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Abstract

While current major national research efforts (i.e., the NIH Human Microbiome Project) will enable comprehensive
metagenomic characterization of the adult human microbiota, how and when these diverse microbial communities take up
residence in the host and during reproductive life are unexplored at a population level. Because microbial abundance and
diversity might differ in pregnancy, we sought to generate comparative metagenomic signatures across gestational age
strata. DNA was isolated from the vagina (introitus, posterior fornix, midvagina) and the V5V3 region of bacterial 16S rRNA
genes were sequenced (454FLX Titanium platform). Sixty-eight samples from 24 healthy gravidae (18 to 40 confirmed
weeks) were compared with 301 non-pregnant controls (60 subjects). Generated sequence data were quality filtered,
taxonomically binned, normalized, and organized by phylogeny and into operational taxonomic units (OTU); principal
coordinates analysis (PCoA) of the resultant beta diversity measures were used for visualization and analysis in association
with sample clinical metadata. Altogether, 1.4 gigabytes of data containing .2.5 million reads (averaging 6,837 sequences/
sample of 493 nt in length) were generated for computational analyses. Although gravidae were not excluded by virtue of
a posterior fornix pH .4.5 at the time of screening, unique vaginal microbiome signature encompassing several specific
OTUs and higher-level clades was nevertheless observed and confirmed using a combination of phylogenetic, non-
phylogenetic, supervised, and unsupervised approaches. Both overall diversity and richness were reduced in pregnancy,
with dominance of Lactobacillus species (L. iners crispatus, jensenii and johnsonii, and the orders Lactobacillales (and
Lactobacillaceae family), Clostridiales, Bacteroidales, and Actinomycetales. This intergroup comparison using rigorous
standardized sampling protocols and analytical methodologies provides robust initial evidence that the vaginal microbial
16S rRNA gene catalogue uniquely differs in pregnancy, with variance of taxa across vaginal subsite and gestational age.
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Introduction

To date, the dominant paradigm in Western medicine

considers microbes as ‘‘foreign’’ and has led to the prevailing

view that elimination of predominant pathogens will result in

amelioration of disease. Such a view is seemingly in contrast to

longstanding observations that humans serve as host to co-

evolving microbes residing in highly plethoric communities.

Indeed, microbiota are present from the time of birth, with up

to 10-fold the number of microorganisms to adult human cells

and a collective genome (the ‘‘metagenome’’) which exceeds our

human genome in terms of gene content by more than 100-fold

[1]. Moreover, we appreciate that the human microbiota are

a metabolically and antigenically vibrant and diverse community

which may function as mutualists (symbiotically beneficial),

commensals (of neither harm nor benefit), or pathogens (of host

detriment) [2–4].

Current major national research efforts (i.e., the NIH Road Map

initiative known as the Human Microbiome Project (HMP)) will

enable sequence-based comprehensive characterization of the

adult human microbiota and theoretically allow for cataloguing of

the microbiota into core guilds, which can be thereafter

interrogated for their associations with disease states [1]. Un-

derstanding the processes that govern the structure and dynamics

of these human microbial communities is essential for gaining

a complete understanding of human development and physiology

[5–9]. However, questions pertaining to how and when diverse

microbial communities reside in the host (and how they differ

during an individual’s lifetime) are under-explored at a population-

wide level. In other words, while we may soon know what
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constitutes the adult human microbial guild, we will neither know

how it is established nor whether it is dynamic during intervals in

reproductive life when the next generation’s microbial community

is being established.

Primate fetal development is thought to occur within an

intrauterine microbiota-free environment, and yet within a short

interval following birth the human microbiome is colonizes and

‘‘differentiates’’ until the adult complement of 90 trillion or so

microbiota is achieved [1,4,7,9]. Based on a relative paucity of

data, it is proposed that the naı̈ve neonatal microbiome is first

established with rupture of the amniotic membranes, with further

microbiota being introduced as the fetus traverses the vaginal birth

canal. By the time of delivery, the neonate has been exposed to the

maternal vaginal microbial ecosystem [9–12]. Passage through the

vaginal canal is an integral part of this process, as mode of delivery

alters the neonatal microbiome [7–12]. However, since a compre-

hensive characterization of the vaginal microbiome signature in

pregnancy has not yet been undertaken, conclusions regarding

mechanisms of neonatal colonization are likely premature [13–

17]. Since the infant is exposed to several environmental sources of

bacteria in the early neonatal interval (maternal vaginal canal and

feces, swallowing and breathing, skin to skin contact, maternal

breastmilk, etc.) it is important to discern the relative potential

contribution of the maternal vaginal community to the neonate.

Established 16S ribosomal RNA (rRNA) gene sequence-based

methodologies have enabled primary cataloguing of the bacterial

composition of the human microbiome [18–21]. While multiple

studies during the past several years have launched the era of

human metagenomics, few reports have examined microbiomes

outside of the gastrointestinal tract in more than a few individuals

[22–26], and none have systematically examined the vaginal

microbiome throughout pregnancy. Here, we use cultivation-

independent, molecular-phylogenetic techniques to characterize

the first comparative bacterial assemblages across gestational age

strata and in a rigorous clinical study. By interrogating the

‘‘healthy’’ human microbiome in pregnancy and in paralleled

comparison with non-pregnancy, we reasoned that the ensuing

metagenomic profile would optimally reveal the comparative

diversity and richness of microbial species. In this manuscript, we

describe our intergroup comparison using rigorous standardized

sampling protocols and analyses methodologies in order to provide

robust initial evidence that the vaginal microbial gene catalogue

uniquely differs in pregnancy, with variance of molecular

phylogeny (species richness and diversity) across both subsite and

gestational age.

Results

Subject Characteristics
Subject characteristics are as outlined in Table 1. As

anticipated by our use of a parallel protocol design, comparable

age, pregravid (or nongravid) BMI, race and ethnicity, and

tobacco use were observed among both pregnant and non-

pregnant subjects. Although the enrollment percentages by virtue

of race and ethnicity were distinct in the two cohorts, these

distinctions did not reach statistical significance (p.0.05, both

independent samples t-test and ANOVA). As further anticipated

among pregnant subjects per se, significant variance in medication

use with respect to vitamins and antacids were similarly observed.

Recalling prospective subject enrollment, the majority of gravidae

had uncomplicated pregnancy outcomes: mean gestational age at

delivery exceeded 39 weeks and included appropriately grown

infants (mean 3265 grams), with 2/24 (8%) of subjects delivering

,37 weeks (34 5/7, and 36 6/7 weeks). The cesarean delivery rate

was consistent with the regional population (33%). A single fetal

comorbidity was observed among the cohort after enrollment (fetal

gastroschisis), and a total of 3 subjects manifest 4 comorbidites

common to the obstetrical population (Table 1). Among the non-

pregnant cohort, all subjects were not menstruating at the time of

sampling per study protocol, and 58.8% would be anticipated to

be anovulatory secondary to use of contraceptive (30 of 51

subjects).

Pregnancy Structures the Vaginal Microbial Community
Other investigators have employed cultivation-independent,

molecular phylogenetic approaches to characterizing maternal

microbial communities [9]. In order to leverage our data from the

HMP, we developed a parallel sampling strategy in our 24

pregnant subjects with equivalent stringent screening criteria [27].

Both subject cohorts were sampled in a uniform and highly

consistent manner by a single obstetrician (K.A.) from three

distinct vaginal sites (vaginal introitus, posterior fornix, and

midvagina); all samples employed in this report were extracted

in a single laboratory. With sequencing on the 454 Titanium FLX

platform, our approach yielded robust bacterial 16S V5V3

enriched data sets for subsequent analysis (Table 2). Because we

could not reliably measure nor control for differences in the

sampled area or volume, we focused our analyses within these

microbial communities on shifts in bacterial community structure

and diversity which occur solely by virtue of pregnancy.

As demonstrated in Figure 1, microbiome sequence surveys

with 16S rRNA pyrosequencing reveal primary structuring by

virtue of pregnancy (green versus blue). Given our aim to

ultimately describe the vaginal taxa that contribute to a unique

community structure in pregnancy, we applied both phylogenetic

(UniFrac) and non-phylogenetic (Canberra, Chord, and Ochiai)

methods. As a quality filtering step, each dataset was minimally

(left plots, Figure 1) or modestly (right plots) preprocessed and

applied to a flowgram clustering step for removal of chimeric

sequences (which occur as a byproduct of the PCR-amplification

and pyrosequencing) [28]. This robust analysis approach reveals

evident significant community clustering structured predominately

by pregnancy regardless of method (phylogenetic or non-

phylogenetic) or potential noise for noisy or denoised datasets

(Figure 1).

When beta diversity metrics were considered by virtue of the

vaginal subsite, pregnancy persisted as the primary arbitrator of

community microbial structure (Figure 2A). However, when

assessing alpha diversity (community richness and Shannon

diversity index) with respect to either proximity to the uterus

(posterior fornix, which is just posterior to the cervix, versus the

vaginal introitus or midvagina) or gestational age (interval in

weeks), variable differentiation was observed (Figure 2B). When

within community (alpha diversity) variance was analyzed with

OTU-based methodologic approaches [29–33] the vaginal micro-

biome in pregnancy was equally rich but less diverse than non-

pregnant communities (Figure 2B, left panel). This result was true

in proximity to the cervix and throughout the latter midtrimester

as the cusp of fetal viability (24–32 weeks) is reached. However,

when taxa were analyzed with phylogenetic applications uniformly

projected to the genus level, vaginal introitus and midvaginal

communities preterm were both less diverse and less rich than

either late preterm (.32 weeks) pregnancy or non-pregnant

communities. At the posterior fornix, phylogenetic projections

suggested unchanged communities among pregnant and non-

pregnant (Figure 2B, right panel).

Given our distinct observations with respect to intracommunity

richness and diversity by virtue of taxonomic and phylogenetic
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approaches, we were concerned with the potential for inflated

OTU counts due to sequencing artifacts and/or binning errors.

We therefore measured alpha diversity in both pregnant and non-

pregnant vaginal communities with AbundantOTU (Figure 3,

left panels) and QIIME denoising (in addition to chimera and

singleton removal) (Figure 3, right panels). Although these

denoising pipelines did, in fact, differ in their assessments of

sequencing noise (and thus resulting OTU counts), both resulted in

significant and robust differences among the pregnant (black lines)

and non-pregnant (red lines) vaginal microbial communities. They

also agreed in that community diversity in pregnancy is both

significantly less rich (rarefaction metrics for microbial richness or

taxa quantification, Figure 3A) [34] and less diverse (Renyi

metrics for microbial diversity or number of distinct taxa,

Figure 3B) [34–37]. Taken together, these data are consistent

with the notion that community aggregates to genus level

projections (Figure 2B, right panel) are unchanged in the

posterior fornix, but the more robust analysis of genus and sub-

Table 1. Subject Characteristics and Pregnancy Outcomes.

Subject Demographics Pregnant n=24 Non-Pregnant n=60

Subject age (mean, years) 31.4 (5.8) 26.9

BMI (kg/m2) at sampling 30.4 (7.3) 23.9

BMI (kg/m2) prepregnancy 27.6 (7.6) NA

Ethnicity/Race

Hispanic 4 (16%) 11 (18%)

Non-Hispanic 15 (63%) 35 (58%)

Black or African American 3 (13%) 3 (5%)

Other 2 (8%) 11 (18%)

Tobacco Use

Yes 2 4

No 22 56

Medication (Category)

Vitamins or supplements 24 7

Endocrine metabolic agents 1 7

Antacids/H2 antagonists 11 2

GI medication (Antiemetics and stool softeners) 3 2

Pregnancy Outcomes

Mean gestational age (weeks) 39 weeks 2 days

Preterm birth ,37 weeks (rate) 8% (34 5/7, 36 6/7 weeks)

Mean birthweight (grams) 3265 g

Mean Apgar score

1 minute 8

5 minute 9

Cesarean delivery (rate) 33%

Vaginal delivery (rate) 67%

Comorbidities

(3 subjects with 4 comorbidities) GDMA1, fetal gastroschisis, mild preeclampsia, severe preeclampsia

Characteristics of both pregnant (gravidae) and non-pregnant subject cohorts, alongside pregnancy outcomes of the gravid cohort. GDMA1, gestational diabetes
mellitus White classification A1 (diet controlled). There were no significant differences with respect to Race/Ethnicity among gravidae and non-pregnant subjects
(p.0.05 by independent samples t-test and ANOVA).
doi:10.1371/journal.pone.0036466.t001

Table 2. V5V3 Sequence Metrics.

Subject cohort
Number of
Subjects

Number of
Samples Total Sequences Average Sequence Length

Average
Sequences/Sample

Pregnant 24 68 670,921 498 nt 9,867

Non-pregnant 60 301 1,852,039 491 nt 6,153

Combined 84 369 2,522,960 493 nt 6,837

Sequence metrics for the pregnant (gravidae), non-pregnant, and combined cohorts. Pregnant subject’s samples were of comparable average sequence length, but
retained a higher average number of sequence reads per sample.
doi:10.1371/journal.pone.0036466.t002
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genus OTU based projections reveal significantly less diverse and

less rich community structure in pregnancy (Figure 3).

Taxa Contributing to the Unique Vaginal Microbiome in
Pregnancy

Given the robust evidence that the structure of the vaginal

microbiome significantly differs in pregnancy (Figures 1 and 2),

and further evidence suggesting that the pregnant microbial

community is less diverse and rich (Figure 3), we next sought to

identify which bacterial taxa were contributing to an altered

community in pregnancy. OTU tables and representative

sequences generated from AbundantOTU (Figure 4A) and

QIIME denoised (Figure 4B) datasets were employed in

generating global phylogenetic trees. Additionally, the RDP

classifier was used to assign taxonomy and label each element in

the OTU table, and the resultant alignment enabled character-

based construction of a phylogenetic tree from the filtered NAST

alignment using FastTree [38]. Clear family (internal cluster with

annotations in figure legend) and order level (middle circle)

differences in the pregnancy microbiome are visible in both

datasets (Figure 4), with an overall predominance of the order

Lactobacillales (and Lactobacillaceae family), followed by Clostri-

diales, Bacteroidales, and Actinomycetales. Distinctions between

pregnant and non-pregnant communities by unweighted phylo-

genetic clustering are observed and annotated in the outermost

circle (Figure 4).

Finally, to identify the specific taxa differentially present or

abundant in the vaginal microbiome in pregnancy, we employed

two complementary supervised machine learning approaches. The

first, the random forest algorithm paired with Boruta feature

selection, was validated on classification of subjects by their vaginal

microbiome with a pi statistic (improvement over random)

exceeding 0.8 at OTU abundance thresholds of 100 or 500 for

the AbundantOTU data set (Figures S1 and S2, Tables S1 and

S2) and likewise above 0.6 for the QIIME denoised data set

(Figure S1, Tables S1 and S2). Pregnancy status was, in fact,

the single feature best predicted by the microbiome (as opposed to

BMI, vaginal site of sampling, and ethnicity), and sub-sites were

not well distinguished (pi statistic of discrimination ,0.2 in all

cases; Tables S1 and S2, Figure S3 with binned taxonomy).

Using Boruta feature selection during RF analysis, 12 specific taxa

were identified as discriminating between pregnant and non-

pregnant cohorts at the genus level (at $80% bootstrap cutoff,

Figure S1). In order to identify a taxonomic biomarker with high

stringency, we additionally employed the LEfSe method [39],

which confirmed the differential abundance of 29 and 27 clades

(AbundantOTU and QIIME data, respectively, using default

significance and LDA thresholds) at all taxonomic levels between

pregnant and non-pregnant microbiomes (Figure 5). Supporting

our findings in Figures 3 and 4, these comprised primarily specific

Lactobacillus OTUs and potentially the Bifidobacteriaceae and

Streptococcaceae. Our findings suggest that the composition of the

microbial community in pregnancy represents a relatively di-

minished profile of species richness and diversity (Figures 2, 3, 4,
5), culminating in the specific reduction of many usual vaginal

community members and enrichment for a targeted set of

Lactobacillus species (Figure 5). We present the species-level data

in Table S3. Briefly, OTUs generated from AbundantOTU and

QIIME were aligned to the Greengenes database with the top

OTUs identified by LEfSe (Figure 5A). OTU sequences selected

by Boruta feature selection are deposited in GenBank and are

presented in Figure S2 and Table S3. Top OTUs identified by

LEfSe are marked with an asterics. For example, AbundantOTU

generated consensus 2/33 aligned to Lactobacillus iners, consensus

102/84/70/98/67/44/29/46 to Lactobacillus crispatus, and consen-

sus 28 to Lactobacillus jensenii. On QIIME, 882 aligned to

Lactobacillus johnsonii, and 322 to Lactobacillus crispatus.

Discussion

With a robust sampling, sequencing, and analysis approach, we

generated the first comprehensive catalogue of the vaginal

microbiome in pregnancy across subsite and gestational age.

When compared to the non-pregnant vaginal microbiota, the

community is uniquely and distinctly structured during pregnancy

(Figure 1 and 2A), in ways that cannot be attributed to alterations

in BMI (Tables S1 and S2), to subject race or ethnicity, nor to

readily identifiable clinical confounders. Interrogations of discrete

contributors to community diversity revealed that the vaginal

microbial community varied in pregnancy by gestational age and

proximity to the cervix, but was less diverse and less rich overall

(Figures 2B and 3). To our knowledge, this structured molecular

study of gravidae is unique in terms of stringency of a parallel

clinical approach, sample acquisition from subjects, depth and

robustness of analysis, and notable findings. In sum, the vaginal

microbiome is distinctly structured by a state of health in most

women’s lifetime, i.e., pregnancy.

Others have taken similar but limited approaches to in-

terrogating the vaginal microbiota in pregnancy. Dominguez-

Bello utilized 16S 454-generated molecular signatures to generate

vaginal profiles in a limited sample set of 9 subjects at term with

delivery (including non-laboring and active laboring mothers) from

a remote population of Amerindians [9]. In this small sample set,

the dominant vaginal taxa varied from mother to mother, also

with notable variance in Lactobacillus spp. However, these

investigations did not include parallel sampling of both non-

pregnant and pregnant subjects, nor from multiple vaginal subsites

[9]. However, this study was remarkable for its parallel acquisition

of neonatal microbial community sampling. As supported by other

studies [4–12], the infant gut microbiome largely reflects the

maternal mode of delivery, although it bears mention that in

several studies women were delivered by cesarean for obstetrical

indications in active and advanced labor thereby revealing

a potential bias by virtue of infant handling in cesarean and

vaginal birth and not solely a reflection of fetal descent via the

birth canal [9–12].

Our study suggests that although human adults have highly

differentiated bacterial communities that are relatively stable [3–

6,13–17], in such prevalent and healthful states as pregnancy the

vaginal community in particular shifts naturally in its structure

with respect to diversity and richness. Indeed, Ravel et al have

previously reported that the vaginal microbiome in healthy,

reproductive-aged women occupies states dominated by Lactoba-

Figure 1. Beta diversity metrics of bacterial 16S rRNA genes reveal distinctly clustered vaginal microbiome communities structured
by pregnancy. Datasets were minimally filtered for removal of singletons (left panels) or filtered for chimeras (right panels; QIIME ChimeraSlayer).
Beta diversity microbiome community clustering is observed for non-phylogenetic methods ((A) normalized Canberra), binary non-phylogenetic
methods ((B) binary Chord, (C) binary Ochiai), and phylogenetic beta diversity metrics ((D) unweighted UniFrac). In each panel, each point
corresponds to a vaginal sample from either a pregnant (green) or non-pregnant (blue) subject. The percentage of variation explained by the plotted
principal coordinates is indicated on the axes.
doi:10.1371/journal.pone.0036466.g001
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Figure 2. Subclassification of microbial community structure by vaginal subsite and week of gestation. (A) Pregnancy clusters vaginal
microbial communities, while site of vaginal sampling minimally contributes to within cluster formation. Canberra beta diversity metric with PCoA
plot clustering. Each dots represents one sample from the distinct vaginal subsites (mid vagina, posterior fornix, and vaginal introitus) of individual
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cillus iners and Lactobacillus crispatus specifically in association with

low vaginal pH [40]. Others speculated [41] that vaginal

community changes with pregnancy, but ours is the first direct

evidence as such. Indeed, our findings suggest that at least among

reproductive aged women, the vaginal microbiome remains

a dynamic community in adult reproductive life, and that terminal

differentiation does not occur per se [41]. Moreover, we observe

persistent relative prevalence (but not sole nor absolute pre-

dominance) of Lactobacillus (Figure 4, AbundantOTU). However,

across the entirety of our study population, less diversity and

richness occurred in measured variance throughout weeks of

gestation and in proximity to the uterus (posterior fornix), leading

us to speculate on variances within the cusp of preterm viability.

Of interest, in subjects closer to term OTU-based projections

suggest that the non-pregnant community structure may return to

some extent in the latter weeks of gestation. Our study is

potentially limited by employing a cross-sectional comparison in

gravidae (Figure 2), relative to a limited number of non-pregnant

subjects with multiple samplings (18/301 specimens represented

thrice sampling, see methods). Alternatively, when we compared

only first samplings of non-pregnant women to gravidae, we still

observed consistent cluster separation (data not shown). The most

subjects from pregnant (green shades) and non-pregnant (blue and purple shades). (B) Among gravid subjects, microbial community richness and
diversity (Shannon indices) vary by week of gestation and proximity to the uterus. Community richness and Shannon diversity indices by gestational
age and vaginal sampling site against normalized abundance values from both OTU and phylogeny based analysis charted by vaginal site (posterior
fornix, mid vagina, introitus) and gestational age. Richness - Black; Diversity – Dark Red; Left panel designates OTU based; Right panel designates
Phylogeny based. Gestational age interval shown in weeks, or designated as non-pregnant (NP). Error bars denote variance (standard error of the
mean, s.e.m.). In each of the gestational age intervals, an equivalent number of gravidae were sampled and compared (n = 6 per strata).
doi:10.1371/journal.pone.0036466.g002

Figure 3. Measures of within community diversity (alpha diversity) at two levels of data filtering. Black lines indicate pregnant cohort,
with red lines indicating non-pregnant cohort. Data sets were subjected AbundantOTU (left panels), or denoising and chimera slaying with removal
of singletons and chimeras (right panels). (A) Rarefaction alpha diversity metrics note significantly lower richness in the pregnant data set, while (B)
Renyi alpha diversity metrics indicates significantly less diversity among pregnant vaginal communities following denoising. Significance is denoted
by the absence of curves crossing over at any point following denoising and chimera slaying (right panels).
doi:10.1371/journal.pone.0036466.g003
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robust method to formally address the structure shifts in pregnancy

would be to employ a longitudinal approach whereby each subject

is sampled at ongoing weekly intervals across pregnancy.

However, that is outside the scope of this initial study.

We opted to employ a parallel sampling strategy by stringent

inclusion and exclusion criteria to the Human Microbiome

Project. While this enabled us to make true comparisons to

a large, robust, and unparalleled dataset of non-pregnant subjects,

it similarly opened the possibility that we were sampling an

unperturbed but not ‘‘normal’’ population. However, it bears

mention that our outcomes among gravidae were entirely what

might be anticipated in a health pregnant population (Table 2),

and did not differ significantly among subjects. As with all large

human cohorts, our study is prone to both alpha error and

induced bias. We attempted to minimize error and bias with

a single physician performing all subject sampling among both

cohorts, and all samples being extracted from primary specimens

within a single laboratory utilizing a common and rigorously tested

protocol (HMP).

It remains a distinct possibility that our significant observed

community clustering with the vaginal microbiome being

evidentially structured by pregnancy reflects a secondary trait

in our pregnant population, but not gravid condition itself. Of

note, we did not exclude gravid subjects by virtue of posterior

fornix vaginal pH. In contrast, in the non-gravid HMP cohort

subjects were excluded at the time of screening if the posterior

fornix pH exceeded (see Methods). Given that ,10% of screen

failures (and ,4% of the entire potential cohort) met such pH

criteria for exclusion, we feel that this is an exceedingly unlikely

potential confounder or bias. However, it cannot be formally

excluded as such. To this end, in the recent publication of

Ravel et al., [40], the authors reported that while the pH and

Nugent scores of each community demonstrated strong corre-

lation between high pH and high Nugent scores and the highest

pH values were associated with community states not dominated

by species of Lactobacillus. It is of importance to note that these

investigators employed self-sampling in their study. Nevertheless,

the investigators also reported that elevated pH and high

Nugent scores were observed in some communities with high

proportions of lactobacillus species and that this was most true

in communities which contained decreasing proportions of L.

iners. However, this was not universally true, leading the authors

to summize that these metrics cannot be predicted with absolute

certainty solely on the basis of the proportion of Lactobacillus in

Figure 4. Global phylogenetic trees after AbundantOTU and QIIME denoising. Global phylogenetic trees show the distribution of
taxonomy among all the pregnant and non-pregnant subject samples. The internal cluster dendrograms are colored by taxa Family level projections
(annotated in figure legend), while the mid-circle is colored by the majority origins of OTUs from pregnant or non-pregnant subject samples
(pregnant-magenta; non-pregnant-brown). Outermost circle using text to indicates OTU projection to Order level (Bacteroidales-red,
Actinomycetales-yellow, Lactobacillales-green, Clostridiales-blue). OTU tables and representative sequences generated from AbundantOTU
(Figure 4A) and QIIME denoised (Figure 4B) datasets were employed in generating these global phylogenetic trees.
doi:10.1371/journal.pone.0036466.g004
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a community [40]. We concur with these investigators summary

statements, and note that when comparing our population of

pregnant subjects to the non-pregnant HMP cohort we observed

community discrimination by virtue of Lactobacillus species,

namely L. iners, L. crispatus, L. jensenii and L. johnsonii. If our

community distinctions were the result of an incidental inclusion

of pregnanc subjects with a posterior fornix pH .4.5, then we

would anticipate potentially seeing a decreasing proportion L.

iners in the community structure. However, the opposite holds

true (Figure 5) making confounding by version of pH unlikely.

As the number and robustness of computational approaches to

analysis of metagenomics data increases, investigators are faced

with distinct methodologic approaches to analyzing community

profiles. In any emerging field of study, optimal measures of data

analysis are not evident to investigators at the forefront and

different methodologic approaches may yield variance in signif-

icance of findings [28,42–46]. With this in mind, we employed

a diverse and robust set of bioinformatic tools in analysis of our

datasets (see Methods). For community cluster distinction (beta

metrics), we analyzed taxa by nonphylogenetic and phylogenetic

methods. Regardless of distance metric or phylogenetic analysis,

the vaginal microbiome distinctly clustered by virtue of pregnancy

(Figures 1, 2A, and 4). As AbundantOTU uses a consensus

alignment algorithm, thus tending to concentrate on OTUs of

greater abundance. Detection of rare species is difficult to

differentiate from sequencing error. QIIME denoiser preempts

this difficulty with a pre-filter to reduce the needs of all-on-all

comparison; each additional unclustered read is compared to the

most abundant clusters to discern sequencing error probability

from detection of rare bacterial species retained in the OTU table.

Regardless of methodology, our results from AbundantOTU and

QIIME denoising are strikingly similar in terms of differentiating

OTU identified (Figure 4). This finding is further evident at the

species level, as detailed in Figure 5.

Similarly, for measurement of within community diversity

(alpha) we employed variations in data filtering ranging from

minimal removal with scant trimmed reads to well-described

modest ‘‘denoising’’ and slaying of chimeras. We persistently

observed less richness and diversity in pregnant communities when

compared with parallel non-pregnant subject cohorts, regardless of

computational pipeline, tool employed, or means of data pro-

jection (Figures 2B and 3). The limited results analyses at the

genus level, and the number of significantly differential OTUs

(Figure 5), both suggest that it is subgenus taxa that most strongly

contribute to observed alterations in community structure in

pregnancy. This was supported by two complementary rigorous

denoising approaches to our dataset. AbundantOTU and QIIME.

The former resulted in diminished OTU estimates (868 versus

1,121 OTUs), but both agreed in the predominance of lactobacilli

(Figure 4) irrespective of gravid condition and clades differential

during pregnancy (Figure 5). With QIIME denoising, a broader

set of taxon differences and less absolute predominance of

Lactobacillus could be observed. While each denoising pipeline

has its own strengths and limitations, one undeniable observation

persists: the vaginal microbiome community is structured by

pregnancy and varies with respect to richness, diversity, and

specific microbial members.

Employing such robust analyses methods, we were able to

detect species which are discriminately and specifically relative

enriched in pregnancy (albeit in the face of overall diminished

community richness and diversity). These include Lactobacillus iners,

Lactobacillus crispatus, Lactobacillus jensenii and Lactobacillus johnsonii.

Although it is outside the scope of this initial manuscript to delve

deeply into the species differentiation and clinical implications,

these findings are of probable biologic significance nevertheless.

For example, L. johnsonii encodes enzymes and transporters

essential for the release bile salt hydrolase and is primarily found

in the upper GI tract [47]. In addition, the capacity for production

of bacteriocins is a broad trait of the lactic acid bacteria and L.

johnsonii production of Lactacin F both limits other lactobacillus as

well as Enterococcus species in the GI tract. It’s notable increased

dominance in the vagina in pregnancy may be important for

establishing the neonatal upper GI microbiota upon delivery, or

preserving the integrity of the community to reduce risk of

ascending infection or preterm birth.

The vaginal microbiome signature in pregnancy is thus distinct

from non-pregnant, and this distinction comprises both from lesser

diversity and, to a lesser degree, from the absence and occasionally

presence of unique taxa. Our reporting by gestational age and

vaginal subsite now lays the foundations for further interrogations

into microbial variance, including such presumed pathogen-

related perinatal morbidities as preterm birth. Moreover, it lends

to the growing understanding of the remarkable dynamic nature of

our metagenome and its role in vertical transmission of the

microbiota through subsequent generations.

Materials and Methods

Subjects
The intent of this study was to compare the vaginal microbiome

in pregnancy from healthy individuals whose core microbiomes

were likely to be minimally perturbed by virtue of infectious

comorbidities and exogenous exposures. We took advantage of our

role as clinical investigators with the Human Microbiome Project

(K.A., J.P., and J.V., Baylor College of Medicine) [27] and

employed parallel recruitment of non-gravid (non-pregnant) and

gravid subjects using rigorous standardized sampling protocols.

Subjects were recruited from the general population with general

media and institutional advertisements, in addition to institutional

study enrollment web sites and approach during previously

scheduled clinical appointments. An initial telephone query

included a general health questionnaire to screen interested

individuals who would be evaluated by a list of inclusion/exclusion

criteria including a pre-pregnancy or current body mass index

range of 18–35, history of cancer, compromised immune status,

history of specified chronic diseases, or medication exposure

within the last six months (e.g., antibiotics, corticosteroids,

cytokines, large doses of probiotics, etc.). Major dietary changes

and history of moderate-high alcohol intake excluded individuals.

Medications and dietary components that potentially might alter

the human microbiome intentionally such as antibiotics and

probiotics served as additional important exclusion criteria.

Figure 5. Metagenomics-based discovery of bacterial taxa contributing to differentiation of vaginal communities in pregnancy.
Bacterial taxa were selected as significantly differentially abundant between pregnant and non-pregnant communities (regardless of sampling site)
by the LDA Effect Size (LEfSe) algorithm, (left panel) sorted by degree of difference (listing only taxonomic leaves) and (right panel) overlayed on
a complete taxonomy. Taxa are again reduced in diversity during pregnancy, with several specific Lactobacillus OTUs detected uniquely among
pregnant individuals. OTU tables and representative sequences generated from AbundantOTU (Figure 5A) and QIIME denoised (Figure 5B)
datasets were employed in LEfSe analyses.
doi:10.1371/journal.pone.0036466.g005
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Females were required to have a regular 21–35 day menstrual

cycle or a history of regular cycles prior to beginning contraception

or at the time of conception, and the use of specific contraceptives

such as the combination hormone vaginal ring was exclusionary in

non-gravid subjects. For gravidae, inclusion criteria additionally

detailed best obstetrical dating for gestational age, defined as

reliable last menstrual period consistent with ,12 week sonogram

or ,10 week sonographic dating with unreliable last menstrual

period. At the time of enrollment, all gravid subjects had presumed

normal singleton gestations and were without known maternal

comorbidities (such as type II DM, gestational diabetes type A2,

hypertensive disorders, or chronic medical conditions). However,

given the prospective nature of the study with early second

trimester enrollment, some subjects developed these comorbidities

(Table 1). Individuals who remained interested in the study and

met study criteria were invited for a screening visit in the research

clinic (non-gravid), or approached at their next scheduled clinic

visit (gravid).

At the screening visit, the study and associated risks were explained

and subjects documented informed consent by signing a study

consent form. Investigators determined final study eligibility by

taking a medical history and performing a review of systems,

documenting concomitant medications, measuring vital signs,

collecting urine for pregnancy testing (non-gravid) and either

obtaining blood for serum HIV, HBV and HCV testing or reviewing

previously obtained serologies (all required to be negative). In

addition, all subjects underwent targeted physical exams with

attention to body site-specific exclusion criteria (oral cavity, skin

and nasal cavity), and among non-gravid subjects measuring vaginal

pH in females (pH.4.5 at posterior fornix was exclusionary). Gravid

subjects did not undergo vaginal pH measurements as per study

protocol limitations but were queried as to signs and symptoms of

bacterial vaginosis and excluded if reported. Individuals who passed

all screening criteria were eligible for enrollment and were sampled

the first timewithin30daysof thescreeningvisit (non-gravid),orat the

time of the prenatal visit (gravid). Although exclusion of non-gravidae

for posterior fornix pH.4.5 at the time of screening was exceedingly

rare (notablywithonly22of254screen failures in theHMPoccurring

by virtue of vaginal irritation or posterior fornix pH.4.5; 554

potential subjects were screened to ultimately enroll 300 in total for

the HMP [http://www.hmpdacc.org/micro_analysis/

microbiome_sampling.php]), it remains a formal possibility that

our cohort comparison may be biased as posterior fornix pH was not

an exclusionary criteria in our pregnant cohort.

For the non-gravid (non-pregnant) comparison cohort, of the

150 females from the HMP JumpStart initiative [18,19] all

individuals were designated for study enrollment a priori.

Enrollment criteria were established at approximately 20%

minority (racial and ethnic) subjects. While in the index study

protocol, two ethnically, racially, and socieconomically diverse

U.S. cities (Houston, Texas and St. Louis, Missouri) served as

geographically distinct study sites for clinical sampling for this

comparison. However, only subjects sampled at Baylor College

of Medicine were considered in the comparison cohort. This

served to limit potential additional variables, including personnel

doing the sampling (all gravid and non-gravid subjects were

sampled by one investigator [K.A.]), site of microbial DNA

extraction, and regional variability. To assure compliance of

screening and sampling measures, a common set of human

study protocols and consent forms were created, reviewed

independently and subsequently approved at Baylor College of

Medicine. An age range of 18–40 years was established to

minimize variability due to childhood growth and development,

aging, and hormonal influences during adolescence and

menopause. Each of the enrolled non-gravid subjects agreed

to primary and repeat (second) sampling so as many individuals

as possible were sampled twice. A subset of non-gravid subjects

was designated to undergo three samplings at each body site, at

a priori designated intervals.

Subject Compliance/Protection and Informed Consent
Specimen collection procedures involved minimal physical

risk to subjects. As defined in 45 US Code of Federal

Regulations (CFR) 46.102 (i), ‘‘Minimal risk’’ infers that the

‘‘probability and magnitude of harm or discomfort anticipated

in the research are not greater in and of themselves than those

ordinarily encountered in daily life or during the performance

of routine physical or psychological examinations or tests.’’

Potential risks of participation as discussed with subjects

included those associated with biologic sample collection and

repository, and the unintentional release of protected health

information; the protocol and informed consent form described

precautions taken to reduce these risks. The study sites

developed informed consent documents using NHGRI guide-

lines for genomics studies, which address the ethical, legal and

social implications of such research. The Institutional Review

Board reviewed and approved the protocol, informed consent

and other study documents. Additional protections for subjects

included Certificates of Confidentiality intended to protect

against the forced disclosure of identifiable research data,

coding of genomic and metagenomic specimens and sequence

data, and use of controlled access databases for medical data

and human genome sequence data. As part of the consent

process, we informed subjects about data protection, including

coding, use of controlled-access databases for human genomic

data and controlled-access repositories for extracted metage-

nomic nucleic acids. If a subject withdrew consent after

providing specimens, remaining specimens and extracted nucleic

acids were to be destroyed; however, any metagenomic

sequence data that was already published in open access

databases could not be retracted.

Clinical Metadata Collection
EMMES and the Data Analysis and Coordination Center for

the Human Microbiome Project (www.hmpdacc.org) established

an internet data entry system for investigators to enter coded

non-gravid subject information; gravid subject information was

entered and maintained on a local database with secured

protection but not released to the DACC. Clinical data

elements included gender, race, ethnicity, age, place of birth,

occupation, body mass index, vital signs, vaginal pH (non-

gravid), date of last menstrual period and first sonogram,

tobacco use, and both dental and health insurance status. A

medical history, comprehensive obstetrical data, and targeted

physical examination findings alongside medication history were

also recorded for each subject.

Specialized Reagents and Instrumentation for Human
Sampling

The Catch-All swab from Epicentre Technologies was selected

as the swab of choice for sampling based on preliminary

evaluations done in conjunction with HMP. The Catch-All swab

was used for collection of all vaginal samples. Prior to vaginal

sampling in non-gravid subjects, a digital display pH meter with

accuracy to .0.01 was employed for precision measure of vaginal

pH (Waterproof BigDisplay pH Spear, Oakton pH meter, Vernon

Hills, IL.).

The Vaginal Microbiome Signature in Pregnancy

PLoS ONE | www.plosone.org 11 June 2012 | Volume 7 | Issue 6 | e36466



Subject Sampling
Inclusion criteria included stringent requirements as otherwise

detailed [27]. Healthy, young adults (ages 18–40) who retained the

ability to provide informed consent and were willing and available

to provide samples during the study interval were targeted for

enrollment. In non-gravid subjects, specimen types included

anterior nares, oral cavity (9 samples), peripheral blood, skin (4

samples), stool, and vaginal (3 samples per female) samples [27]; in

gravidae, only vaginal samples at the posterior fornix, midvagina,

and vaginal introitus were collected. All subjects were required to

have a minimum of 24 teeth with no more than 8 missing teeth.

Three vaginal specimens were collected in a systematic and

uniform fashion from the vaginal introitus, the posterior fornix,

and the midpoint of the vagina. All specimens were collected using

sterile Catch-AllTM specimen collection swabs by applying the

swab to a single site, swirling it 6 times, and then withdrawing

from the site without contamination. The protocol for collection

was as follows: in non-gravid subjects, the pH was measured at the

vaginal introitus (Oakton pH meter, Vernon Hills, IL) and among

both cohorts the vaginal introitus specimen was collected first. A

clear, small or medium Pederson speculum (manufacturer) was

thereafter introduced in the absence of lubrication, and turned to

an approximate 45 degree angle to enable placement of the

Oakton pH meter at the posterior fornix for determination of

posterior fornix pH (non-gravid subjects). In both gravid and non-

gravid, the posterior fornix sample was collected, then the

speculum was slowly withdrawn to the midpoint of the vagina

and the midpoint specimen was obtained. Subjects were not

menstruating on the days of specimen collection and were

abstaining from sexual intercourse, douching, tampon usage or

vaginal creams for the preceding 48 hours.

Specimen Processing
In this study protocol, vaginal specimens were coded, stored

and processed for nucleic acid extraction at a single laboratory

(J.P.) using a common protocol to reduce variability between

samples. Genomic DNA was isolated on standard protocol with

PowerSoil DNA Isolation Kit (MoBio) per HMP modifications

(http://www.hmpdacc.org/doc/

HMP_MDG_454_16S_Protocol_V4_2_102109.pdf).

16S Metagenomic 454 Sequencing Data Generation
Extracted DNA samples were used for 16S rRNA sequence-

based survey. High Fidelity PCR reactions were performed in 96

well plates. 16 mL of master mix composed of 13.85 mL RNAse/

DNAse free water, 2 mL 10X AccuPrime PCR Buffer II, and

0.15 mL AccuPrimeTM Taq DNA Polymerase (Invitrogen) were

mixed into individual wells in the 96 well reaction plate. The

covered plate was spun and centrifuged at 2000 rpm to collect

sample at the bottom of the wells. For the initial reaction, a 2 mL

sample of DNA was added to the reaction wells. Barcoded primers

(2 mM) from the primer plate were added to corresponding wells

in the 96 well PCR plate. Two different PCRs were set up

separately with a set of barcoded primers targeting the V3V1

region and V3V5 regions; this analysis examined V3V5 regions.

The V3V5 regions of the 16S rRNA gene were amplified by PCR

using bar-coded universal primers 354F and 926R (V3-V5)

containing the A and B sequencing adaptors (454 Life Sciences,

Branford, CT) obtained from Invitrogen. Primer sequences are

as follows:B-354F(59-cctatcccctgtgtgccttggcagtctcaGCCTACGG-

GAGGCAGCAG-39; B adaptor in lowercase letters); A-926R

(59ccatctcatccctgcgtgtctccgactcagNNNNNCCGTCAATTCMTT-

TRAGT; A adaptor in lowercase letters, and N represents a bar

code that is unique for each sample). Cycling conditions were

95uC for 2 min, followed by 30 cycles at 94uC for 20 s, 50uC for

V3V5 primer sets. PCR products were cleaned using AmPure

Beads Agencourt (Beckman Coulter, Beverly, MA) using 1.86
volume beads. Beads were eluted with 25 mL 16 low TE, pH 8.0

and transferred to a new 96-well plate. PCR products were

quantified using Quant-IT dsDNA high sensitivity assay (Invitro-

gen) according to the manufacturer’s specifications. All samples

were diluted according to the sample that had the lowest

concentration. Equal volumes of each (5–10 mL) sample were

pooled and then concentrated using MinElute columns (Qiagen,

Valencia, CA). DNA pool emulsion PCR amplification and 454

sequencing were performed at the BCM Human Genome

Sequencing Center (HGSC) in Houston, TX. Sequencing was

performed using the 454/Roche B sequencing primer kit in the

Roche Genome Sequencer GS-FLX Titanium platform. Samples

were combined in a single region of the picotiter plate such that

approximately 20,000 to 40,000 sequences were obtained from

each group with each primer set. Samples were isolated and

quality-filtered from each multiplexed Standard Flowgram Format

(SFF) file.

In the gravid sample cohort, three subjects did not have valid

sequences from a total of 4 body sites (subject 14 did not have valid

sequences from midvagina nor posterior fornix, and subjects 6 and

9 did not have from the midvagina and posterior fornix,

respectively). In the non-pregnant cohort, 29 subjects were

sequenced for all three vaginal subsites 1 time (29 of 301 samples),

21 subjects for all three subsites twice (42 of 301 samples), 6

subjects thrice (18 of 301 samples), and 2 subjects for all three

subsites four times (8 of 301 samples).

Denoising Data Sets
As a quality filtering step, each sample was preprocessed to

remove sequences with length less than 200 nucleotides and

sequences with minimum average quality less than 20. If they

could be identified, reverse primers were also removed from

sequences. In a first pass denoising, singletons and chimeric

sequences (which occur as a byproduct of the PCR-amplification)

were identified by ChimeraSlayer [28] and removed from the

representative sequence file generated by the output of the

minimal filtering pipeline and subsequent OTU table.

For second pass denoising, two programs were employed:

AbundantOTU [29] and the QIIME denoising pipeline. Abun-

dantOTU is a robust and fast OTU picking approach, which uses

a consensus alignment algorithm to infer consensus sequences

from full-length 16S pyrosequences. Since it relies on sequence

redundancy, sequencing errors will have less effect on the OTU

picking process compared with other clustering based methods.

Rare species, which tend to cause inflated species diversity

estimations [30], are not included. In our case, 87% of all input

sequences were assigned to 194 consensus sequences. For QIIME

denoising, the sequences from all samples were processed through

QIIME’s 454 dataset denoising pipeline (version 1.3), whereby the

sff files from 301 non-pregnant samples and the sff file from the 68

pregnant samples were grouped into one complete dataset for

denoising [31], resulting in the production of an OTU table for all

369 samples in a single run on a local cluster utilizing 75

processing cores [32,42,43]. Chimeric sequences in the represen-

tative sequence sets picked from denoised fasta files were detected

by ChimeraSlayer and subsequently removed from the OTU

table. In order to account for artifacts that may arise from multiple

sequencing runs and separate denoising runs, all samples were

denoised together in all alpha diversity, supervised and un-

supervised learning, and feature selection pipelines.
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16S Metagenomic 454 Sequencing Analyses
RDP pipeline. Unique reads were classified with the MSU

RDP classifier v2.2 [44], maintained at the Ribosomal Database

Project (RDP 10 database, version 6), and normalized data were

produced from the relative abundance of taxa present in each

sample based on a naı̈ve Bayesian classifier [28,43–45]. Output

sequences were classified as domain, phylum, family and genus,

depending on the depth of reliable classifier assignments.

Combined sample reports included the total counts and normal-

ized (relative abundance) data.

Creating input data. QIIME was utilized to produce OTU

tables from the quality-filtered sequences as outlined above [28–

32,42–44]. The generated OTU tables combined with the clinical

metadata comprised the data matrix used as input for alpha

diversity (biodiversity within a group of samples), beta diversity

(biodiversity between groups of samples) [3], and machine learning

pipelines (randomForest). Quality filtered sequences were analyzed

using three standard microbiome analysis techniques: operational

taxonomic unit (OTU) generation, phylogenetic tree construction,

and taxonomic binning of classified sequences.

Alpha diversity. A custom in-house pipeline has been written

to calculate alpha diversity measurements and plots using R

packages [46]: BiodiversityR [48] and vegan [49]. This pipeline

was designed to utilize the output of the OTU picking step (OTU

table and meta data file) as the only necessary input. Analyzing the

biodiversity within a group of samples provides insight into the

differences in species richness, evenness, abundance; we employed

the methods of Chao1 [35] and Shannon [36] as we were

analyzing groups of samples. Plots were generated and exported

for species richness, rank-abundance, and Renyi’s diversity indices

[34] whereby species richness plots depict the number of species

(OTUs) on the y-axis and the number of sites (samples) on the x-

axis such that rank-abundance curves rank and list the most

abundant OTUs from left to right on the x-axis and top to bottom

on the y-axis. The width of the curve on the on the horizontal axis

of a species richness plot serves as an indicator of richness: a wide

curve indicates higher species richness and a narrow curve

indicates the opposite. The shape of the rank-abundance curve is

an indicator of species evenness: a horizontal curve indicates

a completely evenly distributed system, whereas a steep curve

indicates a less even distribution of species [48]. Rank abundance

has been demonstrated to successfully show the extent that tag

pyrosequencing illuminates the rare biosphere of the human gut

[37]. Based on prior evidence, we assumed that Renyi diversity

profiles are helpful in analyzing the differences in diversity and

evenness between multiple subsets of samples [34,37,50]. If the

curves from one sample set contain greater y-axis values, then it

can be concluded that this sample set has greater diversity.

However, if the two curves intersect at any point, the sample sets

are said to be non-comparable, which may reflect important

ecological processes [51].

Beta diversity. Beta diversity analysis incorporated 9 binary

non-phylogenetic (binary chi-square, binary chord, binary Euclid-

ean, binary Hamming, binary Jaccard, binary Lennon, binary

Ochiai, binary Pearson, and binary Sörensen-Dice), 14 non-

phylogenetic (Bray-Curtis, Canberra, Chi-square, Chord, Euclid-

ean, Gower, Hellinger, Kulczynski, Manhattan, Morisita-Horn,

Pearson, Soergel, Spearman rank, and species profile), and 6

phylogenetic (UniFrac G metric, UniFrac full tree, unweighted

UniFrac, unweighted UniFrac full tree, weighted normalized

UniFrac, and weighted UniFrac) beta diversity metrics [51–54].

Each beta diversity distance metric calculated was systematically

displayed for the top 3 principal coordinates (PCoA (Principal

Coordinates Analysis)) for both normalized and non-normalized

OTU tables in both 2D and 3D formats for further analysis [55].

Phylogenetic analysis. Phylogenetic trees were produced as

necessary input for the phylogenetic beta diversity metrics (i.e.

UniFrac) in order to determine whether derived microbiome

communities were significantly different as an estimate of the

degree of divergence between different representative sequences

[53–55]. Phylogenetic trees were produced in Newick format

employing interactive tree of life (iTOL) interface [56].

Machine learning (randomForest modeling with Boruta

feature selection and LEfSe). In order to supplement the data

obtained from the taxonomically binned reports, alpha diversity,

beta diversity, and phylogenetic data sets, a machine learning

pipeline was written to study the patterns that can be detected

within the sub-groups of various microbiomes [33,38,39,57–63].

Machine learning algorithms are useful in determining the

strength of meta data clusters (bagging, binning, etc.) as well as

listing the most important variables involved in discriminating two

groups of samples (feature selection). The algorithm randomForest

enabled classification of groups of samples by constructing

a classification tree, randomly sampling the predictors, choosing

the best splitting variables, and predicting new data by combining

the predictions from all trees in order to estimate the error rate

[‘‘out-of-bag’’ (OOB)] and list the highest performing variables.

We secondarily applied the R package Boruta to explicitly perform

feature selection [33,39,58–60]. Linear discriminate analysis effect

size (LEfSe) is a novel method developed to support for high

dimensional class comparisons in metagenomics analysis [61].

LEfSe combines the standard tests for statistical significance

(Kruskal-Wallis test and pairwise Wilcoxon test) with linear

discriminate analysis for feature selection. In addition to detecting

significant features, it also ranks features by effect size, which put

features explain most of the biological difference at top. Pregnant

and Non-pregnant were indicated as two classes with no subclass

indicated. Alpha value for the factorial Kruskal-Wallis test is 0.05.

Threshold on the logarithmic LDA score for discriminative

features is 2.0.

Supporting Information

Figure S1 Accuracy of phenotypic predictions from
microbiome composition by randomForest. OTU abun-

dances using increasingly many minimal row contributions were

used by RF machine learning to predict clinical metadata

including pregnancy status, vaginal sampling subsite, subject body

mass index, and race/ethnicity. Pregnancy was extremely well

predicted by OTU features (Scott’s pi .0.8, as compared to

a random baseline of 0), exceeding the (still high) accuracy of other

metadata predictions.

(TIF)

Figure S2 Supervised (machine) learning with defini-
tion by randomForest and confirmation by Boruta
feature selection enables visualization of bacterial taxa
contributing to clustering of vaginal communities in
pregnancy. Bacterial taxa (leftmost column) were defined by

randomForest (Table S1) and confirmed by Boruta feature

selection. Taxa are sorted first by Mann-Whitney U score,

followed by the largest disparity in medians for each group. Taxa

represent the lowest taxonomic depth (Genus) that are labeled by

RDP Classifier (at $80% bootstrap cut off). Boxes represent the

first quartile, median, and third quartile of the distribution of

OTUs for each sample group. Empty circles represent outliers that

are 1.5-fold greater than the respective interquartile ranges.

(TIF)
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Figure S3 LEfSe analysis of binned taxonomy at dis-
crete vaginal subsites. Bacterial taxa were selected as

significantly differentially abundant between pregnant and non-

pregnant communities by virtue of discrete sampling site and

displayed by LDA Effect Size (LEfSe) algorithm. Taxa level

projections are defined by pregnancy at each subsite, with specific

Lactobacillus species detected consistently among pregnant individ-

uals.

(TIF)

Table S1 Estimated error rate of the randomForest simulation

by virtue of potentially contributable clinical metadata (pregnancy,

BMI, vaginal sampling site, and ethnicity) following abundant

OTU pipeline for denoising of dataset. Top row header: Minimal

row contribution cut off sum for each OTU to determine the best

performing data set (i.e., contains the most discriminative features

with least amount of noise). When describing estimated error rate

per minimal row contribution, pregnancy was retained as the only

significant clinical metadata category in the model simulation that

had an acceptable level of estimated error (,10%, in bold face

type).

(DOC)

Table S2 Estimated error rate of the randomForest simulation

by virtue of potentially contributable clinical meta data (pregnan-

cy, BMI, vaginal sampling site, and ethnicity) following QIIME

pipeline for denoising of dataset. Top row header: Minimal row

contribution cut off sum for each OTU to determine the best

performing data set (i.e., contains the most discriminative features

with least amount of noise). When describing estimated error rate

per minimal row contribution, pregnancy was retained as the only

significant clinical metadata category in the model simulation that

had an acceptable level of estimated error (,10%, in bold face

type).

(DOC)

Table S3 The OTUs selected by Boruta feature selection are

assigned to the species level by realigned to Greengenes database

and BLAST with NCBI microbial database. Top OTUs identified

by LEfSe are marked with an asterics.

(DOC)
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