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Abstract

In vitro hypoxic preconditioning (HP) of mesenchymal stem cells (MSCs) could ameliorate their viability and tissue repair
capabilities after transplantation into the injured tissue through yet undefined mechanisms. There is also experimental
evidence that HP enhances the expression of both stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7, which are
involved in migration and survival of MSCs in vitro, but little is known about their role in the in vivo therapeutic effectiveness
of MSCs in renal ischemia/reperfusion (I/R) injury. Here, we evaluated the role of SDF-1-CXCR4/CXCR7 pathway in regulating
chemotaxis, viability and paracrine actions of HP-MSCs in vitro and in vivo. Compared with normoxic preconditioning (NP),
HP not only improved MSC chemotaxis and viability but also stimulated secretion of proangiogenic and mitogenic factors.
Importantly, both CXCR4 and CXCR7 were required for the production of paracrine factors by HP-MSCs though the former
was only responsible for chemotaxis while the latter was for viability. SDF-1a expression was upregulated in postischemic
kidneys. After 24 h systemical administration following I/R, HP-MSCs but not NP-MSCs were selectively recruited to ischemic
kidneys and this improved recruitment was abolished by neutralization of CXCR4, but not CXCR7. Furthermore, the
increased recruitment of HP-MSCs was associated with enhanced functional recovery, accelerated mitogenic response, and
reduced apoptotic cell death. In addition, neutralization of either CXCR4 or CXCR7 impaired the improved therapeutic
potential of HP-MSCs. These results advance our knowledge about SDF-1-CXCR4/CXCR7 axis as an attractive target pathway
for improving the beneficial effects of MSC-based therapies for renal I/R.
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Introduction

Renal ischemia/reperfusion (I/R) injury is the most common

cause for acute kidney injury (AKI) which affects both native and

transplanted kidneys and is associated with high morbidity and

mortality [1,2]. A large number of studies have focused on the

endogenous and exogenous mechanisms of kidney repair after

schemic/hypoxic injury [3–6]. Interestingly, a recent clinical study

suggested that nocturnal hypoxia was associated with accelerated

loss of kidney function in patients with obstructive sleep apnea

syndrome [7]. In the last few years, several studies have shown that

mesenchymal stromal cells (MSCs) can prevent or attenuate

ischemic tissue injury, possibly by paracrine/autocrine mecha-

nisms or trans-differentiation into local cell types [5,6,8–13]. When

administered systemically, however, only a small proportion of the

infused MSCs homing to the ischemic tissue, whereas the majority

of cells were found entrapped in other organs including lungs

[10,14,15]. Furthermore, due to the local hypoxia, oxidative stress

and inflammation in the targeted ischemic tissue, the retention of

transplanted MSCs is poor and the low cell survival reduces the

therapeutic effects [16]. Thus, it is crucial to find techniques which

can enhance the chemotaxis and retention of the implanted MSCs

to maximize the effectiveness of MSC-based therapy.

The ischemic tissue produces numerous cytokines, chemokines,

secreted proteins and growth factors that may influence organ-

specific and stem cell-mediated repair [17–22]. Several studies also

provided evidences for a critical role of hypoxia-inducible factors

in renal epithelial differentiation and repair [23–26]. A number of

studies have proven that chemokine stromal cell-derived factor-1

(SDF-1, also known as CXCL12) is critical for the process

involving stem/progenitor cell chemotaxis and organ-specific

homing in ischemic tissue through interaction with its cognate

receptor CXC chemokine receptor 4 (CXCR4) on the surface of

stem/progenitor cells [27–31]. Although CXCR4 is highly

expressed in MSCs within the bone marrow, its expression is

markedly reduced during ex vivo expansion of MSCs [32,33]. This

could decrease the ability of implanted MSCs to respond to

homing signals emanated from the ischemic tissue [34]. Several

reports have showed that short-term exposure of MSCs to hypoxia

could upregulate CXCR4 expression [35–38]. We have previously
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reported that CXCR7, a novel receptor for SDF-1, is also

upregulated by sub-lethal hypoxic preconditioning (HP) of

cultured MSCs [39]. However, the effect of both SDF-1 receptors

on paracrine actions of MSCs still remains unknown; especially,

the role of the SDF-1-CXCR4/CXCR7 axis in the therapeutic

effects of MSCs for renal I/R has not been evaluated in vivo.

In this study, we demonstrate for the first time that HP

markedly augments chemotaxis, viability and paracrine actions of

MSCs in vitro and thus enhances the benefit of MSC-based therapy

for renal I/R through interaction of SDF-1 with CXCR4 and

CXCR7.

Results

HP upregulates expression of SDF-1a and its receptors,
CXCR4 and CXCR7, in MSCs

Preliminary experiments showed that the viability and growth of

MSCs were not adversely affected by 48 h of hypoxia (3% O2)

(data not shown). The mRNA level and protein expression of

CXCR4 and CXCR7 are high in bone marrow mononuclear

cells, but low or undetectable in MSCs at passage 1 to 3 (Fig. 1A

and B). The exposure of MSCs at passage 3 to hypoxia for 24 h

upregulated the expression of SDF-1a and its receptors (Fig. 1A

and B). To examine cell surface expression of CXCR4 and

CXCR7, flow cytometry (FCM) was performed and revealed that

number of either CXCR4- or CXCR7-positive cells was

significantly higher in MSCs exposed to hypoxia for 24 h, 36 h

and 48 h than that for 0 h, respectively (Fig. 1C). Furthermore,

enzyme-linked immunosorbent assay (ELISA) analysis showed HP

caused a time-dependent increase of SDF-1a protein level,

reaching maximal at 24 h to 48 h after HP (Fig. 1D).

SDF-1-CXCR4 axis is required for MSC chemotaxis
In accord with our previous study [39], the present study

demonstrated that HP significantly increased MSC chemotaxis in

response to SDF-1a, and this increased chemotaxis was blocked

obviously by an anti-CXCR4 antibody, but not by an anti-

CXCR7 antibody (Fig. 2A). To further support this possibility,

NP-MSCs where both CXCR4 and CXCR7 expression was

undetectable were transfected with sense expression vectors of

pORF9-mCXCR4 or pORF9-mCXCR7, or empty vector

pORF9, respectively. Numerous clones showing increased

CXCR4 or CXCR7 expression were screened by the level of

expression of either CXCR4 or CXCR7 and confirmed by

western blots after 24 h and 48 h of transfection (Fig. 2B).

Following transfection, cells were subjected to 24 h of normoxia

followed by 6 h of 1–100 ng/ml SDF-1a treatment. As expected,

there was a dose-dependent increase in the chemotaxis in response

Figure 1. Effects of HP on the expression of SDF-1a, CXCR4, CXCR7 in MSCs. (A) Semiquantitative RT-PCR was used for the analysis of SDF-
1a, CXCR4 and CXCR7 mRNA levels in MSCs. GAPDH was used as a control. Lane 1 indicates bone marrow mononuclear cells (BMMCs); lanes 2 to 4,
MSC cultures at passage 1 to 3; and lane 5, MSCs at passage 3 and exposed to hypoxia (3% O2) for 24 h. (B) Western blot analysis was performed to
detect CXCR4, CXCR7 and SDF-1a protein expression. b-actin was used as a control. Lanes 1 indicates BMMCs; lanes 2 to 5, MSC cultures at passage 1
to 4; and lane 6, MSCs at the third passage to hypoxia for 24 h. (C) FCM was used to detect extracellular expression of CXCR4 or CXCR7 in MSCs
exposed to the indicated periods of hypoxia. *P,0.05, vs 0 h. (D) ELISA analysis was performed to determine production of SDF-1a from MSCs
exposed to the indicated periods of hypoxia. *P,0.05, vs 0 h.
doi:10.1371/journal.pone.0034608.g001

HP-MSC Benefit by SDF-CXCR4/CXCR7 Axis
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to SDF-1a in CXCR4-transfected cells, but not in CXCR7-

transfected and empty vector-transfected cells (Fig. 2C). Further-

more, as shown in Fig. 2D through 4F, SDF-1a stimulation

(50 ng/ml) had no effect on the chemotaxis in response to SDF-1a
and the expression of CXCR4 and CXCR7 in both HP-MSCs

and NP-MSCs.

SDF-1-CXCR7 axis is required for MSC viability
Since H2O2 has previously been shown to be a critical mediator

of hypoxia/reoxygenation- or ischemia/reperfusion-induced cell

death [40], we investigated the effect of HP on H2O2-induced

cytotoxicity of MSCs. To this goal, standard cytotoxicity tests,

including MTT assay for mitochondrial viability, propidium

iodide (PI)-based cell viability, and LDH assay for membrane

damage, were performed. The results of cell viability assays by an

automated NucleoCounter (Fig. 3A1) revealed no apparent

cytotoxicity in HP-MSCs compared with that in NP-MSCs under

normal culture conditions. H2O2 treatment increased the

cytotoxicity in both NP-MSCs and HP-MSCs, however, the

increase was more dramatic in NP-MSCs than in HP-MSCs

(Fig. 3A1, B1 and C1). Pretreatment of HP-MSCs with an anti-

CXCR7 antibody but not with an anti-CXCR4 antibody

completely increased the H2O2-induced cytotoxicity in compar-

ison with cells treated with the respective isotype matched control

Figure 2. Effects of SDF-1-CXCR4/CXCR7 pathway on MSC chemotaxis in vitro. (A) The chemotaxis in response to SDF-1a (10 ng/ml for
12 h) was performed in the NP-MSCs and HP-MSCs treated with a neutralizing anti-CXCR4 antibody, an anti-CXCR7 antibody, and the respective
isotype-matched control antibodies. *P,0.05, vs NP-MSCs; {P,0.05, vs the respective isotype-matched control antibodies. (B) NP-MSCs were
transiently overexpressed with CXCR4 using pORF9-mCXCR4 vector or with CXCR7 using pORF9-mCXCR7 vector (n = 6). A negative control empty
(pORF9-MCS) vector was used. (C) The transfected cells were subjected to chemotaxis in response to the indicated concentrations of SDF-1a for 12 h.
*P,0.05, vs the empty vector. (D and E) Western blot analysis (D) and FCM (E) were performed to determine the intracellular and extracellular
expression of both CXCR4 and CXCR7 in the cells treated with or without SDF-1a (50 ng/ml for 60 min). (F) The chemotaxis in response to SDF-1a was
performed in the cells treated with or without SDF-1a.
doi:10.1371/journal.pone.0034608.g002
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antibodies (Fig. 3A2, B2 and C2). Contrarily, the H2O2-induced

cytotoxicity was significantly decreased in CXCR7-transfected

NP-MSCs compared with the CXCR4-transfected and empty

vector-transfected cells (Fig. 3A3, B3 and C3).

In addition, the role of SDF-1a on H2O2-induced cytotoxicity

of MSCs was also evaluated. Addition of SDF-1a (50 ng/ml) to

the culture had no effect on cell viability and LDH release of NP-

MSCs under H2O2 culture conditions (Fig. 3A1, B1 and C1).

However, treatment with SDF-1a markedly protected HP-MSCs

against H2O2 when compared with non SDF-1a treatment

(Fig. 3A1, B1 and C1). Importantly, this SDF-1a-induced

protection for HP-MSCs was obviously blocked by an anti-

CXCR7 antibody, but not by an anti-CXCR4 antibody (Fig. 3A2,

B2 and C2). Furthermore, transfection of CXCR7 markedly

protected NP-MSCs against H2O2, as indicated by SDF-1a-

induced increase in nuclear/mitochondrial viability and decrease

in LDH release when compared with transfection of CXCR4- or

empty vector (Fig. 3A3, B3 and C3).

Figure 3. Effects of SDF-1-CXCR4/CXCR7 pathway on H2O2-induced cytotoxicity in MSCs. The standard cytotoxicity tests, including
propidium iodide (PI)-based cell viability (A1–A3), MTT assay for mitochondrial viability (B1–B3), LDH assay for membrane damage (C1–C3), were
performed. (A1, B1, and C1) MSCs were incubated in H2O2-conditioned media (250 mM) added with or without SDF-1a (50 ng/ml) for 6 h. The cells
incubated in absence of both H2O2 and SDF-1a were used as control. A1 and C1: *P,0.05, vs NP-MSCs; {P,0.05, vs Control; {P,0.05, vs H2O2. B1:
*P,0.05, vs NP-MSCs; {P,0.05, vs Non-SDF-1. (A2, B2, and C2) Prior to H2O2 treatment, HP-MSCs were treated with a neutralizing anti-CXCR4
antibody, an anti-CXCR7 antibody, and the respective isotype-matched control antibodies, respectively. *P,0.05, vs the respective isotype-matched
control antibodies; {P,0.05, vs non-SDF-1. (A3, B3, and C3) Prior to H2O2 treatment, NP-MSCs were transiently overexpressed with CXCR4 using
pORF9-mCXCR4 vector or with CXCR7 using pORF9-mCXCR7 vector. *P,0.05, vs empty vector; {P,0.05, vs Non-SDF-1.
doi:10.1371/journal.pone.0034608.g003
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Both SDF-1-CXCR4 axis and SDF-1-CXCR7 axis are
required for MSC paracrine actions

We first determined the effects of HP on MSCs-secreted

proangiogenic and mitogenic factors. We found that 24 h of

hypoxia significantly increased MSC-secreted vascular endothelial

growth factor (VEGF), b-fibroblast growth factor (b-FGF), insulin-

like growth factor 1 (IGF-1), and hepatocyte growth factor(HGF)

compared with normoxia (Fig. 4A). Furthermore, the production

of these factors in the presence of SDF-1a was enhanced markedly

in HP-MSCs but only slightly in NP-MSCs (Fig. 4A).

Next, we wanted to determine the role of CXCR4 and CXCR7

in MSC paracrine actions. As shown in Fig. 4B and 4C, HP-

induced secretion of growth factors was completely abolished by

blocking either CXCR4 receptor with an anti-CXCR4 antibody

or CXCR7 receptor with an anti-CXCR7 antibody. Contrarily,

the secretion of these factors was significantly increased in

CXCR4- or CXCR7-transfected NP-MSCs compared with the

empty vector-transfected cells (Fig. 4D).

SDF-1a expression is upregulated in postischemic kidneys
We assessed SDF-1a expression in the kidney obtained from

mice treated with either sham or I/R surgery. Immunohisto-

chemistry staining showed that SDF-1a was extensively expressed

in the cytoplasm of renal tubules cells in I/R-AKI mice, but only

sporadically expressed in sham-operated kidneys (Fig. 5A). SDF-

1a appeared to be increased within the first 24 h of I/R, peaked at

48 h and rapidly downregulated in the subsequent days till day 7

after injury to the level comparable to that observed in sham-

operated kidneys (Fig. 5A). In addition, incubation with secondary

antibody alone did not result in any staining (data not shown).

Moreover, similar results of SDF-1a protein levels in the kidney

from I/R-AKI mice were also observed by ELISA (Fig. 5B).

HP-MSCs migrate toward hypoxia/reoxygenation-
damaged renal tubule epithelial cells in vitro

Primary renal tubule epithelial cells (TECs) from 1–2-week old

C56BL/6 mice were exposed to hypoxia/reoxygenation. This

procedure led to a 270% increase of SDF-1a protein level compared

to that of baseline as determined by ELISA (Fig. 6A). HP-MSCs

expressing CXCR4 and CXCR7 in the upper chamber of transwell

system showed enhanced chemotaxis toward the hypoxia/reoxy-

genation-damaged monolayer of tubular cells in the lower chamber

when compared to that observed with undamaged cells (Fig. 6B).

Importantly, blocking of CXCR4 but not CXCR7 significantly

decreased this chemotaxis toward damaged TECs (Fig. 6B).

HP increases the in vivo homing of transplanted MSCs to
ischemic kidneys

To validate the homing of MSCs to the target tissue, the cells were

radioactively labeled with 111Indium-oxine and then systemically

administered via tail vein into I/R-AKI mice. To facilitate

comparisons, the specific radioactivity of each organ was adjusted

by the half-life of 111Indium-oxine (2.8 days) and calculated as the

percentage of injected dose per gram tissue (%ID/g) and percentage

Figure 4. Effects of SDF-1-CXCR4/CXCR7 pathway on MSC paracrine actions. ELISA was performed to determine production of VEGF, b-
FGF, IGF-1 and HGF from MSCs stimulated by hypoxia (3% O2) or/and SDF-1a (50 ng/ml). The cells stimulated by neither hypoxia nor SDF-1a were
used as control. (A) MSCs were stimulated with hypoxia or/and SDF-1a. *P,0.05, vs control; {P,0.05, vs SDF-1; {P,0.05, vs hypoxia. (B and C) The HP-
MSCs stimulated with or whthout SDF-1a were treated with an anti-CXCR4 antibody (B), an anti-CXCR7 antibody (C), and the respective isotype-
matched control antibodies. *P,0.05, vs IgG2B (B) or IgG (C); {P,0.05, vs aCXCR4 (B) or aCXCR7 (C); {P,0.05, vs SDF-1+IgG2B (B) or SDF-1+IgG (C). (D)
NP-MSCs were transiently overexpressed with CXCR4 using pORF9-mCXCR4 vector or with CXCR7 using pORF9-mCXCR7 vector. *P,0.05, vs empty
vector; {P,0.05, vs pORF9-mCXCR4 vector.
doi:10.1371/journal.pone.0034608.g004
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injected dose per organ (%ID/organ). No significant difference in

radioactivity of kidneys was observed between HP-MSC-transplan-

tated (8.461.7%ID/g) and NP-MSC-transplantated mice

(6.461.4%ID/g) 3 h after infusion (Fig. 6C). Meanwhile, the uptake

of radioactively labeled MSCs was restricted primarily to the lungs

[(151611)%ID/g and (20.961.7)%ID/organ]. 24 h after MSC

infusion, radioactively labeled MSCs were lost from the lungs

[(2965)%ID/g and (4.160.8)%ID/organ] and redistributed to

organs including kidneys, spleen and liver (Fig. 6D and E). In the

meantime, the amount of HP-MSCs in the ischemic kidneys was 2.5

times greater than that of NP-MSCs. In contrast, MSC accumulation

in other organs did not differ between HP-MSC-transplantated and

NP-MSC-transplantated mice. On day 3 after infusion, kidney

uptake of radioactively labeled HP-MSCs with decay correction was

not significantly different from that on day 1 after infusion; however,

kidney uptake of radioactively labeled NP-MSCs with decay

correction dropped to 42.869.6% of baseline (Fig. 6C). The evidence

that the kidney uptake of radioactively labeled MSCs in HP-MSC-

transplantated animals and the lack of uptake in the kidneys in NP-

MSC-transplantated animals at 5 to 14 days after infusion suggests

that this difference is likely due to NP-MSC loss in injured kidneys.

Neutralization of CXCR4, but not of CXCR7, impairs the
increased homing capability of HP-MSCs

To further investigate the role of SDF-1-CXCR4 and/or

CXCR7 interaction in the in vivo homing of HP-MSCs to ischemic

kidneys, the 111Indium-labeled cells before transplantation were

pretreated with a neutralizing anti-CXCR4 antibody, an anti-

CXCR7 antibody, or their isotype-matched control antibodies,

respectively. At 3 hours to 14 days after cell infusion, the kidney

uptake of radioactively labeled HP-MSCs pretreated with an anti-

CXCR7 antibody and control cells did not vary significantly

(Fig. 6F). However, an obvious decrease in kidney uptake of

radioactively labeled HP-MSCs pretreated with an anti-CXCR4

antibody was observed relative to that of cells pretreated with its

isotype-matched control IgG2B antibody at 1 to 7 days after

transplantation (Fig. 6F).

HP improves the therapeutic potential of MSCs for
treatment of I/R-AKI

24 h after surgery (i.e. immediately after MSC transplantation),

renal function was identically aggravated in animals designated to

receive HP-MSCs, NP-MSCs or vehicle treatment, as assessed by

blood urea nitrogen (BUN) and serum creatinine (Scr) levels

(Fig. 7A and B). Administration of NP-MSCs improved the renal

function in animals at days 3 and 7 after transplantation,

compared with that in vehicle-treated animals (Fig. 7A and B).

However, HP-MSC-treated animals had significantly lower BUN

and Scr levels at 24 h after infusion compared with both vehicle-

or NP-MSC-treated animals, and the renal function was restored

to normal levels at 3 days after transplantation (Fig. 7A and B).

To further substantiate above-mentioned heartening results, the

histologic examinations including histological score of kidney

(HSK), PCNA and TUNEL staining were evaluated immediately

or at days 1, 3, and 7 after transplantation. As expected, compared

with control kidneys from vehicle-treated mice, kidneys from

either HP-MSC- or NP-MSC-treated mice had significantly

reduced HSK, increased number of PCNA-positive cells, and

decreased number of apoptotic cells on TUNEL assay (Fig. 7C

through 7E). Interestingly, 24 h after cell infusion, the number of

PCNA-positive cells in kidneys from HP-MSC-treated mice was

significantly increased compared with that from both vehicle-(+11-

fold) or NP-MSC-(+5-fold) treated mice (Fig. 7D). The increase in

renal cell survival following MSC administration was confirmed by

measure of apoptosis using TUNEL analysis. One, three and seven

days after intravenous administration of MSCs, the number of

apoptotic renal cells detected at the ischemic kidneys was

significantly lower in HP-MSC-treated animals than in NP-

MSC-treated animals (Fig. 7E).

Neutralization of either CXCR4 or CXCR7 impairs the
improved therapeutic potential of HP-MSCs

To assess whether the SDF-1-CXCR4/CXCR7 axis was involved

in the therapeutic potential of HP-MSCs, the cells were injected into

the tail vein of I/R-AKI mice after pretreatment with a neutralizing

anti-CXCR4 antibody, or an anti-CXCR7 antibody, or their

respective isotype-matched antibodies. At day 1 after cell infusion,

mice implanted with HP-MSCs pretreated with either anti-CXCR4

or anti-CXCR7 antibody had significantly higher BUN and Scr

levels (Fig. 7F and G), HSK (Fig. 7H), as well as number of apoptotic

cells in TUNEL assay (Fig. 7J) compared with mice implanted with

cells pretreated with theirs respective isotype-matched antibodies.

Figure 5. SDF-1a is upregulated in the kidney of I/R-AKI mice.
(A) Representative micrographs of immunohistochemistry for SDF-1a in
the kidneys from mice affected by IR-AKI days 1, 2 and 7 after I/R. The
kidney sections from mice 24 h after sham surgery were used as control
(upper left panel). Original magnification 6200. (B) The kidney cortex
lysates from mice affected by sham surgery or I/R-AKI were analyzed by
ELISA to determine SDF-1a protein expression at the indicated periods
of post-surgery time. *P,0.05, vs Sham.
doi:10.1371/journal.pone.0034608.g005

HP-MSC Benefit by SDF-CXCR4/CXCR7 Axis
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Furthermore, pretreatment of HP-MSCs with either anti-CXCR4

or anti-CXCR7 antibody significantly reduced the number of

PCNA-positive cells in kidneys from I/R-AKI mice (Fig. 7I).

Discussion

The present study found for the first time that HP increased the

chemotaxis, viability and paracrine actions of MSCs in vitro via a

mechanism that is dependent, at least in part, on SDF-1-CXCR4/

CXCR7 pathway. When administered systemically, the HP-MSCs

homed to the ischemic kidney more efficiently than NP-MSCs,

which led to significantly improved renal function, accelerated

mitogenic response, and reduced cell apoptosis. Importantly, these

in vivo effects were largely abolished by either CXCR4 or CXCR7

inhibition, indicating that the in vivo benefits of HP are also

mediated by the SDF-1-CXCR4/CXCR7 axis (Fig. 8).

Although MSCs are able to withstand hypoxia for up to a few

days by upregulating survival pathways and increasing glycolytic

metabolism [41], they need to survive longer for maintaining a

long-term, effective MSC-based therapy in ischemic tissue. Short-

term exposure of MSCs to hypoxia can significantly enhance their

viability in vitro and in vivo, and thus improve their tissue repair

capabilities after transplantation into the ischemic tissue

[38,42,43]. HP can enhance the paracrine/autocrine effects of

MSCs by altering trophic factor release [38,43–45] and it also

plays an critical role in recruiting MSCs to the sites of injury in vivo

by upregulating the membrane markers associated with migration

and homing of MSCs [35–37,46]. A selective in vivo expression of

chemokine SDF-1 in ischemic tissue in direct proportion to

reduced oxygen tensions has been confirmed [46–49]. Our data

also demonstrated that SDF-1a is upregulated in the ischemic

kidneys within hours of I/R and remains elevated for several days.

The interaction of locally produced SDF-1 and its receptor

CXCR4 expressed on the MSC surface plays an crucial role in the

homing of transplanted cells [35,46,47,50,51]. However, culture-

expanded MSCs progressively downregulate CXCR4 expression

and lose their ability to migrate toward the SDF-1 gradient in the

ischemic tissue [32,33,52]. Our previous study reported HP-

induced expression of CXCR4 and CXCR7, and the role of both

SDF-1 receptors in enhanced migration, adhesion and survival of

HP-MSCs in vitro [39]. Thus, we used HP as a strategy to enhance

the homing of systemically delivered MSCs to the ischemic kidney.

Here, we further investigated the effects of SDF-1-CXCR4/

CXCR7 axis on the homing and the therapeutic outcome of

MSCs in vivo.

Figure 6. The role of SDF-1-CXCR4/CXCR7 pathway on the homing of HP-MSCs toward ischemic kidneys. (A) ELISA analysis was
performed to determine production of SDF-1a from primary TECs exposed to hypoxia/reoxygenation in vitro. The cells without hypoxia/
reoxygenation stimulation were used as control. *P,0.05, vs control. (B) The chemotaxis in response to hypoxia/reoxygenation-damaged primary
TECs was performed in HP-MSCs treated with a neutralizing anti-CXCR4 antibody, an anti-CXCR7 antibody, and the respective isotype-matched
control antibodies, respectively. *P,0.05, vs control; {P,0.05, vs the respective isotype-matched control antibodies. (C) The kidney uptake of
111Indium-labeled NP-MSCs and HP-MSCs was measured from 3 hours to 14 days after systemic administration into I/R-AKI mice. The specific
radioactivity of each organ was expressed as the percentage of injected dose per gram tissue (%ID/g) after being adjusted by the half-life of
111Indium. *P,0.05, vs the respective isotype-matched control antibodies. (D and E) The uptake of 111Indium-labeled NP-MSCs and HP-MSCs in
different organs from I/R-AKI mice was measured 24 h after infusion. *P,0.05 vs NP-MSCs; {P,0.05 vs Kidney. (F) The kidney uptake of 111Indium-
labeled NP-MSCs and HP-MSCs was measured from 3 hours to 14 days after infusing cells pretreated with a neutralizing anti-CXCR4 antibody, an anti-
CXCR7 antibody and the respective isotype-matched control antibodies, respectively. *P,0.05, vs the respective isotype-matched control antibodies.
doi:10.1371/journal.pone.0034608.g006
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We first evaluated the role of SDF-1-CXCR4/CXCR7 axis in

chemotaxis, viability and paracrine actions of MSCs in vitro. To

this end, the HP-MSCs that had markedly upregulated expression

of CXCR4 and CXCR7 were pretreated with the neutralizing

antibody against CXCR4 or CXCR7 to block their functions, and

NP-MSCs that did not have detectable CXCR4 and CXCR7

expression were transfected with sense expression vector of

CXCR4 or CXCR7 for upregulating these genes. The function

blockage of CXCR4 but not CXCR7 in HP-MSCs suppressed the

chemotactic response to SDF-1a, and CXCR4 overexpression

increased this chemotaxis of NP-MSCs, suggesting that only SDF-

1a-CXCR4 axis is responsible for the chemotaxis of MSCs.

Otherwise, our study also found that, at least in MSCs, H2O2-

induced cell apoptosis can be reverted by HP, and this HP-

induced survival process is mediated by CXCR7, but not by

CXCR4. Overexpression of CXCR7 but not of CXCR4 also

reverted H2O2-induced cell apoptosis of NP-MSCs, suggesting

that only SDF-1a-CXCR7 axis is responsible for the viability of

MSCs in vitro. In addition, the enhanced secretion of VEGF, b-

FGF, IGF-1 and HGF of MSCs by HP was inhibited by blocking

either CXCR4 or CXCR7, and overexpression of either CXCR4

or CXCR7 markedly increased paracrine actions of NP-MSCs,

suggesting that not only the SDF-1-CXCR4 interaction but also

the binding of SDF-1 to CXCR7 were required for the paracrine

actions of MSCs.

Interestingly, the results of this study also clearly demonstrate that,

at least in NP-MSCs, SDF-1a preconditioning has no effect on the

expression of CXCR4 and CXCR7, in vitro chemotaxis, viability and

paracrine actions. However, SDF-1a preconditioned HP-MSCs are

markedly protected against H2O2, and this SDF-1a-induced survival

process is mediated by CXCR7, but not by CXCR4. Similarly,

SDF-1a induced significant increase in the viability of CXCR7-

transfected but not of CXCR4-transfected NP-MSCs under H2O2

culture conditions. Furthermore, SDF-1a also markedly increased

the secretion levels of VEGF, b-FGF, IGF-1 and HGF in HP-MSCs

and in either CXCR4- or CXCR7-transfected NP-MSCs. These

data suggest the role of autocrine SDF-1a under hypoxia and further

support the possibility that CXCR4 and CXCR7 play an essential,

but differential role in regulating chemotaxis, viability and paracrine

actions of MSCs in vitro.

In agreement with observations from in vitro chemotaxis assay,

HP can enhance the homing capacity of MSCs toward the injured

kidney in I/R-AKI mice, and this improved capacity is

significantly reduced by neutralization of CXCR4, but not of

CXCR7. Furthermore, significantly greater numbers of intrave-

nously infused HP-MSCs were homed in the ischemic kidneys

than that of NP-MSCs, leading to significantly improved renal

function, accelerated mitogenic response, and reduced HSK and

apoptotic index. Therefore, that systemic administration of HP-

MSCs that have significantly higher expression of CXCR4 and

CXCR7 than NP-MSCs may be a useful noninvasive therapy to

promote renal repair after I/R. Importantly, these beneficial

effects of HP-MSCs on renal tissue regeneration following I/R are

largely abolished by a neutralization of either CXCR4 or

CXCR7, indicating that SDF-1-CXCR4/CXCR7 axis qualifies

as an attractive target for MSC-based therapies. These findings

provide new insights into the role of SDF-1-CXCR4/CXCR7 in

HP-MSCs for regenerative medicine.

Materials and Methods

Ethics Statement
C57BL/6 mice were provided by the Experimental Animal

Center of the Fourth Military Medical University (Xi’an, China)

and Medical College of Xi’an Jiaotong University (Xi’an, China).

This study was carried out in strict accordance with the Guidelines

on the Care and Use of Laboratory Animals issued by the Chinese

Council on Animal Research and the Guidelines of Animal Care.

All procedures involving animals were approved by the Institu-

tional Animal Care and Use Committees of both the Fourth

Military Medical University and the Xi’an Jiaotong University. All

efforts were made to minimize animals’ suffering and to reduce the

number of animals used.

Isolation and culture of MSCs
MSCs were isolated from C57BL/6 mice as previously

described [39]. Briefly, femurs and tibiaes were prepared from

4–6-week-old male mice. The marrow was extruded with L-

DMEM (Gibco, Grand Island, NY, USA) and cultured in L-

DMEM containing 10% fetal bovine serum (FBS) and 1%

antibiotic/antimycotic solution (Gibco). After 24 h, the nonad-

herent cells were removed by replacing the medium. Adherent

MSCs had a typical spindle-shaped appearance and were used at

passage 3. For characterization of mouse MSCs, cultured cells

were subjected to flow cytometry using CD34, CD45, CD90 and

CD105 markers (BD Pharmingen, San Diego, CA, USA), and

were identified as CD90+/CD105+ and CD342/CD452cells.

HP of MSCs
MSCs were cultured in a hypoxia chamber incubator (catalog

No. 27310; StemCell Technologies, Vancouver, BC, Canada) at

37uC in 3% O2, 5% CO2 and 92% N2 for 24 h, and these MSCs

were named as hypoxia-preconditioned MSCs (HP-MSCs).

Normoxia-preconditioned (for 24 h in 95% air, 5% CO2) MSCs

(named as NP-MSCs) were used as a control.

Semiquantitative RT-PCR analysis
Total RNA was extracted from bone marrow mononuclear cells

(BMMCs) and bone marrow-derived MSCs using Trizol reagents

(Invitrogen Life Technologies) according to manufacturer’s

instructions. The sequence of primers for PCR was as follows:

CXCR4, 59-AAAGCTAGCCGTGATCCTCA-39 (sense) and 59-

CACCATTTCAGGCTTTGGTT -39 (anti-sense); CXCR7, 59-

TCACCTACTTCACCGGCACC-39 (sense) and 59-ACAT-

GGCTCTAGCGAGCAGG-39 (anti-sense); SDF-1a, 59-AAAC-

CAGTCAGCCTGAGCTAC-39 (sense) and 59-TTACTTGTT-

TAAAGCTTTCTC-39 (anti-sense); GAPDH, 59-ACCACAGTC-

CATGCCATCAC-39 (sense) and 59-TCCACCACCCTGTT-

GCTGTA-39 (anti-sense). The PCR conditions were as follows:

denaturation at 94uC for 30 s, annealing at 60–62uC for 30 s, and

extension at 72uC for 30 s, which was repeated for 35 cycles. The

PCR amplicons were then separated on 2.0% agarose gel by

electrophoresis and analyzed by densitometry.

Western blots
BMMCs and MSCs were washed with ice-cold PBS and

scraped in RIPA lysis buffer including protease inhibitors. After

loaded and separated on sodium dodecyl sulphate polyacrylamide

gel (SDS–PAGE), the proteins were electrophoretically transferred

onto a polyvinylidene difluoride membrane and then blocked with

16TBS plus Tween 20 (TBST) containing 5% nonfat dry milk for

2 h at room temperature. The membrane was incubated overnight

at 4uC with SDF-1a (eBioscience, 1:1000), CXCR4 (Santa-Cruz

Biotechnology, 1:250), CXCR7 (R&D Systems, 1:200) or b-actin

(Abcam, 1:2000) antibodies appropriately diluted in 16TBST

containing 5% nonfat dry milk. The immune complexes were

visualized with appropriate horseradish peroxidase-conjugated
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secondary antibodies and enhanced chemiluminescence Plus kit

(Amersham, Freiburg, Germany).

ELISA
The production of SDF-1a, VEGF, b-FGF, IGF-1, and HGF in

the supernatants of MSCs and in the kidney cortex was

determined by ELISA using a commercially available ELISA kit

(R&D Systems, Minneapolis, MN, USA) according to the

manufacturer’s recommendation. Supernatants were prepared by

collecting serum-free DMEM medium after 24 hour culture of

approximately 16106 MSCs under normoxia or hypoxia.

Decapsulated kidney cortex tissues were retrieved before (n = 10)

and 0.5, 1, 3, 5, 7, 14 days after I/R (n = 10) and cell and tissue

lysates were obtained by mincing, sonicating, and lysing with

RIPA buffer. Protein was quantified by BCA protein assay reagent

assay (Pierce, Rockford, IL, USA). Optical density was measured

at 450 nm with wavelength correction at 570 nm. All samples and

standards were measured in duplicate. In some experiments,

MSCs were pretreated with SDF-1a (50 ng/ml), a neutralizing

anti-CXCR4 antibody (10 mg/ml, Clone 247506, Rat IgG2B,

R&D Systems), rat IgG2B isotype control (10 mg/ml, Clone

141945, R&D Systems), an anti-CXCR7 antibody (10 mg/ml,

Catalog number AF4227, sheep IgG, R&D Systems), or a sheep

IgG isotype control (10 mg/ml, Catalog number 5-001-A, R&D

Systems).

Chemotaxis assay
The transwell system was purchased from Millipore Inc

(Billerica, MA). Briefly, SDF-1a (10 ng/ml, Millipore, Billerica,

MA) was placed in the lower chamber, and 105 cells were added to

the upper chamber in the presence or absence of a neutralizing

anti-CXCR4 antibody, an anti-CXCR7 antibody, a rat IgG2B

isotype control antibody, or a sheep IgG isotype control antibody

(all at a concentration of 10 mg/ml). The chemotaxis chambers

were then incubated for 12 h at 37uC. Then, non-migrating cells

were removed from the top chamber, and migrated cells were

fixed in methanol and stained with 2% toluidine. The number of

cells that had migrated through to the underside of the insert

membranes was calculated by counting at least five random

separate fields (400-fold magnification).

In some experiments, primary renal tubule epithelial cells

(TECs) from 1–2-week-old C56BL/6-mice were cultured in

serum-free DMEM and exposed to sublethal hypoxia for 6 h

(,3% O2) followed by 12 h of reoxygenation (21% O2). After

hypoxia/reoxygenation (H/R) the cells were washed twice and

added in the lower chamber for the transfilter assay. Primary

mouse proximal TECs were generated as previously described

[53]. Kidney medulla was discarded, kidney cortices was minced

and digested with collagenase I (Sigma Chemical Co.). The cell

suspensions were filtered through 40 mm strainers (BD Falcon

2350; BD Pharmingen, San Diego, CA, USA) and seeded on

Nunclon–treated 6-well plates (Nalgene/Nunc International,

Rochester, NY). Once confluent and prior to use, the epithelial

nature of the cells was characterized by positive staining for

megalin and aquaporin-1 (Santa Cruz Biotechnology, Inc.).

Cell viability and cytotoxicity assays
Cells in the dish (105 cells/well) were cultured with SDF-1a

(50 ng/ml) or SDF-1a plus H2O2 (250 mM, Sigma-Aldrich) for

6 h in presence or absence of a neutralizing anti-CXCR4

antibody, an anti-CXCR7 antibody, a rat IgG2B isotype control

antibody, or a sheep IgG isotype control antibody (all at a

concentration of 10 mg/ml). The following standard cytotoxicity

tests were performed as described [54]. The viability of the cells

was measured using both 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphe-

nyl-2H-tetrazolium bromide (MTT) assay and an automated cell

counter (NucleoCounter, New Brunswick Scientific, Edison, NJ).

The cell counter technique uses propidium iodide (PI), which

binds to cellular nuclei. Depending on sample preparation, the

counts provide the total number of cells or viable cells. Cytotoxicty

was also determined by measuring the amount of lactate

dehydrogenase (LDH) released in the cell culture medium using

a Sigma assay kit by measuring absorption at 340 nm.

Transient cell transfection
The NP-MSCs that had undetectable CXCR4 and CXCR7

expression were transfected using pORF9-mCXCR4 (an expres-

sion vector containing the mouse CXCR4 open-reading frame) or

pORF9-mCXCR7 (an expression vector containing the mouse

CXCR7 open-reading frame), respectively (InvivoGen, CA, USA).

Figure 7. The effects of SDF-1-CXCR4/CXCR7 pathway on the therapeutic efficacy of HP-MSCs for treatment of I/R-AKI. (A and B) BUN
(A) and Scr (B) levels as measured in I/R-AKI mice received HP-MSCs, NP-MSCs or vehicle (DMEM). *P,0.05 vs DMEM; {P,0.05 vs NP-MSCs. (C) The
histological score of kidney (HSK) in I/R-AKI mice received HP-MSCs, NP-MSCs or vehicle, respectively, was calculated. *P,0.05 vs DMEM; {,0.05 vs
NP-MSCs. (D and E) HP-MSC-treated mice showed a significantly earlier rise in proliferating cells (D), and simultaneous reduction of number of
apoptotic cells compared with NP-MSC-treated mice (E). *P,0.05 vs DMEM; {P,0.05 vs NP-MSCs; {P,0.05 vs pre-transplantation. (F through J) BUN
levels (F), Scr levels (G), HSK (H), renal PCNA expression (I), and renal TUNEL-apoptosis (J) were evaluated in mice treated with HP-MSCs+IgG2B-isotype
control antibody, HP-MSCs+anti-CXCR4 antibody, HP-MSCs+IgG-isotype control antibody, and HP-MSCs+anti-CXCR7 antibody, respectively. *P,0.05,
vs the respective isotype-matched control antibodies.
doi:10.1371/journal.pone.0034608.g007

Figure 8. A model of regenerative potential of HP-MSCs in
repair of I/R-AKI. Chemokine SDF-1 expression is upregulated in
postischemic kidneys. HP enhances the expression of both SDF-1
receptors, CXCR4 and CXCR7, in MSCs. Intravenously injected HP-MSCs
are recruited to the ischemic kidney and localized within the injured
capillaries and in the interstitium through SDF-1a-CXCR4 interaction.
The binding of SDF-1 to both CXCR4 and CXCR7 is responsible for the
production of paracrine mediators, including VEGF, b-FGF, IGF-1 and
HGF that exert mitogenic, anti-apoptotic, pro-angiogenic, and anti-
inflammatory effects.
doi:10.1371/journal.pone.0034608.g008
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Both mCXCR4 and mCXCR7 genes consist of an intronless ORF

from the ATG to the stop codon. The ORF size was 1089 bp and

the cloning fragment size was 1069 bp for mCXCR4 or 1203 bp

for mCXCR7. The protocol for growth of pORF-transformed

bacteria and the selection of bacterial clones has been previously

described [55]. Briefly, the lyophilized E.coli were resuspended

with 1 ml of LB medium and streaked onto ampicillin LB agar

plate prepared with the E. coli Fast-Media Amp agar and

incubated at 37uC overnight. Isolated single colony of the bacteria

was grown in TB medium supplemented with ampicillin using the

Fast-Media Amp liquid overnight at 37uC. The pORF plasmid

DNA was extracted using the QUIAGEN plasmid midi kit

(Quiagen, USA) and the yield was measured spectrophotometri-

cally. For each transfection, NP-MSCs (26106) were plated in one

well of 6-well plates and grown in DMEM containing 10% FBS

until cell density reached 75% confluence. The expression plasmid

DNA [15 mg in 800 ml of opti-MEM medium (Gibco, USA)] was

mixed with 15 ml lipofectAMINE (Gibco, USA) and incubated at

room temperature for 30 min. The MSCs were washed with

serum-free medium, mixed with lipofectAMINE/DNA mixture

and incubated at 37uC for 5 h and for a further 48 h in the

presence of growth medium containing 20% FBS. As a control,

NP-MSCs were similarly transfected with an empty vector

(pORF9-MCS, Invivogen, CA, USA). In each experiment, the

transfection efficiency was assessed using Western blots of

transfected and identically treated non-transfected cells. The

transfection efficiency ranged from 74–82% and the viability, as

assessed by trypan blue dye exclusion, ranged between 90 and

97%. These cells were further used to investigate the functional

characteristics of CXCR4- or CXCR7-transfected NP-MSCs in

chemotaxis assay, ELISA assay of secreted VEGF, b-FGF, IGF-1

and HGF, cell viability and cytotoxicity assays.

Induction of I/R-AKI
Models of I/R-AKI were performed in female 6–8-week-old

C57BL/6 mice by clamping both renal pedicles for 30 minutes

followed by clamp release to allow reperfusion as described earlier

[56]. To ensure complete intravenous administration of MSCs, a

27G canula connected to a short polyethylen-catheter was used. At

24 h after surgery, the cells (16106/0.5 ml L-DMEM) were

infused via the cannulated tube that was then flushed with 0.3 ml

L-DMEM in order to infuse cells remaining in the tubing. In order

to be able to detect the homing of MSCs to the target tissue, MSCs

were labeled with 111Indium-oxine (GE Healthcare).

The animal were randomly assigned to one of seven

experimental groups (n = 10) as follows: group 1, serum-free L-

DMEM; group 2, 111Indium-labeled NP-MSCs; group 3,
111Indium-labeled HP-MSCs; group 4, 111indium-labeled HP-

MSCs pretreated with IgG2B isotype control antibody; group 5,
111Indium-labeled HP-MSCs pretreated with a neutralizing anti-

CXCR4 antibody; group 6, 111Indium-labeled HP-MSCs pre-

treated with IgG isotype control antibody; and group 7,
111Indium-labeled HP-MSCs pretreated with a neutralizing anti-

CXCR7 antibody. Pretreatment of cells with neutralizing

antibodies (10 mg/106cells) was performed by incubating for

30 min on ice.

In vitro labeling and in vivo homing of transplanted MSCs
Radiotracer labeling of MSCs is simpler than fluorescent

labeling, and the traced MSCs can be quantified accurately in

tissue. Therefore, the radioactive 111Indium was used to label

MSCs in this study. The cultured MSCs at passage 3 were

incubated with radioactive 111Indium (100 mCi/106 cells) for

15 min at room temperature. After repeated centrifugation and

wash to assure clearance of any unbound radioactivity, the

efficiency of 111Indium-radiolabeling MSCs was measured as

about 80%, resulting in a specific activity of approximately

80 mCi/106 cells. Preliminary experiments showed that the

viability and growth of these labeled MSCs were not adversely

affected by this labeling procedure (data not shown). Three hours

and 1, 2, 3, 5, 7 and 14 days after MSC transplantation, mice were

euthanized with an overdose of pentobarbital and the organs,

including kidneys, lungs, heart, spleen and liver, were excised and

weighed. Biometric data (body weight and organ weight) of the

mice allocated to seven different treatment groups revealed no

significant difference (P.0.05, data not shown). The radioactivity

in each organ was measured using a gamma scintillation counter

and adjusted by the half-life of 111Indium (2.8 days). To facilitate

comparisons, specific tissue distribution of the transplanted MSCs

was expressed as the percentage of injected dose per gram of tissue

(%ID/g) and percentage injected dose per organ (%ID/organ).

HSK
The excised kidneys were fixed in phosphate-buffered 10%

formalin, sectioned, and then stained with hematoxylin and eosin.

Evaluation of histological score of kidney (HSK) was performed in

a blind manner by a pathologist. HSK was graded on a 4-point

scale [57]: 0 = normal histology; 1 = mild damage [less than one-

third of nuclear loss (necrosis) per tubular cross section];

2 = moderate damage [greater than one-third and less than two-

thirds of tubular cross section showing nuclear loss (necrosis)];

3 = severe damage [greater than two-thirds of tubular cross section

shows nuclear loss (necrosis)]. The total score per kidney section

was calculated by addition of all 10 scores with a maximum

possible injury score of 30.

Immunohistochemical staining
The tissue sections were subject to immunohistochemical

staining for SDF-1a and proliferating cell nuclear antigen (PCNA)

immediately and 1, 2, 3 and 7 days after cell transplantation. For

immunohistochemical staining, the rabbit specific horseradish

peroxidase-diaminobenzidine (HRP-DAB) detection immunohis-

tochemical kit (ab64261, Abcam) was used. Briefly, after

deparaffination, four micron sections of kidneys were hydrated

by decreasing concentrations of ethanol and incubated with a

peroxidase-blocking reagent for 30 min. Before immunostaining,

sections for SDF-1a staining were treated with 0.1 mol/L sodium

citrate buffer (pH 6.0) in a microwave oven for antigen retrieval.

Sections were incubated overnight at 4uC with the primary

antibodies, a rabbit polyclonal SDF-1a antibody (1:200,

eBioscience, San Diego, CA, USA) and a rabbit polyclonal FL-

261 antibody (1:200, sc-7907, Santa Cruz Biotechnology, Santa

Cruz, USA). Control experiments included omission of either the

primary or secondary antibody. The reaction sections were

incubated with biotinylated goat anti rabbit IgG(H+L) as a

secondary antibody for 10 min. Visualization of the specific

binding on the sites of primary antibodies was developed by an

enzymatic conversion of the DAB into a brown precipitate by

streptavidin peroxidase. After counterstaining with hematoxylin,

the sections were mounted, cleared, and coverslipped. The

number of PCNA-positive cells, a marker of mitogenesis, was

carried out by counting the number of positive nuclei in 10

randomly selected sections of kidney cortex and outer medulla,

and converted to the mean number of positive cells in high-power

fields (HPF, 620 magnification). Terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL) assay was

performed according to the manufacturer’s instructions (In Situ

Cell Death Detection Kit; Roche China, Ltd.) to detect tubular
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cell apoptosis in post-ischemic kidney. TUNEL-stained sections

were screened for positive nuclei under a fluorescence microscope,

and 10 random fields in the corticomedullary area were counted

for every kidney at 640 magnification.

Statistical Analysis
Each experiment was repeated at least ten times. All values are

given as mean 6SD. Student’s t test and one-way ANOVA of

variance followed by Dunnett’s multiple comparison tests were

adopted for all statistical data. All analyses were carried out using

SPSS 11.0 software (Chicago, IL, USA). P,0.05 was considered

statistically significant.
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