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Correlated amino acid mutation analysis has been widely used to infer functional interactions between different sites in
a protein. However, this analysis can be confounded by important phylogenetic effects broadly classifiable as background
linkage disequilibrium (BLD). We have systematically separated the covariation induced by selective interactions between
amino acids from background LD, using synonymous (S) vs. amino acid (A) mutations. Covariation between two amino acid
mutations, (A,A), can be affected by selective interactions between amino acids, whereas covariation within (A,S) pairs or (S,S)
pairs cannot. Our analysis of the pol gene — including the protease and the reverse transcriptase genes — in HIV reveals that
(A,A) covariation levels are enormously higher than for either (A,S) or (S,S), and thus cannot be attributed to phylogenetic
effects. The magnitude of these effects suggests that a large portion of (A,A) covariation in the HIV pol gene results from
selective interactions. Inspection of the most prominent (A,A) interactions in the HIV pol gene showed that they are known
sites of independently identified drug resistance mutations, and physically cluster around the drug binding site. Moreover, the
specific set of (A,A) interaction pairs was reproducible in different drug treatment studies, and vanished in untreated HIV
samples. The (S,S) covariation curves measured a low but detectable level of background LD in HIV.
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INTRODUCTION
Correlated amino acid mutation analysis has been widely used to

infer functional interactions between different sites in a protein [1–

12]. Typically, a strong correlation between amino acid mutations

is interpreted as evidence of functional interactions under

substantial selection pressure. For example, statistical covariation

of amino acid mutations in HIV has revealed interesting biological

interactions between sites, and constraints imposed by protein

structure [13–19]. Therefore, studying covariation of amino acid

mutations in HIV will improve our understanding of HIV drug

resistance as well as help vaccine design [13,18]. Studies of

covariation in different regions of HIV genome have identified

a number of correlated amino acid mutation pairs, many of which

have known biological interactions [13–19].

However, such covariation analysis can be confounded by

important phylogenetic effects [13,14]. One major challenge for

covariation analysis is distinguishing covariation that is genuinely

due to selection pressure, from covariation that is simply due to co-

inheritance from a common ancestor. When a mutation first

occurs in an individual chromosome, other mutations are already

present in that chromosome, and initially this mutation will be

inherited in 100% linkage with those other mutations. Such co-

occurrence due to common ancestry is classified as background

linkage disequilibrium (BLD) [20] (Fig. 1A). Over time, however,

such linkage will be scrambled by events such as recombination

and mutation, returning to equilibrium (no statistical association

between them). For example, homologous recombination events

between any pair of mutations will gradually scramble any linkage

between the mutation pair at a rate that is proportional to the

physical distance between them, the recombination rate, and the

passage of time. This raises several questions. How to distinguish

BLD from the covariation due to selection pressure? What fraction

of covariation is BLD? How strong is BLD in HIV? The evidence

from different studies has been ambiguous. On one hand, studies

indicate that phylogenetic effects in HIV are strong. Phylogenetic

analysis has successfully inferred HIV transmission history from

HIV sequences [21,22]. On the other hand, HIV’s high mutation

rate [23,24], recombination rate [25–27], and short generation

time [28–30] should reduce the phylogenetic effect significantly.

It should also be emphasized that phylogenetic analysis can be

confounded by strong selection pressure. Whereas phylogenetic

analysis interprets the presence of the same mutation in several

individuals as evidence of common ancestry, selection pressure

creates bias for ‘‘convergent evolution’’ [31] in which the same

mutation can evolve independently many times due to positive

selection. Such hidden biases are incompatible with the assump-

tions of classical phylogenetic analysis [32]. For example, one

study has reported that selection pressure for drug resistance can

cause incorrect phylogenetic inferences from HIV sequences

(compared with the known transmission history) [33].

Thus, it is important to develop methods that can distinguish

these two causes of covariation. Recently, analytical methods such

as parametric bootstrap [34] and phylogeny-based shuffling [35]
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have been applied to estimate what fraction of covariation arises

from phylogenetic effects. In this paper we take a different

approach, based on comparing levels of covariation between

different types of mutation pairs, such as pairs of amino acid

mutations (A,A) vs. pairs of synonymous mutations (S,S). Whereas

(A,A) pairs are subject to both phylogenetic effects and selection

pressure on functional interactions between amino acid sites, (S,S)

pairs cannot be subject to this type of selection pressure (since they

leave the amino acid sequence unchanged) (Fig. 1). We have

therefore used synonymous mutations to measure background LD

[20], to systematically distinguish covariation from phylogenetic

effects vs. other sources of covariation, independent of mathemat-

ical model assumptions. Throughout this paper we will use the

term ‘‘covariation’’ to refer to observed statistical association

(without implying any specific interpretation of its cause);

‘‘background linkage disequilibrium’’ to indicate the specific

interpretation of co-inheritance from a common ancestor; and

‘‘selective interactions’’ to indicate the specific interpretation of

selection pressure for co-occurrence of a given pair of amino acid

mutations. The ‘‘selective interactions’’ include 3D structural

interactions (both local and long-range) as well as phenotypic

covariation due to shared selection pressure. It should also be

noted that selection on nucleotides (e.g. constraints on the RNA

structure in viruses [36,37]) rather than on amino acids can also

cause BLD, as measured by (S,S) covariation, thus may contribute

to the covariation of all three types of mutation pairs, (A,A), (A,S)

and (S,S), in this study.

RESULTS

Metrics of LD in HIV and Its Comparison with

Background LD
First, we performed standard analyses of Linkage Disequilibrium

(LD) on a dataset of about 50,000 HIV-1 pol gene sequences of

subtype B, covering a 1.4 kb region of the HIV protease and

reverse transcriptase (RT) genes, mostly from patients under

antiretroviral drug treatment [38]. Following the procedure of the

Human Genome HapMap project [39], we applied a minimum

frequency criteria to the data before measuring the LD. After

applying the frequency cutoff of 2%, our dataset included 398

distinct single nucleotide mutations, each with 3260 observation

counts on average. It should be noted that due to the very large

size of this dataset and the high rate of mutation in HIV, we

detected a very high density of mutations, including mutations at

the majority of individual nucleotide sites, most with large

numbers of observations. This provided a uniquely high-resolution

mutation dataset for mapping LD. The density of mutations

(observations per nucleotide) in this dataset is 100-fold higher than

in the data from the Human Genome HapMap project [39].

We computed D9 and r [40], two measures of statistical

association commonly used to measure LD in many organisms, e.g.

human [41–44]. Both metrics displayed a pattern in HIV similar

to that in human, decaying as a function of distance (Fig. 2A, and

Fig. S1A), as expected from population genetics theory. However,

they indicated weaker LD than that in human [41–44], which is

consistent with HIV’s high mutation rate [23,24], recombination

rate [25–27], and short generation time [28–30], the factors that

reduce LD according to the population genetics theory.

Another crucial difference between HIV and classical examples

of LD analysis (i.e. the human data), is that this region of the HIV

genome experiences very strong positive selection pressure due to

antiviral drug treatments [45,46]. To control for possible LD

caused by amino acid selection pressure, we repeated this LD

analysis strictly for pairs of synonymous mutations. Such mutations

do not change the amino acid sequence and thus are not subject to

amino acid selection pressure, yielding a measurement of

‘‘background LD’’ free of amino acid selection artifacts [20]. D9

and r metrics of the background LD decayed as a function of

physical distance (Fig. 2A, and Fig. S1A). However, the average

background LD by these metrics was smaller than the average LD,

across the whole one kb region. The average D9 for background

LD decayed from 0.02 for adjacent mutations to 0.01 for distances

of 0.4 kb or more, about two-fold lower than the standard LD

curve over the same distance range (Fig. 2A). The average r

showed a similar pattern (Fig. S1A). This suggests that selection

pressure plays an important role in shaping LD in HIV.

Comparing Covariation of (A,A), (A,S) and (S,S) in HIV
To examine this hypothesis further, we subdivided mutation pairs

into three groups: pairs of synonymous mutations (S,S); pairs of

amino acid mutations (A,A); and pairs consisting of one amino

acid mutation and one synonymous mutation (A,S). (A,A) pairs

experience both phylogenetic effects and possible selective

interactions; that is, (A,A) pairs that together increase reproductive

fitness may be selected for co-occurrence. By contrast, since

Figure 1. Schema of Separating Selective Interactions from Back-
ground Linkage Disequilibrium (BLD). (A) Mutation covariation due to
BLD. Covariation of mutation A and R (shown in multiple sequence
alignment, right) is caused by co-inheritance of the two mutations from
a common ancestor (shown in the phylogenetic tree, left). (B) Mutation
covariation due to selective interactions. Relative fitness models for
mutations x and y, the double mutant (xy), and wildtype (0). Two
models are contrasted: top, independent (additive) fitness effects don’t
cause amino acid mutation covariation; bottom, selective interactions
cause covariation of x and y. (C) Distinguishing BLD vs. fitness using
pairs of amino acid mutations (A) and synonymous (S) mutations.
doi:10.1371/journal.pone.0000814.g001

Selective Interactions vs. BLD
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synonymous mutations do not affect the amino acid sequence,

both (S,S) and (A,S) pairs are not subject to amino acid selective

interaction effects. Thus, the extent of selective interaction effects

can be estimated by a systematic pattern of excess covariation

specifically for (A,A) pairs relative to that for (S,S) and (A,S) pairs.

We first compared the (A,A), (A,S) and (S,S) covariation in the

same dataset of 50,000 HIV-1 samples. After applying minimum

frequency cutoff of 2%, 124 amino acid mutations and 274 silent

mutations were included, yielding 7626 (A,A) pairs, 33976 (A,S)

pairs, and 37401 (S,S) pairs. Compared with (A,S) and (S,S), (A,A)

covariation was dramatically higher, in both D9 and r (Fig. 2, and

Fig. S1). Only (A,A) pairs showed D9 greater than 0.8 and many

more (A,A) pairs showed strong covariation (D9.0.5) than (A,S)

and (S,S) pairs (Fig. 2C, 2D, 2E). Furthermore, the average

covariation of (A,A) was much higher than that of (A,S) and (S,S)

(Fig. 2B). The average D9 of (A,A) gradually declined from 0.18 to

0.03 over about 1000 bases, while the average D9 of (A,S) and

(A,A) started at less than 0.05 and rapidly dropped to 0.01 at

around 300 bases. On average, (A,A) covariation levels were two-

to five-fold higher than those of (A,S) and (S,S) across this range of

distances. The conclusion also held for the frequency cutoff of 1%

and 4% (Fig. S2 and S3). In addition, the difference in distribution

for covariation scores D9 of (A,A) vs. those of (A,S) and for (A,A) vs.

(S,S) was statistically significant (both p-values less than 10216,

Wilcoxon rank sum test — see Materials and Methods). Thus,

a predominant fraction of (A,A) covariation does not appear to be

attributable to background LD as measured by (S,S) covariation.

It is also striking that the (A,S) and (S,S) covariation (measured

by D9 and r) behaved similarly, in contrast with (A,A) covariation.

The average D9 of (A,S) and (S,S) both started under 0.05 and

gradually decayed until they reached a flat of around 0.01 at 300

bases (Fig. 2B). The same pattern was repeated in the average r

curve (Fig. S1B). However, it is also interesting that there appear

to be slight differences between (A,S) and (S,S) at short distances

(less than 200 bases). The average D9 value for (A,S) was

significantly higher (up to 0.04) than (S,S) for adjacent mutations,

but decayed more rapidly, so that this difference vanished beyond

300 bases. This higher value of (A,S) vs. (S,S) is consistent with the

known strong positive selection for amino acid mutations in this

region [45,46], since (A,S) pairs would be directly affected by such

potential selective sweep events [47,48], whereas (S,S) pairs can

only be affected indirectly (i.e. only by selective sweep for a third

mutation that is a positively selected amino acid mutation).

Comparing Covariation of (A,A), (A,S) and (S,S) in the

Stanford-Treated Dataset
To assess the reproducibility of these results, we repeated this

analysis of (A,A), (A,S) and (S,S) covariance in a second,

Figure 2. (A,A) Covariation Is Dramatically Higher Than (A,S) and (S,S) Covariation in the Specialty Dataset. (A) Sliding window results of average
D9. All mutation pairs, black; silent mutation pairs (S,S) only, green. Each sliding window contains 4% of the data points in the set. (B) Sliding window
results of average D9. Amino acid mutation pairs (A,A), red; amino acid mutations to silent mutations (A,S), blue; silent mutation pairs (S,S), green.
Each sliding window contains 2% of the data points in the set. (C–E) Plots of D9 against the physical distance (base) within the mutation pair for C)
(A,A), D) (A,S) and E) (S,S).
doi:10.1371/journal.pone.0000814.g002
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independent dataset, containing about 7,000 drug-treated HIV

samples of subtype B covering either protease or RT (Stanford-

Treated; see Materials and Methods). 73 amino acid mutations

and 103 silent mutations (mutation frequency $5%; see Materials

and Methods) were included in the analysis.

Although the average number of samples per site in Stanford-

Treated was less than one tenth of the Specialty dataset, we found

the same covariance pattern — the (A,A) covariation (D9) was

much stronger than that of (A,S) and (S,S) (both p-values less than

1027, Wilcoxon rank sum test — see Materials and Methods), and

the covariation levels of (A,S) and (S,S) were similar (p-

value = 0.89, Wilcoxon rank sum test — see Materials and

Methods). The average D9 of (A,A) started at around 0.20 and

declined to 0.07 over a scale of 800 bases; while for (A,S) and (S,S),

the average D9 started less than 0.07 and then both fluctuated at

around 0.05 (Fig. 3A). The average r showed a similar pattern,

differing from D9 mainly in measurement scale (Fig. S4A). Overall,

(A,A) covariation was about two- to four-fold higher than (A,S) and

(S,S) covariation levels. Again, the (A,S) and (S,S) curves were

largely indistinguishable within the range of sampling variance

inherent in the dataset (Fig. 3A). These data demonstrate again

that most (A,A) covariation in this region of HIV is not attributable

to background LD as measured by (S,S) covariation, suggesting

a dominant role for selective interactions due to selection pressure

imposed by antiviral drug treatment.

To exclude the possibility that the consistent pattern between

Specialty and Stanford-Treated datasets results from overlapping

samples, we eliminated from the Specialty dataset all sequences

with 98% or higher identity to samples in the Stanford dataset and

re-analyzed the Specialty dataset. After the filtering, the (A,A)

covariation level is still much higher than (A,S) and (S,S) across all

distances (Fig. S5).

Comparing Covariation of (A,A), (A,S) and (S,S) in the

Stanford-Untreated Dataset
To test the role of drug-induced selection via a negative control,

we carried out the same analysis in a set of samples collected from

untreated patients (Stanford-Untreated; see Materials and Meth-

ods). Previous studies have showed that comparison of these

Treated vs. Untreated datasets can identify the effects of antiviral

drug treatment [15,18]. The Untreated dataset contained about

4,500 drug-naive samples covering either protease or RT (see

Materials and Methods). 42 amino acid mutations and 107 silent

mutations (mutation frequency $5%) were included in the analysis.

Strikingly, the large difference in covariation between (A,A) and

(A,S)/(S,S) disappeared in the untreated dataset. The average D9

of (A,A) fluctuated around the average D9 of (A,S) and (S,S), at

approximately 0.07 (Fig. 3B). The same pattern was repeated in

the average r curve (Fig. S4B). These data provide a clear,

independent confirmation that drug-induced selection pressure is

indeed the explanation for the surplus covariation of (A,A) pairs

(relative to background LD measured by (S,S)) in the Specialty and

Stanford-Treated datasets, both of which included drug-treated

samples.

(A,A) Pairs Near the RT Active Site Show Strong

Covariation
The (A,A) covariation decay curve (Fig. 2B) revealed a clear

double-peak for pairs between 400–550 base distance in the

Specialty dataset. Strikingly, a similar double-peak was observed at

the same location in the Stanford-Treated (A,A) curve (Fig. 3A).

We analyzed the two datasets separately to identify the mutation

pairs responsible for these two peaks. These data revealed that the

peaks were caused by the same set of mutation pairs in both

datasets. One peak resulted from strong covariation between

a cluster of mutations RT 41L and 43E with another cluster RT

208Y and 210W; while the other peak reflected strong covariation

between a cluster RT 67N and 70R with the cluster RT 208Y,

218E and 219E/Q. Interestingly, in the three-dimensional protein

structure, all these residues lie close to the reverse transcriptase

active site (Fig. 4), less than 25 Å apart. Furthermore, mutations

RT 41L, 67N, 70R, 210W and 219E/Q are known RT drug

resistance mutation [49]. Thus every single one of the (A,A)

covariation pairs observed in these peaks consisted of either one,

or two known drug-resistance mutations. This analysis of the

individual (A,A) covariation pairs provides independent confirma-

tion that these specific residues are positively selected for drug-

resistance.

Figure 3. (A,A) Covariation Is Dramatically Higher than (A,S) and (S,S) Covariation in the Stanford-Treated Dataset but not the Stanford-
Untreated Dataset. Sliding window results of average D9 in A) Stanford-Treated Dataset and B) Stanford-Untreated Dataset. Amino acid mutation
pairs (A,A), red; amino acid mutations to silent mutations (A,S), blue; silent mutation pairs (S,S), green. Each sliding window contains 4% of the data
points in the set.
doi:10.1371/journal.pone.0000814.g003
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Comparison of Covariation Maps of Protease in the

Specialty Dataset
To provide a comprehensive analysis of the specific (A,A) pairs

that showed significant evidence of selective interactions, we

constructed two-dimensional maps of the statistical strength of

covariation between all possible pairs of codons positions in HIV

protease, for (A,A), (A,S) and (S,S) (Fig. 5). We used Fisher’s exact

test to calculate the covariation score h (see Materials and

Methods), which detects statistically significant covariation even in

cases with smaller counts. No minimum frequency criteria was

applied. This allows us to comprehensively compare the co-

variation of different types of mutation pairs. In this analysis, we

used the Specialty dataset, due to its much larger number of

samples (about 50,000). For each pair of codon positions, the map

displays the highest level of covariation measured for mutations at

that pair (see Materials and Methods).

These data reveal several striking differences between (A,A),

(A,S) and (S,S) covariation. First, the (A,A) map contains a large

fraction (2.6%) of strong covariation effects (h.5 at 95%

confidence; see Materials and Methods), compared with only

a small fraction for (A,S) (0.3%) and (S,S) (0.3%). Second, whereas

strong (A,A) covariation broadly distributed across the whole map

(Fig. 5A), in the (A,S) and (S,S) maps covariation clustered close to

the diagonal (Fig. 5B and 5C), i.e. for codon positions that are close

in the sequence. These data suggest that background LD decays

rapidly, within 100 nt (about 30 amino acids). The fact that (A,A)

covariation extended more broadly, indicates that it arises from

a different process than background LD. Third, a large fraction

(30 out of 53) of the codon positions identified by (A,A) covariation

are known drug-resistance mutation sites [49] in HIV protease (for

the list of drug-resistance codons identified, see Materials and

Methods), confirming again that these covariation effects involve

drug-resistance selection.

Correlation of the Covariation Between

Independent Datasets
We have shown that the level of (A,A) covariation is higher than

(A,S) and (S,S) covariation in both drug-treated datasets (Specialty;

Stanford-Treated). However, do these independent datasets

display the same covariation effects? To answer this question, we

compared the covariation measurements for each (A,A) pair from

these two datasets. For each (A,A) pair, we plotted the covariation

value observed in the Specialty dataset against the covariation

value observed in the Stanford-Treated dataset (Fig. S6).

Strikingly, the (A,A) pairs that covaried in the Specialty dataset

Figure 4. Amino Acid Mutation Pairs that Show Strong Covariation
Are Close to Active Sites in RT. HIV-1 reverse transcriptase (RT)
structure (PDB accession number 3HVTA) is shown using Protein
Explorer (www.proteinexplorer.org). The RT41, 43 and 44, red; RT 67 and
70, green; RT 208, 210, 218, 219, yellow; active sites 110,185 and 186 in
magenta. The grey sphere cluster is the nucleoside reverse transcriptase
inhibitor — Nevirapine.
doi:10.1371/journal.pone.0000814.g004

Figure 5. The Covariation Maps of Three Different Types of Mutation Pairs in HIV Protease. The covariation maps of A) amino acid mutation pairs
(A,A), B) amino acid mutations to silent mutations (A,S) and C) silent mutation pairs (S,S). The X and Y axes represent the codon positions in protease.
Each cell represents the strongest covariation value (h; see Materials and Methods) measured for any mutation pair of the designated type between
the two positions. The strength of the covariation is depicted on a color scale, with yellow indicating covariation score (h) larger than 1 and varying
shades up to blue indicating covariation score (h) larger than 5 (the covariation of two mutations is at least five times greater than random). White
indicates no evidence of covariation.
doi:10.1371/journal.pone.0000814.g005
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also covaried in the Stanford-Treated (Fig. S6A), and the

covariation values in the two datasets showed strong quantitative

agreement, yielding a high correlation coefficient of 0.83 (See

Materials and Methods) between these two independent datasets.

In contrast, for (A,S) and (S,S) pairs, the covariation detected in

these two datasets was low, both giving the correlation coefficients

of 0.35. This indicates that a single, consistent pattern of selective

interactions is reproducibly discovered in the two independent

datasets, but only for (A,A) covariation.

To assess whether drug treatment acts as the consistent amino

acid selection in these two datasets, we compared the (A,A)

covariation in the Treated dataset with that in the Untreated one.

We found that the high consistence of (A,A) covariation between the

Specialty and the Treated (correlation coefficient 0.83) disappeared

in the comparison between the Untreated and the Treated, leaving

a correlation coefficient of only 0.39 (Fig. S6D). This suggests that

drug treatment (shared by the Specialty and the Treated datasets,

but not the Untreated dataset) causes the nearly identical pattern of

selective interactions found in these two independent datasets.

DISCUSSION
We have systematically separated the covariation induced by

selective interactions from background LD, using silent (S) and

amino acid (A) mutations. Selective interactions between amino

acids can be detected by (A,A) pairs, but not by (A,S) or (S,S) pairs.

Our analysis of the pol gene in HIV suggests that a large portion of

(A,A) covariation in HIV results from selective interactions.

Meanwhile, the (S,S) covariation curves suggest a low but detectable

level of background LD in HIV. Although HIV has extremely high

mutation and recombination rate, as well as short generation time,

the (S,S) covariation metrics were still able to detect some BLD,

decreasing as a function of physical distance (Fig. 2).

Several lines of evidence demonstrate the robustness of these

conclusions. First, the same results were found by three different

measurements of covariation: the widely used D9 and r metrics,

and Fisher’s exact test. Second, these results were reproduced in

independent experimental studies (the Specialty and Stanford-

Treated datasets). Third, the high level of consistency between

independent (A,S) and (S,S) covariation curves suggests that the

much higher level of covariation observed for (A,A) pairs cannot

be attributed to background LD. Fourth, we also found direct

evidence that the difference in covariation levels between (A,A) vs.

(A,S)/(S,S) is due to selection, specifically, antiviral drug treatment,

by comparing treated vs. untreated datasets. Fifth, the most

prominent (A,A) interactions in the HIV pol gene have been

independently identified as drug resistance mutations that

physically cluster around the drug binding site. Finally, the specific

set of (A,A) interaction pairs was reproducible in different drug

treatment studies, and vanished in untreated HIV samples. Our

result agrees with the ‘observation of positive epistasis in HIV [50].

A previous study in plastid genomes also indicates that the

significant covariation in plastid genomes is likely due to changes

in the selective constraints of amino acids [51].

Could the surplus of the (A,A) covariation compared with that

of (A,S) and (S,S) in the treated datasets (Specialty and Stanford-

Treated) be an artifact of differences in the intrinsic mutation rates

between silent and amino acid mutations (e.g. silent mutations are

more likely to be transitions than transversions, thus evolving

faster)? We directly tested this possibility by performing the same

analysis in samples from untreated patients (Stanford-Untreated).

Such an artifact should have also have been observed in the

untreated dataset. Yet, the difference between (A,A) vs. (A,S)/(S,S)

disappeared in the untreated dataset (Fig. 3), indicating that this

difference was due specifically to drug-treatment. It should also be

noted that in addition to drug treatment, there are other sources of

selection, such as immune pressure. Like the drug-induced

selection, this too only causes (A,A) but not (A,S) or (S,S)

covariation. However, we didn’t detect a significant difference

between (A,A) vs. (A,S)/(S,S) in the untreated samples, suggesting

our approach is not sensitive enough to detect weaker selection.

How might drug treatment cause the dramatic increase in

covariation of amino acid mutation pairs observed in HIV?

Several models are possible. 1) Drug treatment selects for

mutations that directly cause drug resistance (called primary

mutations), many of which may have secondary effects such as

reducing protein stability and/or other aspects of viral fitness.

These mutations can in turn induce selection pressure for

mutations that compensate for these effects (called accessory

mutations; e.g. a mutation that restores the protein stability). Such

secondary selection effects will cause a pattern of covariation of

primary mutations with their associated accessory mutations. By

contrast, in the untreated samples, where such positive selection

forces are presumably weaker, we did not detect significant

evidence of selective interactions. 2) The covariation can be caused

by shared selection pressure among amino acid mutations. If

mutation X and Y are independently selected for under the same

drug treatment, the two mutations are likely to covary. To

distinguish the aforementioned two possibilities, we need to

estimate the fitness of mutation X and Y separately and compare

the sum with the fitness of the XY double mutation, which is

beyond the scope of this study.

Our data also indicate that accurate measurement of back-

ground LD is useful to improve the accuracy of functional

interaction prediction. Accurate measurement of the background

LD would enable calculation of a threshold value above which the

statistics will have a specific probability of resulting from causes

other than background LD. Comparison of statistical values of

covariation calculated from (A,A) pairs with the background (i.e.

(S,S) covariation) allows identification of pairs of sites having

a specific probability of interacting due to selection on amino

acids. Such phylogenetic effects should be taken into consideration

in covariation analysis of amino acid interactions.

In this paper, we have only analyzed the pol gene, which is

known to have experienced strong drug selection. The same

method should be applied in the other regions of the HIV genome.

We expect the (A,S) and (S,S) covariation, while still consistent

with each other, varies across the HIV genome due to different

phylogeny across the genome. The comparison of (A,A) co-

variation with that of (A,S)/(S,S) across the HIV genome will

provide a global view of the influence of selection on mutation

covariation. For example, such comparison in the env gene will

hopefully improve our understanding of the interplay between the

host selection and phylogeny in that region. The same analysis

could also be done in subtypes other than subtype B.

MATERIALS AND METHODS

HIV-1 sequence data
The Specialty dataset contained 48,927 subtype B sequences,

mostly from patients under antiretroviral drug treatment. Multiple

sequence alignments and mutation detection were performed as

previously described [38,52]. All these sequences covered the

whole protease and part of the RT. The Treated and the

Untreated datasets were downloaded from Stanford database

(http://hivdb.stanford.edu/) [53], selecting only subtype B

sequences. In the Treated dataset, there were 1795 protease

sequences treated with protease inhibitor (this subset were used to

calculate the covariation between mutations in protease) and 5121
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reverse transcriptase sequences treated with either nucleoside

reverse transcriptase inhibitor (NRI) or non-nucleoside reverse

transcriptase inhibitor (NNRI) (this subset were used to calculate

the covariation between mutations in RT), including 1320 samples

that cover both protease and reverse transcriptase sequences (this

subset were used to calculate the covariation between mutations in

protease and those in RT). In each subset, we required a minimum

mutation frequency of 5%. In the Untreated dataset, there were

2620 PI-naı̈ve protease sequences and 1795 NRI/NNRI-naı̈ve

reverse transcriptase sequences, including 1208 samples that have

both protease and reverse transcriptase treatment-naı̈ve.

Measurements of covariation for individual

mutation pairs
We used the Fisher exact test [54,55] to test for non-random

associations between mutation a at position X and mutation b at

position Y, by computing the p-value for the two-sided test using

the 262 contingency table: NXaYb, NXaY0, NX0Yb and NX0Y0?N-

XaYb is the number of samples that have mutation a at position X

and also mutation b at position Y; NXaY0 is the number of samples

that have mutation a at position X and but no kind of mutation at

position Y; NX0Yb is the number of samples that have no mutation

at position X and have mutation b at position Y; NX0Y0 is the

number of samples that have mutation at neither position. We

computed the odds ratio, its confidence interval (95% two-sided) and

p-value using the fisher.test function from the statistical software

package R. Note: the maximum likelihood estimator for h is

provided by (NXaYb?NX0Y0)/(NXaY0?NX0Yb); for independent muta-

tions Xa and Yb, h = 1. We calculated D9 and r following the

standard procedures [56–58], using p1 = (NXaYb+NXaY0)/N,

q1 = (NXaYb+NX0Yb)/N, x11 = NXaYb/N, where N = NXaYb+N-

XaY0+NX0Yb+NX0Y0.. Finally, we used Wilcoxon rank sum test

(wilcox.test function in the R package) to compare different types of

mutation pairs with respect to their covariation score (e.g. D9). The p-

value is calculated for the null hypothesis that the covariation scores

for the two types of mutation pairs are from the same distribution.

Average LD as a function of distance
Mutation pairs with negative LD were excluded. Mutation pairs

were ranked by physical distance. We calculated smoothed curves

using a sliding window, the window width of 2% or 4% of the total

data, and an offset for neighboring windows of the 1/2 the window

width.

Covariation map
For each pair of mutations, we used Fisher exact test to compute

a p-value for statistically significant covariation, along with a lower-

bound estimate for the strength of covariation h based on the 95%

confidence interval. Only statistically significant mutation pairs

(p,1026 for a single pair, yielding a significance level of 0.01 after

the Bonferroni correction) were included in our analysis. For

a given codon position pair, the strongest covariation value h for

any pair of mutations at the two positions (of the designated type:

(A,A), (A,S), or (S,S)) was displayed in the map.

In protease, the drug-resistant codons identified by (A,A)

covariation are 10, 13, 16, 20, 24, 30, 32, 33, 35, 36, 43, 46, 47,

48, 50, 53, 54, 58, 60, 62, 63, 71, 73, 74, 82, 84, 85, 88, 90 and 93.

Comparing covariation between datasets
To test whether the covariation derived from two datasets, X and

Y, was consistent, we plotted for every mutation pair the

covariation measurement r in X vs. that in Y. We also calculated

the correlation coefficient between the two datasets. Since

correlation coefficient is very sensitive to outliers, the lowest

correlation from 2000 bootstrap replicates (the R boot library) was

taken as the correlation score between X and Y.

SUPPORTING INFORMATION

Figure S1 (A,A) Covariation Measured by r Is Dramatically

Higher than (A,S) and (S,S) Covariation in the Specialty Dataset.

(A) Sliding window results of average r. All mutation pairs, black;

silent mutation pairs (S,S) only, green. Each sliding window

contains 4% of the data points in the set. (B) Sliding window results

of average r. Amino acid mutation pairs (A,A), red; amino acid

mutations to silent mutations (A,S), blue; silent mutation pairs

(S,S), green. Each sliding window contains 2% of the data points in

the set. (C–E) Plots of r against the physical distance (base) within

the mutation pair for C) (A,A), D) (A,S) and E) (S,S).

Found at: doi:10.1371/journal.pone.0000814.s001 (0.84 MB TIF)

Figure S2 (A,A) Covariation Is Still Dramatically Higher than

(A,S) and (S,S) Covariation in the Specialty Dataset Using 0.01 As

the Mutation Frequency Cutoff. (A–C) Plots of D’ against the

physical distance (base) within the mutation pair for A) amino acid

mutation pairs (A,A), B) amino acid mutations to silent mutations

(A,S) and C) silent mutation pairs (S,S). (D, E) Sliding window

results of average D) D’ and E) r. (A,A), red; (A,S), blue; (S,S), green.

Each sliding window contains 2% of the data points in the set.

Found at: doi:10.1371/journal.pone.0000814.s002 (0.88 MB TIF)

Figure S3 (A,A) Covariation Is Still Dramatically Higher than

(A,S) and (S,S) Covariation in the Specialty Dataset Using 0.04 As

the Mutation Frequency Cutoff. (A–C) Plots of D’ against the

physical distance (base) within the mutation pair for A) amino acid

mutation pairs (A,A), B) amino acid mutations to silent mutations

(A,S) and C) silent mutation pairs (S,S). (D, E) Sliding window

results of average D) D’ and E) r. (A,A), red; (A,S), blue; (S,S), green.

Each sliding window contains 2% of the data points in the set.

Found at: doi:10.1371/journal.pone.0000814.s003 (0.55 MB TIF)

Figure S4 (A,A) Covariation Measured by r Is Dramatically

Higher than (A,S) and (S,S) Covariation in the Stanford-Treated

Dataset But Not the Stanford-Untreated Dataset. Sliding window

results of average r in (A) Stanford-Treated Dataset and (B)

Stanford-Untreated Dataset. Amino acid mutation pairs (A,A),

red; amino acid mutations to silent mutations (A,S), blue; silent

mutation pairs (S,S), green. Each sliding window contains 4% of

the data points in the set.

Found at: doi:10.1371/journal.pone.0000814.s004 (0.17 MB TIF)

Figure S5 (A,A) Covariation Is Still Dramatically Higher than

(A,S) and (S,S) Covariation in the Specialty Dataset After

Excluding Samples That Have Nucleotide Sequence Similarity

98% Or Greater With Any Sample In the Stanford-Treated

Dataset. (A–C) Plots of D’ against the physical distance (base)

within the mutation pair for A) amino acid mutation pairs (A,A), B)

amino acid mutations to silent mutations (A,S) and C) silent

mutation pairs (S,S). (D, E) Sliding window results of average D)

D’ and E) r. (A,A), red; (A,S), blue; (S,S), green. Each sliding

window contains 2% of the data points in the set.

Found at: doi:10.1371/journal.pone.0000814.s005 (0.88 MB TIF)

Figure S6 Shared Drug Treatment Leads to High Consistency

of Amino Acid Covariation between Independent Datasets. (A–C)

The covariation measurement r in the Specialty dataset plotted

against that in the Stanford-Treated dataset for A) amino acid

mutation pairs (A,A), B) amino acid mutations to silent mutations

(A,S) and C) silent mutation pairs (S,S). (D–F) The covariation
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measurement r in the Stanford-Untreated dataset plotted against

that in the Treated dataset, for D) (A,A), E) (A,S) and F) (S,S).

Found at: doi:10.1371/journal.pone.0000814.s006 (0.65 MB TIF)
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