis is based on a comparison between androgen-dependent and androgen-independent prostate cancer. Only significant pathways with a Z-score .1.9
in at least one of the two analyses are included. Significant Z-scores are depicted in bold; matches between the analyses are in italics.
doi:10.1371/journal.pone.0049831.t006
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pathway, such as HMG-CoA reductase or farnesyl diphosphate

synthase [22,25]. Pathway analysis results provide additional

verification of these findings, as the ‘‘Androgen Receptor Signaling

Pathway’’ and ‘‘Fatty Acid Biosynthesis’’ appeared to be

significantly altered during prostate cancer initiation (Table 5).

Furthermore, the ‘‘Androgen Receptor Signaling Pathway’’

seemed to be significantly affected during the transition from

primary to more aggressive, metastatic prostate cancer (Table 3).

Interestingly, PathVisio analysis comparing androgen-dependent

with androgen-independent prostate cancer did not detect the

‘‘Androgen Receptor Signaling Pathway’’ as significantly dysreg-

ulated (Table 5).

It has been indicated that the strictly coordinated expression

and feedback regulation by this transcription factor family is

frequently lost in prostate cancer. The elevated expression of a

wide variety of genes involved in lipid metabolism supports an

essential role of cholesterol synthesis in prostate cancer, but the

underlying mechanisms of the uncontrolled activation of SREBPs

remain widely unknown [24,25].

Numerous signaling proteins have been identified to associate

with plasma membrane lipid rafts, including the EGFR, the AR,

heterotrimeric G-protein subunits, the T-cell receptor, as well as

the interleukin-6 (IL-6) receptor. Signaling through the PI3K/Akt

phosphorylation cascade has been demonstrated to be a frequent

event in prostate tumors that harbor the inactivated lipid

phosphatase tumor suppressor gene PTEN. It has been indicated

that increased signaling through the PI3K/Akt signaling pathway,

as a consequence of the loss of functional PTEN, is able to drive

tumor progression. The EGFR leads to the activation of the PI3K/

Akt pathway and therefore serves as mediator of solid tumor

growth [22,24].

Several of the indicated signaling proteins were also found in the

pathway analysis results. The EGFR, AR and T-cell receptor, as

well as several classes of G-protein coupled receptors appeared to

be significantly altered during prostate cancer initiation (Table 4),

the transition from primary to metastatic prostate cancer (Table 3),

and in case of disease recurrence (Table 5).

To conclude, pathway analysis confirmed the results of several

recent studies that identified cholesterol as playing a promotional

role in prostate cancer. PathVisio analysis indicated a dysregulated

cholesterol biosynthesis pathway as essential mechanism in

prostate cancer initiation and progression to a more aggressive,

metastasizing cancer type. Furthermore, cholesterol appeared to

be an important element controlling signaling events in prostate

cancer cells. It is suggested that the dysregulation of enzymes

involved in cholesterol biosynthesis and metabolism may result in

increased cholesterol levels in tumor cells. The destabilized

cholesterol equilibrium may influence the transition from a

coordinated process of cell proliferation and death to a severely

altered condition, resulting in uncontrolled growth and progres-

sion to androgen-independent prostate cancer [22,23].

Epithelial-to-mesenchymal Transition
Pathway analysis revealed several signaling cascades, such as the

EGFR1/ErbB-, TGF-b-, Wnt-, Delta-Notch- and TNF-a/NF-kB

signaling pathways, that can be assigned to a main process known

as epithelial-to-mesenchymal transition. EMT is a key event

during embryonic development that is required for morphogenetic

movements during the reorganization of the embryonic germ

layers. The process of EMT has been well documented in cell lines

and mouse experiments, but its clinical relevance remains

controversial [26]. However, several recent studies provide

evidence that EMT is linked to cancer progression, invasion,

and metastasis [27]. The process of EMT has therefore been

proposed as hallmark of carcinoma progression towards a

dedifferentiated and more malignant state [28,29].

Cells that undergo EMT are characterized by transient

structural changes resulting in loss of polarity and contact with

neighboring cells [30]. EMT is characterized by the repression of

E-cadherin expression, and increased cell motility. The loss of E-

cadherin has been demonstrated as a marker of EMT and seems

to correlate with dedifferentiation, local invasiveness, and metas-

tasis formation of prostate cancer cells [26,30,31].

Several oncogenic pathways like the Wnt-, TGF-b-, Hedgehog-,

TNF-a/NF-kB-, EGFR-, and Notch-signaling pathway are

supposed to initiate EMT [27,29]. For example, the transforming

growth factor-b (TGF-b) has been characterized as potent EMT

inducer in normal embryonic development, and during cancer

progression. TGF-b induces EMT and causes the dissolution of

cell-junction complexes. Furthermore, EMT coordinates the

cooperation between oncogenic Ras and receptor tyrosine kinases

to induce downstream Raf/MAPK signaling that is strongly

associated with prostate tumor progression and poor clinical

prognosis [27].

Overexpression of the EGFR family has been associated with

disease progression of numerous malignancies including prostate

cancer. In prostatic tumors, EGFR has been indicated to initiate

EMT in cooperation with TGF-b, and enhances the invasion of

prostate cancer cells. In the presence of androgens, endogenous

and ectopically expressed AR directly associates with EGFR and

decreases the activation of downstream PI3K signaling leading to

cancer cell growth and survival. EGFR may also sensitize prostate

cancer cells to low levels of androgens by enhancing co-activator

binding and transcriptional activation of endogenous and ectop-

ically expressed AR. Therefore, the observed cross-talk between

the AR and EGFR axes leads to the assumption that EGFR-

induced EMT and androgen-independence could occur simulta-

neously in prostatic tumor cells [26].

Another important pathway playing an essential role in the

development and progression of prostate cancer is the HIV-I NEF

pathway. This pathway comprises the tumor necrosis factor-

(TNF) and FAS receptor signaling pathways and seems to be

particularly dysregulated in androgen-independent metastatic

prostate cancer compared with localized primary prostatic tumors

[27]. These findings are only partly consistent with the pathway

analysis results. As expected, the FAS receptor signaling pathway

appeared to be significantly affected in metastatic prostate cancer

(Table 3) and during disease recurrence (Table 5), but neither the

Fas receptor- nor the TNF-a signaling pathway were found to be

significantly dysregulated in androgen-independent prostate can-

cer (Table 6).

According to literature, especially the TNF branch of the HIV-I

NEF pathway seems to be of high importance and consists of the

activation of nuclear factor-kB (NF-kB) by TNF-a [32]. The

binding of TNF-a to its receptor leads to the dissociation of the

inhibitory protein SODD and recruitment of an adapter protein,

known as TRADD. TRADD binds to additional adapter proteins

TRAF2 and RIP1 causing the recruitment and activation of the

IKK complex. This activation in turn results in the phosphory-

lation and dissociation of IkBa from the NF-kB heterodimer and

translocation of the active heterodimer to the nucleus. Translo-

cation initiates the transcription of target survival pathway genes

including TRAF proteins and inhibitors of apoptosis. It has been

confirmed that this pathway is highly dysregulated in androgen-

independent metastasis [32].

In conclusion, pathway analysis indicated several significant

signaling cascades that are in concordance with findings in the

literature, such as the TGF-b, TNF-a/NF-kB-, and EGFR-
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signaling cascade. The interplay of several of such extracellular

signaling molecules, growth factors, and transcription factors has

been suggested to induce EMT and possesses the potential to serve

as EMT marker [32]. Pathway analysis could demonstrate and

confirm that the Wnt-, Delta-Notch- and EGFR1 signaling

pathway were significantly dysregulated during prostate cancer

initiation and formation of a clinically localized, primary prostate

tumor (Table 2 and 4), as well as during disease progression to a

more aggressive, metastatic phenotype (Table 3). Furthermore, the

Delta-Notch and TGF-b signaling pathway could be confirmed as

essential initiators of metastasis (Table 3).

Increased Metabolic Activity in Prostate Carcinogenesis
Pathway analysis results led to the assumption that an altered

metabolic activity might be involved in prostate carcinogenesis, as

the analysis detected pathways like ‘‘mRNA processing’’, a

posttranscriptional modification involving enzymatic activity, the

‘‘Electron Transport Chain’’ (ETC), and ‘‘Oxidative phosphory-

lation’’ that are actively involved in metabolism. Those pathways

were found to play an essential role during prostate cancer

initiation and transition from a benign to a malignant state

(Table 4). The ETC also appeared to be essential during disease

progression to a more aggressive tumor type (Table 6).

Several recent studies provide evidence for a promotive role of

an increased metabolic activity in prostate cancer tumor growth. It

has been shown that a disrupted respiratory chain activity resulting

from mutations in mitochondrial DNA (mtDNA) in prostate

cancer cells leads to overproduction of ROS contributing to tumor

growth [33–35].

Normal prostate epithelial cells are unique cells that accumulate

high concentrations of zinc, which is able to inhibit enzymes

involved in the citrate metabolism through the Krebs cycle. A

malignant transformation of the prostate is associated with an

early metabolic switch, causing decreased zinc accumulation and

increased citrate oxidation by activating the enzyme m-aconitase

[33]. The associated downregulation of the zinc uptake transporter

by transforming glandular epithelial cells serves as an early marker

of metabolic alteration. The metabolic transformation from energy

inefficient benign cells to energy efficient tumor cells implies an

increased ETC activity, increased consumption of oxygen, and

excessive production of ROS leading to oxidative stress which

induces accumulating mutations in the vulnerable mtDNA

[33,34].Certain mtDNA mutations may cause alterations of the

electron transport components of the ETC that comprise the

normal electron flow [34]. For instance, mutations in the

cytochrome oxidase subunit I gene of the ECT have been shown

to initiate prostate cancer [35].

The ROS induced mitochondrial dysfunction is subsequently

able to activate nuclear genes and signaling pathways involved in

tumor initiation and progression. For example, ROS are able to

induce pathways, like the TNF-a/NF-kB- and PI3K signaling

pathway that are involved in increased hypoxia-inducible factor a
(HIFa) expression and that activate genes playing an essential role

in angiogenesis and tumor metastasis, thereby contributing to

tumor growth. Also pathway analysis results indicated the TNF-a/

NF-kB signaling pathway as being significantly dysregulated in

prostate carcinoma formation (Table 4). In addition, ROS

mediated disruption of mitochondrial functions has been demon-

strated to initiate the calcium-dependent protein kinase C

pathway. This pathway activates several downstream genes, such

as cathepsin L, that play a role in prostate tumor invasiveness [33].

However, pathway analysis did not detect this signaling cascade as

significantly dysregulated.

Pathway analysis was able to confirm the results of several

recent studies and identified an increased metabolic activity as a

key process of prostate cancer initiation and progression. A

metabolic switch of prostatic cells has been indicated as key event

during the transformation of benign epithelial cells into malignant

cells. Furthermore, mitochondrial dysregulation as a consequence

of elevated ROS production has been shown to play an essential

role in prostate tumor growth and metastasis [33–35].

When comparing the results of the pathway analyses of the data

processed by the standardized procedure and the data from

ArrayExpress, the level of correspondence differs. For some

datasets, large differences are observed, which could be caused by

differences in any of the analytical steps, including (i) the removal

of some of the arrays in the QC phase, (ii) the preprocessing and

normalization methods applied, or (iii) the annotation of the

reporters. We observed that none of the individual analytical steps

in the standardized procedure consistently exerts the strongest

effect on pathway analysis results (results not shown). This also

essentially depends on the original quality of the dataset and the

methods originally used. The paper shows however, that a

systematic analysis of existing datasets using a standardized

approach is feasible and leads to meaningful and verifiable results,

thereby stimulating reuse of already available datasets and

reducing cost. Furthermore it demonstrates that in several publicly

available datasets, arrays of low quality are still present. Using a

pathway approach may, however, make study outcome more

robust to individual variations between datasets.

Conclusion
The application of pathway analysis using PathVisio on multiple

datasets led to the identification of several signaling pathways and

cellular processes that play an important role in prostate cancer

development and that subsequently were assigned to three main

biological processes, including cholesterol biosynthesis, epithelial-

to-mesenchymal transition and an increased metabolic activity.

These results were confirmed with findings in the literature. It has

been demonstrated that the indicated cellular processes are key

contributors to prostate carcinogenesis and metastasis. An altered

cholesterol metabolism has been shown to initiate prostate cancer

and to promote the transition from a benign into a malignant

state. Preclinical studies indicated that the process of EMT was

considered as a hallmark of prostate cancer progression and

metastasis, while an increased metabolic activity has been

demonstrated to contribute to prostate tumor growth and

invasiveness as a consequence of ROS-induced mitochondrial

dysregulation. These processes may deliver candidates for new

biomarkers, and novel targets for therapeutic regimes. Identifying

the most commonly altered pathways in both primary and

metastatic cancer could lead to building more detailed and

realistic, disease-specific maps. Super-imposing expression data

may help discriminating treated versus non-treated patients or

even improve our understanding of a drug’s mechanism of action

or resistance.

In conclusion, we have demonstrated that the application of a

standardized bioinformatics workflow, including QC, statistical

analysis and pathway analysis, to publicly available datasets, serves

as a powerful and cost and time effective approach to reveal the

most relevant biological mechanisms underpinning prostate cancer

development and progression. Being a generic approach, it can be

similarly applied to datasets related to any other disease or

condition of interest.
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