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Abstract

Biological signal transduction commonly involves cooperative interactions in the binding of ligands to their receptors. In
many cases, ligand concentrations in vivo are close to the value of the dissociation constant of their receptors, resulting in
the phenomenon of ligand depletion. Using examples based on rotational bias of bacterial flagellar motors and calcium
binding to mammalian calmodulin, we show that ligand depletion diminishes cooperativity and broadens the dynamic
range of sensitivity to the signaling ligand. As a result, the same signal transducer responds to different ranges of signal with
various degrees of cooperativity according to its effective cellular concentration. Hence, results from in vitro dose-response
analyses cannot be applied directly to understand signaling in vivo. Moreover, the receptor concentration is revealed to be a
key element in controlling signal transduction and we propose that its modulation constitutes a new way of controlling
sensitivity to signals. In addition, through an analysis of the allosteric enzyme aspartate transcarbamylase, we demonstrate
that the classical Hill coefficient is not appropriate for characterizing the change in conformational state upon ligand
binding to an oligomeric protein (equivalent to a dose-response curve), because it ignores the cooperativity of the
conformational change for the corresponding equivalent monomers, which are generally characterized by a Hill coefficient
%1. Therefore, we propose a new index of cooperativity based on the comparison of the properties of oligomers and their
equivalent monomers.
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Introduction

Dose-response is one of the most common experimental

approaches used by biologists to monitor the properties of

signaling molecules. The power of this approach arises from the

fact that the change in any quantifiable physiological response can

be measured as a function of the chemical stimulus responsible. In

some cases, the resulting curve is sigmoidal, which generally

implies cooperative interactions between the binding sites for the

ligand that initiates the response (but other explanations are

possible — see below). In general, cooperativity (or ultrasensitivity)

arises for numerous biological processes regulated by protein-

protein or protein-ligand interactions involving multi-site proteins

that transduce signals via conformational isomerization [1–3].

Cooperativity has been represented for numerous oligomeric

protein systems by the allosteric model of concerted transitions [1].

The model is based on spontaneous transitions between two

conformational states, designated T (for ‘‘tense’’) and R (for

‘‘relaxed’’). The governing principle of the model is that in the

absence of any bound ligands, the T conformation is energetically

favored over the R conformation. However, because the R
conformation has a higher affinity than the T state for a ligand

specific for the protein under consideration, the presence of ligand

pulls the T{R equilibrium towards the R state. Under these

conditions, a clear distinction can be made between two

mathematical functions that describe the behavior of protein-

ligand interactions as a function of ligand concentration: 1) the

binding function, �YY , defined as the fractional occupancy of the

ligand binding sites of the protein, taking into account both the T
and R states; and 2) the state function, �RR, defined as the fraction of

molecules in the R state. The state function �RR corresponds closely

to what is measured by dose-response analysis for an allosteric

‘‘receptor’’ protein. The definitions of �YY , �RR, and various related

parameters are summarized in Table 1.

From its initial application to the sigmoidal oxygen-binding

curve of hemoglobin, cooperativity has been conveniently

characterized by the Hill coefficient, nH [4,5]. The value of nH

is obtained as the slope of the Hill plot: the logarithm of the ratio

of occupied to unoccupied binding sites on the ordinate is given as

a function of the logarithm of the ligand concentration on the

abscissa. The value of nH provides an empirical index of

cooperativity: its upper limit is the number of interacting sites

and its value is directly related to non-cooperative systems, since

for a monomeric protein with a single site, nH~1. The Hill

coefficient is widely used, including for dose-response curves, but

care must be taken in interpreting its value [6–8], since kinetic

effects can alter apparent cooperativity [9] and even a monomeric

enzyme can display cooperative behavior, i.e. nHw1:0 [10,11].

Cooperativity can also be generated by relatively simple networks

[12], for example through competition between two sets of

phosphorylation sites [13], as well as sequestration effects involving

an inactive complex [14] or more complex signal transduction

cascades [15]. The interpretation of values of nHv1, which can be

a sign of negative cooperativity [16], also requires careful attention,
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since even for hemoglobin, binding curves with nHv1 can be

generated in the presence of non-stoichiometric concentrations of

the positive effector, 2,3-diphosphoglycerate [17].

In addition to cooperativity, the non-linear properties of

ultrasensitive systems define a dynamic range of signal intensities

for which the responses vary. The greater the degree of cooperativity

for a system with respect to signal changes, the narrower the dynamic

range over which the response varies. For highly cooperative systems,

such as bacterial chemotaxis, elaborate mechanisms have evolved in

order to extent the dynamic range of response to changes in the

concentrations of attractants or repellants [18,19].

For all signal transduction systems considered, a predominant

effect under physiological conditions is ligand depletion. When the

concentrations of receptors are close to the dissociation constant for

the relevant ligand, the free concentration of the ligand falls

significantly below the total concentration of ligand, which in fact

constitutes the actual input signal. This effect can be particularly

important under in vivo conditions, for which most protein

concentrations and dissociation constants are within the nano- to

micro-molar range. The general principle of ligand depletion has

been widely recognized [20–22] and various aspects have been

considered for biological networks [14,15,23]. Here we focus on the

consequences of ligand depletion with respect to cooperativity and

dynamic range, as visualized for two extreme systems. First, we

examine the highly cooperative flagellar motor system [24,25].

Second, we turn to the minimally cooperative, but ubiquitous

example of calmodulin [26,27] in order to explore the consequences

of ligand depletion under diverse conditions that apply in distinct

regions of the brain and other organs. Finally, after illustrating why

the Hill coefficient is not appropriate for measuring cooperativity of

signal transduction, we define a new index of cooperativity, n, as

illustrated with the classical example of the allosteric enzyme

aspartate transcarbamylase [28,29]. We show that n, based on the

introduction of an ‘‘equivalent monomer’’ concept, is a reliable

measure of cooperativity for dose-response type curves under all

conditions.

Results

Ligand Depletion and Dynamic Range in the Flagellar
Motor System

We illustrate the importance of considering ligand depletion

with the highly cooperative E. coli flagellar motor system [30],

which controls the direction of flagellar rotation in response to the

concentration of phosphorylated CheY [31]. The rotational bias of

individual motors as a function of CheY-P has been measured

using tethered single cells and GFP-CheY [30]. The motor bias

reflects a change of rotation from counter-clockwise to clockwise

and therefore a change of fractional activation (or state function,
�RR), which is influenced by the interaction of CheY-P with the 34

units of FliM comprising the motor ring [32]. The data show a

high degree of cooperativity, with Hill coefficients of up to 10

reported [30]. In contrast, the fractional occupancy, measured

using FRET between CheY and FliM appears to be much less

cooperative [31].

For dose-response measurements it is reasonable to assume

equivalence to within experimental errors of the concentrations of

the free and total ligand only if the protein to which the ligand is

bound is present at sufficiently low concentration compared to the

dissociation constant. However, for the measurements of the

flagella motor system, free and total ligand were determined

directly and were found to be far from equivalent [31]. The free

Table 1. Summary of terms for cooperativity and ligand depletion.

Term Description Equation

a The concentration of ligand normalized to the affinity of the R state 3

a50 The value of a corresponding to �RR~0:5 16

atotal The value of a comprising both free and bound ligand 9

c The ratio of ligand dissociation constants for the R and T states 2

Cs The molar concentration of ligand binding sites 9

L The allosteric constant governing the intrinsic T{R equilibrium 1

nH The Hill coefficient, defined by slope of loglog plot 18

n50 The Hill coefficient at a50 —

l The allosteric constant governing the intrinsic equivalent monomers T�-R� equilibrium 10

n Cooperativity of the state function for an oligomer relative to the equivalent monomer 15

nmax The maximal value of n, which occurs at a50 16

V The ligand stabilization factor for T over R 6

R The ‘‘relaxed’’ (high affinity) conformational state 1

�RR Fraction of total molecules (T and R) in the R state as a function of a 5

�RR0 �RR as a function of the total concentration ligand (free and bound) 9

�RR� The fraction of equivalent monomers (T� and R�) in the R� state 12

T The ‘‘tense’’ (low affinity) conformational state 1

X Any ligand 3

�YY Fraction of all binding sites (T and R) occupied by ligand 4

�YY � Fraction of equivalent monomer binding sites occupied by ligand 17

�YY ’ �YY as a function of the total concentration of ligand (free and bound) —

doi:10.1371/journal.pone.0008449.t001
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concentration is significantly reduced compared to the total

concentration, due to binding to FliM, as well as to CheA and

CheZ [33]. In order to characterize this effect, we define �RR0, the

response as a function of the total ligand concentration, which is

distinct from �RR, the response as a function of the free ligand

concentration (see Table 1).

When ligand-depletion effects are taken into account, the curve

for �RR0 is displaced far to the right of the curve for �RR (Figure 1A). In

addition, �RR0 is significantly less steep than �RR. Moreover, the effect

of ligand depletion on response curves is exhibited by all

cooperative frameworks based on thermal equilibria, not only

strictly concerted-models, such as proposed by Duke et al [34].

Therefore, ligand depletion results in an increase in the dynamic

range of signal concentrations sensed by the system, as measured

for instance by the differences in total concentration of CheY-P

corresponding to �RR0 values between 0.1 and 0.9, which increase

from 3:8mM to 7:1mM for a full change of response in this range.

In comparison, the results presented using �RR without taking into

account ligand depletion could contribute to an underestimation

of the dynamic range, since equivalent response changes would be

achieved by increase from 2:5mM to 3:8mM. With variations in the

concentration of FliM, the dynamic range increases linearly

(Figure 1B). More generally for multisite receptors, the dynamic

range varies with the number of subunits, as observed for the

family of curves in Figure 1B and 1C. Ligand depletion may also

account for the discrepancies observed between the results

reported by Cluzel et al [30] and other studies [35,36] showing

a much lower apparent cooperativity.

The Effect of Ligand Depletion on the Response
Characteristics of Calmodulin

In contrast to the behavior of a system of high cooperativity as

described above, we examined the properties of calmodulin, a key

molecule of calcium signaling with relatively low cooperativity

[37], for which an analysis based on the MWC model has recently

been presented [38]. The protein exists as a small monomer (148

residues), with four distinct calcium binding sites, each character-

ized by specific dissociation constants for calcium that vary

between the low-affinity and high-affinity states [38]. Although the

reference ligand binding properties that we used for our analysis

are free of ligand-depletion effects [39], we have transformed the

data to simulate conditions of ligand depletion, with points that fit

the curve for �YY ’ (the fractional occupancy as a function of the total

calcium concentration) for calmodulin at 40mM (Figure 2A). In

addition, we have calculated a series of response curves presented

in Figure 2A for the activation of calmodulin by calcium both

under conditions with no ligand depletion (�RR), as well as under

condition with ligand depletion (�RR0) corresponding to various

concentration of calmodulin found in vivo [40]. The differences

between �RR and �RR0 are very clear, including a progressive

broadening of the dynamic range, with markedly diminished

cooperativity as the concentration of calmodulin increases. The

corresponding decreases in cooperativity as a function of

calmodulin concentration are presented in Figure 2B, showing a

dramatic fall off with concentration from the initial value &2
under conditions where Ca2+ is in large excess, to cooperativity

values for the highest concentrations approaching zero.

Figure 1. Flagellar motor model. (A) Curves for �RR as a function of
the concentration of free CheY-P (no ligand depletion: solid blue line)
and curves for �RR0 as a function of total CheY-P (with ligand depletion:
dashed blue line), with �RR and �RR0 expressed in terms of CW bias, the
measured parameter of the flagellar motor corresponding to the
fraction of time undergoing clockwise rotation. The dynamic range,
defined as the ligand concentration range between values of �RR or �RR0 of
0.1 and 0.9, is represented by the shaded rectangles for the curves with
and without ligand depletion. The open diamond points correspond to
the measurements reported by Cluzel et al. [30]. (B) Variations in the
dynamic range due to ligand depletion as a function of the
concentration of FliM for values of N (the number of sites) = 10, 18,
34, and 100. For each value of N , the curve for �RR is computed based on
an L value set by L~lN (see Materials and Methods, Eqn 11), where l
is fixed by the value used for N~34, i.e. l~(4|107)(1=34). (C) The ratio
of the dynamic range for ½FliM�~20mM to the dynamic range for
½FliM�~0 as a function of N , the number of sites and calculated as in
(B). Parameter values used for the curves in (A): L~4|107 ,

KT~10{5 M, KR~2|10{6 M, and N~34, with a concentration of
FliM~5:8|10{6 M. Calculation of ligand depletion effects as de-
scribed in Eqn 9 of the Material and Methods section.
doi:10.1371/journal.pone.0008449.g001
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Limitations of the Hill Coefficient for Dose-Response
Measurements and Introduction of a New Index Applied
to Aspartate Transcarbamylase

Since cooperativity of binding is generally evaluated by the Hill

coefficient, nH , it is not surprising that the Hill coefficient has also

been used to characterize many cooperative biological processes,

including the fractional activation of signaling receptors and other

proteins. However, as we shall demonstrate here, for conforma-

tional isomerization of a multi-site protein, nH is not a reliable

measure of cooperativity. In contrast to the cooperativity of �YY ,

which varies with the energy difference of the two conformational

states, as specified by the conformational isomerization constant,

L, the value of nH for �RR is independent of the value of L [41], as

shown in Figure 3. When conditions of low, intermediate, and

high affinity are examined for a hypothetical hexamer (Figure 3,

left panels), the corresponding nH curves for cooperativity

(Figure 3, middle panels) change appropriately for �YY , but are

identical for �RR in the three cases. As a result, when cooperativity is

examined as a function of �YY (Figure 3, right panels), the point of

maximal cooperativity moves to the right for nH of �YY as affinity

decreases, but the maximum value nH for �RR displays the opposite

pattern.

Since nH does not vary with the energetic difference of the two

states, the shape of the curves for �RR when expressed as Hill plots

are invariant for different L values, as shown in Figure 4. In

contrast to the Hill plots of �YY , for which the shape changes as a

function of L values, the curves for �RR change only vertical position,

not shape. Since cooperativity is generally measured around 50%

response, correct results are obtained for �YY , but the apparent

cooperativity of �RR at 50%, i.e. log½�RR=(1{�RR)�~0 for a Hill plot,

depends on the vertical position of the curve for log½�RR=(1{�RR)�
and is only a valid estimate of cooperativity for L&c{n=2 (Figure 4,

green curve). The differences in shape between the curves for

log½ �YY=(1{ �YY )� and log½�RR=(1{�RR)� also explain why the coopera-

tivity curves in Figure 3 (middle panels) tend towards nH~1 at the

extremes for �YY , but towards nH~0 at the extremes for �RR. Values

of nHv1 are commonly considered to be characteristic of negative

cooperativity rather than the absence of cooperativity, but the

properties of �RR curves represent a special case for which the

conventional reasoning does not apply. Overall, the analyses

presented in Figures 3 and 4 make clear that as a general

parameter to characterize �RR under any conditions, the Hill

coefficient is not a reliable measure of cooperativity.

In order to overcome the limitations of the Hill coefficient

applied to �RR, we reexamined how cooperativity is computed for

conformational isomerization using data for the allosteric enzyme

aspartate transcarbamylase (ATCase), one of the original examples

of allosteric phenomenon [42]. Following the formulation of the

two-state MWC model [1], it was recognized that under many

conditions, �YY and �RR as a function of ligand concentration would

not overlap [43]. In a classic study of ATCase, the direct binding

of succinate ( �YY ) was compared to the succinate-dependent

conformational change (�RR) as measured by sedimentation or

reactivity of protein sulfydryl groups [44,45]. ATCase was initially

characterized as a tetramer, but later studies revealed a hexamer

[46,47] and subsequent structural studies have thoroughly

characterized the two hexameric conformational states, T and

R, and their concerted interconversion [48,49]. Using the

parameters of the MWC model established for �YY and �RR data on

the basis of four sites, the theoretical curves were recalculated with

six sites, as presented in Figure 5. Under the experimental

conditions employed, the curve for �RR is substantially to the left of

the curve for �YY , which constituted strong evidence a conforma-

tional equilibrium pre-existing to ligand binding [45]. When the

Hill coefficients are determined at 50% for both the �YY and �RR
curves, the value of nH~1:24 for �YY is a reliable measure of the

cooperativity, but the value of nH~1:12 for �RR dramatically

underestimates the intrinsic cooperativity, as we now demonstrate.

Figure 2. Ligand depletion for calmodulin. (A) Curves for �RR0 (blue)
and �YY ’ (red) as a function of the calcium concentration. (B) Values of
effective cooperativity nmax as a function of calmodulin (CaM)
concentration/KR, where KR is the affinity of the R state for calcium.
For the curves with solid lines in (A), ½CaM�~10{7 M and no ligand
depletion occurs; the dashed curves for �RR0 present conditions of ligand
depletion based on the bovine brain calmodulin concentrations of white
matter: 3:3mM (- - - . . - - -); hypothalamus: 10:4mM (- - - -); caudate nucleus:
16:8mM ( . . - . . ); and cortex: 25:9mM ( . . . . ), as reported by Kakiuchi et al.
[40] or for �YY ’ with the concentration of 40mM used in the measurements
by Porumb [39], with data points shown as open squares. Although the
calmodulin concentration of 4|10{5 M [39] was close to the in vivo
concentration of 5|10{5 M in dendritic spines [60], the data were
obtained by flow dialysis, which relates binding to the free calcium
concentration, such that ligand depletion effects can be ignored, but we
have transformed the data to simulate conditions of ligand depletion,
with experimental points that closely follow the curve for �YY ’, the
fractional occupancy as a function of the total calcium concentration. The
same calcium concentrations in (A) are used for the calculations in (B),
with the addition of a value for saliva and rat spleen [40,61]. Other
parameter values as published previously [38] obtained using data from
several sources. The curves under conditions of ligand depletion in (A) are
calculated as described in the legend to Figure 1. Cooperativity in B is
expressed in relation to the effective value of the index nmax (Table 1),
which decreases as a function of the total concentration of CaM.
doi:10.1371/journal.pone.0008449.g002
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In order to establish the correct intrinsic cooperativity of an

oligomeric protein undergoing conformational isomerization, a

reference state is required that corresponds to a hypothetical

equivalent monomer, characterized by same intrinsic affinities for

ligand of the R and T states. A conformational transition of the

equivalent monomer as a function of the binding of its ligand can

be defined and is represented here by �RR�, along with the binding

to the equivalent monomer represented by �YY �. For an equivalent

monomer, the energy difference between the T and R states is

postulated to be 1=N of the energy for the oligomer, since the

energy difference for the oligomer is spread equally over the N
subunits. Therefore, we define l, a conformational isomerization

parameter for the equivalent monomer, where l~
ffiffiffiffi
LN
p

(see also

Materials and Methods, Eqn 11). When the curves for �RR and �RR�

are compared as in Figure 5A, they cross at the value of 0.5 (which

is true for all symmetrical MWC-type systems), but the curve for

the equivalent monomer is clearly much more shallow.

With respect to ligand binding, the curves for �YY and �YY � in

Figure 5A differ only slightly and are characterized by Hill

coefficients of nH~1:241 and nH~1:000, respectively. In

contrast, the �RR� curve, with a Hill coefficient of nH~0:187 is

much less cooperative than the curve for �RR, with nH~1:12,

exactly 6-fold higher than the value for �RR�. In general, under

virtually all conditions �RR� is characterized by a value of the Hill

coefficient, nHv1 (see Figure 6).

In order to overcome the insensitivity of nH for �RR to L (Figure 3)

and to rely on an appropriate reference state corresponding to the

equivalent monomer, we propose replacing the Hill coefficient for

dose-response type behavior by a new cooperativity index, n
(Greek letter nu), based on the ratio of the derivatives of the

functions for �RR and �RR�. The function n therefore corresponds to

the ratio of the slopes exhibited by the responses of the cooperative

protein and its equivalent non-cooperative monomer. When the

new derivative functions are calculated, for �RR~�RR�~0:5 for the

ATCase data in Figure 5, the values of the derivatives are 0.710

and 0.118, respectively, with a ratio of 6.0. The new cooperativity

index n can also be computed directly from the definition of �RR and
�RR� (see Material and Methods, Eqn 15). For ATCase, direct

calculation also yields nmax~6:0.

The revised analysis of ATCase illustrates that the intrinsic

cooperativity at �RR~0:5 is always maximal, i.e. equal to the number

of binding sites (N), when compared to the equivalent monomer

reference state for symmetrical oligomeric proteins. In other words,

for a multi-site protein that undergoes a concerted conformational

transition, as defined by the MWC model [1], the maximal

cooperativity is always equivalent to the number of ligand-binding

sites present and may be grossly underestimated on the basis of the

Hill coefficient. This property reflects the absolute linkage, or infinite

junctional energy, between binding sites in the MWC framework

[34]. When data for the flagellar motor is re-examined in this context,

Figure 3. Dependence of ��RR and ��YY and their respective Hill coefficients (nH ) on the value of L. Three values of L are illustrated, low L
(L~10; top three panels); intermediate L (L~1000; middle three panels — this value corresponds to the maximal cooperativity for the value of c
used: L~c{N=2, where N is the number of subunits or binding sites: N~6); and high L (L~100000; lower three panels). For each line of panels, the
curves for �RR (blue) and �YY (red) are in the left panels, while the Hill coefficient (nH ) is presented as a function of a (middle panels) or of �YY (right
panels), in both cases for �RR (blue) and �YY (red). The three panels of the central column illustrate that nH is invariant for �RR as function of L. Therefore,
as function of �YY (three panels of the right column), the maximal value of nH for R is at a high value of �YY for low L (upper right panel) and at a low
value of �YY for high L (lower right panel).
doi:10.1371/journal.pone.0008449.g003

Ligand Depletion and Signaling

PLoS ONE | www.plosone.org 5 January 2010 | Volume 5 | Issue 1 | e8449



the ratio of the derivatives of �RR and �RR� at 50% (Figure 1) corresponds

precisely to the value of nmax~34. The value of n represents the

intrinsic cooperativity of the protein and nmax is not affected by

ligand-depletion. For various signal transduction systems, the intrinsic

cooperativity can, however, be modulated by ligand depletion effects.

In order to characterize the effects of ligand depletion on

cooperativity we calculated the effective nmax by correcting n for

the ratio of the slopes of �RR and �RR� for corresponding fractional

activations. As shown for calmodulin (Figure 2B), as for any sensor

protein that possesses intrinsic cooperativity, ligand depletion can

dramatically reduce the effective cooperativity in a physiological

context. Indeed, this effect can bring the effective cooperativity to

near 0 (Figure 2B). Because of non-equivalence of the four calmodulin

ligand-binding sites, the non-identical dissociation constants for the

sites result in the value of nmax%4 in Figure 2B.

Discussion

Since many cellular control networks involve cooperative

interactions among their components, modeling in the context of

complete systems requires accurate estimations of the cooperativity

of individual reactions. Since ligand depletion can exert an

attenuating effect on cooperativity, it is important to have reliable

estimates in the absence of ligand depletion. As illustrated in

Figure 3, the Hill coefficient as applied to the state function of the

MWC model, �RR (equivalent to a dose-response curve) clearly does

not reflect the correct cooperativity of the response, due to the

invariance in the shape, as visualized in the Hill plot presented in

Figure 4. As a result, when applied to the classical allosteric

enzyme, aspartate transcarbamylase, the difference between the

functions for ligand binding ( �YY ) and change of conformational

state (�RR) are not meaningfully characterized by their respective

Hill coefficients. The value of nH~1:24 for ( �YY ) accurately reflects

the correct degree of cooperative binding, since it contrasts with

the non-cooperative case, with nH~1:0. In comparison, for �RR the

observed value of nH~1:12 is not meaningful, since the non-

cooperative case, as expressed by the corresponding ‘‘equivalent

monomer,’’ displays a value of nH~0:187. The correct extent of

cooperativity of �RR can be calculated from the ratio of these two

values, or directly from the new index, n, as defined in Eqn 15,

with n~6:0 in the case of �RR for ATCase.

The results presented here demonstrate that neither dynamic range

nor effective cooperativity are properties of sensing proteins that can

be considered to be invariant; rather than are likely to vary according

to the organ, tissue, or cell-type. The concentrations of most signaling

Figure 4. Hill plots for ��RR and ��YY . The data of Figure 3 (left column) are
presented converted to the Hill plot, with the ordinate in the form of
log½�RR=(1{�RR)� or log½ �YY=(1{ �YY )�. For the three values of L (10, red
curves; 1000, green curves; or 100000, blue curves) the data for �RR (solid
lines) appear as parallel curves displaced vertically as a function of L. In
contrast, the data for �YY (triangles for L~10, open squares for L~1000,
diamonds for L~100000) vary with the inflection points displaced
progressively to the right with increasing magnitude of L.
doi:10.1371/journal.pone.0008449.g004

Figure 5. New measure of cooperativity for aspartate transcar-
bamylase based on an equivalent monomer. (A) Curves for �RR and
�RR� (in blue) and �YY and �YY � (in red) as a function of a (a~½succinate�=KR);
the curves for �RR� and �YY � are dashed. (B) Values of n in black
corresponding to the left ordinate and values of the derivatives d �RR=da
and d �RR � =da in blue corresponding to the right ordinate, with the latter
as a dashed curve. While curves for �RR and �RR� in A cross at a50 (defined by
({1)=(1{lc), with a value 0.5 (see Material and Methods, Eqn 16) at this
point, the curves for �YY and �YY � also cross at a~({1)=(1{lc), but their
value is �YY~ �YY �~½zlc(l{1){1�=½2l(1{c)�, which only equals 0.5 for
l~1=c. For the conditions presented here, at the cross point:
�YY~ �YY �~0:19. The original analysis based on the MWC model with four
subunits used the values of KR~4:75|10{4 M, L~4 and c~0:001
[45]. The model was re-analyzed by generating theoretical curves with
the original parameters for a tetramer and performing a least-squares fit
to obtain the best parameters for the hexamer, resulting in a change of
the value of c to 0.26, when KR and L were unchanged. For ATCase,
ligand depletion was not considered, since experimental results were
obtained at concentrations of the enzyme for which ligand depletion was
negligible and even in overproducing strains [62] ligand depletion is only
a minor effect in vivo.
doi:10.1371/journal.pone.0008449.g005
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proteins are similar to their dissociation constants, in the nano- to

micro-molar range, as for example in the well-characterized

compartment of the PSD signaling complex of dendritic spines

[50]. For calmodulin, it is particularly clear that ligand-depletion is

common under physiological conditions, as shown in Figure 2, with

the exact consequences depending on the tissue. Related examples

include the interaction of calmodulin with other downstream

components, such as calcineurin in the micromolar range [51].

While dose-response curves provide the basic characterizations of

‘‘systems’’ and therefore lie at the core of pharmacological treatments,

in the analyses presented here we show that dose-response parameters

cannot be reused directly in models of signaling systems. Instead one

needs to build ‘‘mechanistic’’ models and run parameter-fitting

approaches for particular conditions. Although we emphasized the

effects of ligand depletion using the allosteric model [1], the general

conclusions would apply equally well to other mechanistic descrip-

tions, including the classical Adair-Klotz formulation [52].

It is also important to emphasize that cooperativity and

dynamic range can change with the level of expression of the

sensor. It is known that the available pools of signaling proteins

can be quickly modified by segregation, inhibition, or change in

expression. Because of the extreme cooperativity of the flagellar

motor, ligand depletion dramatically increases the dynamic range

of the system, as shown in Figure 1, making this system extremely

sensitive to concentration effects. Since flagellar protein concen-

tration will ultimate influence these properties, it is therefore clear

that by changing the number of motors, bacterial cells could

enhance their adaptation properties. Since the number of flagella

per bacterial cell can vary considerably [53], this parameter must

be taken into account for any complete characterization of

chemotaxis [54]. More generally, the use of ligand depletion could

be a widespread physiological mechanism for cells to adapt non-

linear properties and sensitivity ranges to evolving environmental

conditions. Because ligand depletion can decrease the effective

cooperativity of transducers in situ and increases the dynamic

range, we propose that modifying the concentration of the sensor

may be a powerful way to adapt quickly to a new environment and

switch from a measurement mode to a detection mode.

As modeling of biological phenomena encompasses systems of

increasing complexity, particularly in efforts to develop realistic

models of the nervous system [55–59], it is important to represent the

underlying molecular processes as accurately as possible. The results

presented here, in line with other published findings [14,15,20–23],

emphasize that cooperativity and its consequences, especially

dynamic range, cannot be introduced into models as fixed parameters

based on Hill coefficients estimated from in vitro studies. Rather, each

set of reaction components must be evaluated separately with respect

to effects of concentration in the system examined, in order to

describe accurately the functional properties that apply.

Materials and Methods

Dose-Response Relationships for an Oligomeric Protein
with Two Conformational States

We consider a multisite signaling protein that can interconvert

between two functionally distinct conformational states, a more

active state (R) with a high affinity for ligand (X ) and a less active

state (T ), with a low affinity for the ligand. The partition between

the two states is characterized by L, the relative intrinsic stability of

the two states in the absence of ligand:

L~
½T �
½R� ð1Þ

The affinities of the R and T states for the specifically bound

ligand are characterized by the intrinsic dissociation constants: KR

and KT . For convenience, as originally proposed in the MWC

model [1], the ratio of affinities is represented by c:

c~
KR

KT

ð2Þ

and the parameter a is defined as the normalized ligand

concentration:

a~
½X �
KR

ð3Þ

Using these parameters [1], for a protein with N sites, the

binding function is given by:

Figure 6. Properties of equivalent monomers. (A) Dependence of
the state function �RR� versus a on the value of c. Six values of c are
presented corresponding to the color code indicated in the inset to the
figure. (B) Value n50, the Hill coefficient at �RR �~0:5, as a function of the
monomer transition parameter l for the six values of c presented in (A)
with the same color code.
doi:10.1371/journal.pone.0008449.g006
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�YY~
a(1za)(N{1)zLca(1zca)(N{1)

(1za)NzL(1zca)N
ð4Þ

and the state function is given by:

�RR~
(1za)N

(1za)NzL(1zca)N
ð5Þ

In order to generalize Eqn 5 to multiple ligands, we introduce a

new parameter, V, to describe the relative stabilization of the T

state by a ligand:

V~
1zca

1za
ð6Þ

For a protein with N sites, at any concentration of X , the state

function �RR is then given with respect to V by:

�RR~
1

1zLVN
ð7Þ

For m different ligands binding on multiple sites to the same

protein, VN in the above equation is replaced by the product of

VNi for the respective ligands:

�RR~
1

1zLPi~m
i~1 VNi

i

ð8Þ

Since VNi ~1 if the number of sites is 0, the concentration of the

effector is 0, or the affinities for the R and T states are identical,

this formula actually describes the absolute state function,

modulated by any possible effector [43].

Calculation of Ligand Depletion
Under conditions of significant ligand depletion, i.e. ligand

concentrations in the same range as dissociation constant, the

degree of ligand binding to its receptor cannot be calculated

directly from the total concentration, because only a fraction of

this concentration is ‘‘free’’ and available to participate in the

binding equilibrium. For any total concentration, the correspond-

ing free concentration can be calculated with respect to a given

receptor concentration as one of the roots of the appropriate

second-order equation [22]. However, a simpler approach was

used here. We define the parameter �RR0 to define �RR as a function of

the total concentration. For each value of �RR’, the corresponding

value of the total concentration, expressed as atotal total, is

calculated from the equation:

atotal~afreez �YY :½CS� ð9Þ

where ½CS� is the concentration of ligand binding sites. Multiplying
�YY by ½CS� therefore provides a correction factor that when added

to afree gives atotal.

The Index of Cooperativity, n, for an Oligomer with Respect
to Its Equivalent Monomer

In order to evaluate the cooperativity of �RR versus a, it must be

compared to the properties of a single-site ‘‘equivalent monomer.’’

For any conditions of N , L, and V, we postulate an equivalent

monomer with transitions between monomeric states R� and T�

defined by:

l~
½T��
½R�� ð10Þ

where

lN~L ð11Þ

For a symmetrical system composed of identical ligand-binding

sites, the fraction of monomers in the R� state is given by:

�RR�~
1

1zlV
ð12Þ

In this case, the curves for �RR and �RR� as a function of a cross at
�RR~�RR�~0:5. The slopes of �RR and �RR� versus a are obtained from,

respectively, the following derivatives:

d�RR

da
~

NLV(N{1)(1{c)

1zLVN
� �2

(1za)2
ð13Þ

and

d�RR�

da
~

l(1{c)

(1zlV)2(1za)2
ð14Þ

The intrinsic cooperativity or amplification of the signal

reflected by the properties of �RR can then be obtained by a new

parameter, represented by the coefficient n (the Greek letter nu)

and calculated from the ratio of the two derivatives above

(n~½d �RR=da�=½d �RR�=da�) which simplifies to the equation:

n~
N(1zlV)2(lV)(N{1)

1z(lV)N
� �2

ð15Þ

The coefficient n gives the cooperativity of the oligomeric

protein for the state function �RR in a manner analogous to nH (the

Hill coefficient) for the binding function ( �YY ), which describes

cooperativity with respect to a monomer that in every case displays

a value of nH~1. In contrast, when applied to �RR�, the Hill

coefficient is likely to be substantially less than 1 (see Figure 6B),

demonstrating why the Hill coefficient is inappropriate for

estimating the cooperativity of �RR. For a given value of l the

lower limit of �RR� is given by 1=(1zl) and the upper limit of �RR� is

given by 1=(1zlc), with the curves for �RR� as a function of a
described in Figure 6A. The intersection of the curves for �RR and
�RR� at 0.5 corresponds to the value of a defined as a50 and is given

by:

a50~
l{1

1{lc
ð16Þ
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Under these conditions, V~1=l and the �RR cooperativity

parameter is at its maximal value: nmax~N (whereas nvN for

all other values of a).

Derivation of the Hill Coefficient for an Equivalent
Monomer

With respect to ligand binding, compared to Eqn 4 for

fractional ligand binding, �YY , within the context of the two state

MWC model [1], the corresponding equation for fractional

binding to the equivalent monomer, �YY �, is given by:

�YY �~
azlca

1zazl(1zca)
ð17Þ

The Hill coefficient, nH , is defined by the derivative:

nH~
d log

�YY �

1{ �YY �

d log a
ð18Þ

Substituting Eqn 17 for �YY � yields:

nH~
d log

azlca
1zl

d log a
~

d log a

d log a
~1 ð19Þ

In contrast, nH for �RR� as defined by Eqn 12 yields the

derivative:

nH~
d log

�RR�

1{�RR�

d log a
ð20Þ

Substituting Eqn 12 for �RR� yields:

nH~
a{ca

(1za)(1zca)
ð21Þ

Therefore, since 0vcv1 and aw1, it is clear that:

a{ca

(1za)(1zca)
v

a

(1za)(1zca)
v

a

(1za)
v1 ð22Þ

and hence for cw0, the Hill coefficient for �RR� must be v1
(additional details in M. Stefan, Thesis, University of Cambridge,

2009).
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