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Abstract

Background: Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating
pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic
selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a
gene’s native ATG start site has not been widely available.

Methodology: Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection,
and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial
artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open
reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early
cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice.

Conclusions: Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The
results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs,
potentially as part of an ES cell reporter library.

Citation: Hsiao EC, Yoshinaga Y, Nguyen TD, Musone SL, Kim JE, et al. (2008) Marking Embryonic Stem Cells with a 2A Self-Cleaving Peptide: A NKX2-5 Emerald
GFP BAC Reporter. PLoS ONE 3(7): e2532. doi:10.1371/journal.pone.0002532

Editor: Joseph Najbauer, City of Hope Medical Center, United States of America

Received January 18, 2008; Accepted May 23, 2008; Published July 2, 2008

Copyright: � 2008 Hsiao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding support to ECH was from a National Institute of Health Fellowship Training Grant (2T32DK07418-26) and the California Institute of
Regenerative Medicine/J. David Gladstone Institutes CIRM Fellowship Program (Grant T2-00003). BRC received support from the NIH (grants HL60664 and
HL66621). The Gladstone Institutes received support from a National Center for Research Resources Grant RR18928-01.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ehsiao@gladstone.ucsf.edu

Introduction

Embryonic stem (ES) cells hold significant potential for studying

the early developmental pathways of tissue differentiation and

function. However, the identification and isolation of pure cell

populations has been hampered by the heterogeneity of ES cell

cultures and a paucity of robust genetic markers in ES cell lines.

One popular approach for identifying gene expression in living

tissues by microscopy or flow cytometry [1,2] is with fluorescent

proteins. In addition to the wide variety of colors, fluorescent

markers with long [e.g., enhanced and emerald GFPs (EmGFP)]

[3,4] or short (e.g., destabilized GFP) [5,6] half-lives are available.

Many current reporters achieve cell specificity by linking a small

promoter fragment to a protein/reporter fusion, replacing an

entire open reading frame with a reporter, or using an internal

ribosomal entry sites (IRES) sequence to drive reporter expression.

These constructs are not ideal for poorly characterized or large

promoter regions. In addition, polycistronic constructs with IRES

sequences can display differential expression of the individual

cistrons [7], making it difficult to directly correlate promoter

function to fluorescence levels.

Bacterial artificial chromosomes (BACs) of up to 300 kb have

been used to create reporter constructs and transgenic animals

[8,9]. BAC reporters are capable of carrying large promoter and

enhancer regions within a single construct. The long BAC arms

also function to decrease integration-site effects in transgenic cell

lines or mice. Rapid and efficient BAC modification techniques

have been recently introduced [10,11], and methods for creating

GFP-based mouse BAC reporters for use in ES cells have also

been described [12].

Ideally, reporter constructs should be easily created with

different combinations of fluorophores and bacterial/eukaryotic

selection markers linked to the same promoter region. This is

particularly important when the reporters are to be used in

different cell types or in cells from different species, since the

efficiencies of the promoters driving selection markers vary [13–

15]. In addition, peptide sequences added to fluorophores, such as

GFP, may affect protein stability [6,16] or organelle localization

(e.g., if a signal sequence is attached), suggesting that a uniform

fluorophore molecule may be beneficial when quantitative

comparisons between different reporter lines are desired. Finally,

modifications to the 59 un-translated region and endogenous ATG
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start site may be undesirable since both of these regions are subject

to chromatin modification [17] for transcriptional regulation.

The method presented here addresses these concerns and uses

high-efficiency recombination techniques to minimize the need for

unique reagents.

Results

Modular reporter cassettes
To achieve our goal of a flexible, modular method for making

fluorescent reporters, we designed a system that uses standardized

marker cassettes that can be inserted in frame with a coding

sequence for use in human or mouse cells (Fig. 1A–C). Each

genetic component of the cassette (reporter, eukaryotic selection

marker, and bacterial selection marker) is flanked by unique

restriction sites to facilitate exchange with other components (Fig.

S1). Variations of the cassette with different markers were

generated (Table 1) to allow different combinations of fluoro-

phores and selection markers. Although single-cistron dual

selection systems are available (e.g., kanamycin/neomycin selec-

tion), we believe that our strategy of separate prokaryotic/

eukaryotic selection cassettes allows for more flexibility and

facilitates the creation of multi-color reporter cells.

A 2A ribosomal skip site links the N-terminal peptide fragment

of the endogenous gene to the introduced marker. The self-

cleaving 2A site generates two separate peptides in equal

concentrations [18,19] via a ribosomal ‘‘skip’’ mechanism just

before the C-terminal end of the 2A peptide [20]. This feature has

several advantages over traditional fusion proteins. The fluor-

ophore that is released would carry the same N-terminal

modification between different reporters constructs. For example,

all reporters generated using the pEnt-Emr cassette (Figure S1A)

will have a single proline added to the N-terminus of EmGFP.

This uniform modification will help minimize the potential for any

localization, spectral, or stability differences that could arise with

different N-terminal modifications in a traditional GFP fusion

strategy [6,16]. The 2A strategy also ensures that a functional

fluorophore molecule is released, since not all N-terminal GFP

fusion proteins work [3]. Finally, our strategy preserves the

regulatory sequences surrounding the promoter, 59 un-translated

region, and endogenous ATG start site, since these regions may be

subject to chromatin modification [17] for transcriptional

regulation. This approach is especially beneficial for studies of

genes in which the ATG start site has been identified, but the

structure of the open reading frame has not been defined.

To facilitate integration of the marker cassette into a target site,

the cassette is flanked by primer binding sites for BAC

recombineering with the lambda prophage Escherichia coli system

[10], as well as AttL1 and AttL2 sequences for recombination with

the Gateway system [21], if corresponding target AttR sites have

Figure 1. General strategy of the reporter cassette construct (pEnt-Emr/Zeo). (A) The fluorescent tag is composed of a 2A sequence
preceding the EmGFP cistron. Separate bacterial and eukaryotic selection markers are also present. The entire three-cistron cassette is flanked by AttL
sites for use in a Gateway recombination reaction (B) that introduces the construct into a destination vector (such as pDest27) with the corresponding
AttR sites. In addition, primer binding sites are included for introducing the cassette into other vectors, such as BACs, by direct recombineering (C).
(D) The 2A site is fully functional when an expression vector generated by LR Gateway insertion of pEnt-Emr/Tet into pDest27 (pExp/pD27/pEnt-Emr;
Fig. S2) is introduced into 293HEK cells at low (1 mg) or high (5 mg) DNA doses. Complete separation of the GST tag and EmGFP polypeptides is
detected by western blotting with a primary antibody against GFP. The expected size of the EmGFP polypeptide is 27 kD; unprocessed polypeptide
retaining the GST tag would have appeared at 54 kD. (E) EmGFP fluorescence imaging of 293HEK cells transfected with empty pDest27 vector (top
panel) or with 1 mg of expression vector (pExp/pD27/pEnt-Emr). White scale bar represents 100 mm.
doi:10.1371/journal.pone.0002532.g001
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been introduced in advance. Both of these modalities were

included because Gateway recombination is an elegant method for

smaller target constructs (,50 kb in our hands) while the lambda

prophage system allows modification of larger targets [10,11].

Our prototype marker construct, pEnt-Emr (Fig. S1), utilizes

EmGFP. This long half-life fluorophore is ideal for detecting faint

signals but has lower temporal sensitivity than shorter half-life

versions of GFP [3]. The EmGFP is preceded by the 2A self-

cleaving peptide sequence. The construct contains the eukaryotic

SV40-neomycin selection marker and a bacterial selection marker,

either for tetracycline (pEnt-Emr/Tet, Fig. S1A) or for Zeocin

(pEnt-Emr/Zeo, Fig. S1B).

To demonstrate that the 2A site is functional in our construct,

the pEnt-Emr/Tet cassette was recombined by the Gateway

method into the pDest27 expression vector to generate the

expression vector pExp/pD27/pEnt-Emr/Tet (Fig. S2). Protein

obtained from HEK293 cells transfected with pExp/pD27/pEnt-

Emr showed no detectable uncleaved product by western blot with

an antibody against GFP (Fig. 1D). Fluorescence microscopy

showed strong expression of EmGFP within the cells (Fig. 1E).

Creating a NKX2-5 Emerald GFP BAC reporter
We next demonstrated the utility of the pEnt-Emr marker

cassette for BAC recombineering. We used the pEnt-Emr/Zeo

plasmid to create a BAC reporter ES cell line for the NKX2-5

gene, a marker of early cardiomyocyte differentiation. The

NKX2-5 locus is particularly challenging: although the 59

enhancer fragments were characterized earlier [22] and mouse

NKX2-5 BAC reporters have been used to create transgenic mice

[23], the NKX2-5 base promoter was only recently described [24].

Early NKX2-5 reporters used a hybrid construct of an NKX2-5

enhancer with a generic promoter, such as HSP68 [25]. While

these hybrid reporters could recapitulate the tissue-specific

expression of NKX2-5, the hybrid enhancer-promoter made it

difficult to use the reporter as a measure of endogenous expression

levels.

We selected the human BAC RP11-88L12 containing the

NKX2-5 locus and large flanking regions to make a reporter that

would function in both mouse and human cells (Fig. S3A). A 3.6-

kb PCR fragment amplified from pEnt-Emr/Zeo containing the

marker cassette and 50 bp of flanking sequence was recombined

into the open reading frame of the NKX2-5 locus 26 amino acids

downstream of the native ATG site (Fig. S3B, C). The modified

BAC (RP11-88L12 NKX2-5-EmGFP) was verified by restriction

digest and by sequencing of the recombineering junctions before

electroporation into the E14 mouse ES cell line and selection with

neomycin. Three positive clones were identified and characterized

by immunohistochemistry for NKX2-5 after in-vitro differentiation

into beating cardiomyocytes. Two clones showed similar immu-

nohistochemical co-localization of EmGFP with NKX2-5 in day

11 embryoid bodies (EBs); the third clone showed no EmGFP

expression. One of the first two clones was arbitrarily chosen for

further characterization (Fig. 2A).

Characterization of NKX2-5 expression in mouse ES cells
We used the NKX2-5 marked ES cell line to examine NKX2-5

expression during ES cell differentiation into cardiomyocytes. By

fluorescence microscopy, NKX2-5 expression was first detected at

day 4 of EB formation and peaked around day 7 (Fig. 2B). EmGFP

expression correlated with areas of beating cells (Movie S1, S2 and

S3). We observed some EmGFP fluorescence in a small number of

cells that were not beating, consistent with known NKX2-5

expression in non-cardiac cell types [22,23]. Quantitative PCR

analysis on whole EBs confirmed that initial expression of the

EmGFP reporter coincided with that of the endogenous NKX2-5

(Fig. 2C). However, mRNA levels and fluorescence of EmGFP

remained elevated after NKX2-5 expression had decreased

(Fig. 2D), consistent with the known long mRNA and protein

half-life of EmGFP [3]. Fluorescence-activated cell sorting (FACS)

with the EmGFP marker on dissociated EBs showed that we could

purify NKX2-5-positive cells based on EmGFP fluorescence

(Fig. 3). These cells have been used to show that canonical Wnt

signaling can positively regulate cardiogenesis [26].

To confirm that the NKX2-5 EmGFP reporter localized

expression of NKX2-5 in an endogenous setting, we created

chimeric mice from the NKX2.5 marked ES cells with an eight-

cell laser-assisted technique to maximize embryo chimerism

[27,28]. Chimeric embryos were harvested at e9.5–10 and

e13.5–14 days and examined for EmGFP fluorescence. Repre-

sentative chimeric embryos (Fig. 4) show that EmGFP is strongly

localized to the developing heart tube in e9.5–10 embryos and is

present in the heart and foregut by e13.5–14, consistent with

reported expression patterns of NKX2-5 [22–24]. In addition, we

observed very weak EmGFP signals within the nasal placodes.

Similar results were obtained in chimeric mice made by traditional

blastocyst injection techniques, although with lower degrees of

chimerism.

Discussion

We created a modular reporter system that uses recombineering

techniques to introduce a fluorophore/selection cassette into the

open reading frame of a protein via a 2A self-cleaving peptide

sequence. Our results demonstrate the system’s functionality by

creating an ES cell line and mouse chimeras carrying a NKX2-5

EmGFP BAC reporter for marking early cardiomyocytes. The

results also show that EmGFP parallels NKX2-5 expression in

both ES cells and transgenic chimeric mice, although temporal

Table 1. Series of marker cassettes for BAC reporters.

Name Fluorophore Bacterial Selection Eukaryotic Selection Notes

pEnt-Emr/Tet Emerald GFP Tetracycline SV40-Neo Also KanR

pEnt-Emr/Zeo Emerald GFP Zeocin SV40-Neo Also KanR

pEnt-Emr/Amp Emerald GFP Ampicillin SV40-Neo Also KanR

pEnt-mCherry mCherry Tetracycline SV40-Neo Also KanR

pEnt-mOrange mOrange Tetracycline SV40-Neo Also KanR

pEnt2-mCherry mCherry Zeocin Rex-Neo Rex-Neo is flanked by FRT sites. Carries ccdB gene.

Maps for these marker cassette plasmids appear in Fig. S1.
doi:10.1371/journal.pone.0002532.t001
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Figure 2. Characterization of murine ES cells carrying the RP11-88L12 NKX-2.5-EmGFP BAC reporter. (A) Mouse E14-NKX2-5 ES cells
were differentiated into embryoid bodies containing cardiomyocytes by the hanging-drop method. Representative close-up photos of a beating
region from NKX2-5 BAC clone 2 are shown. Day 11 embryoid bodies were examined for co-localization of the NKX2-5 emerald GFP reporter (EmGFP
panel) with endogenous NKX2-5 (rhodamine panel). NKX2-5 linked emerald GFP expression was strongly correlated with regions containing beating
cells (Movies S1 and S2) with minimal auto-fluorescence (Movie S3), consistent with a cardiomyocyte fate. White scale bar indicates 100 mm. (B)
Fluorescence microscopy timecourse of embryoid body formation shows low levels of emerald GFP at day 4 of differentiation and an easily visible
signal by day 7 (middle row). No significant auto-fluorescence of the embryoid bodies was detected when viewed through the rhodamine filter set
(bottom row). White scale bars on bright field images indicate 100 mm (top row). Representative photographs from a total of 14 embryoid bodies
analyzed at each timepoint are shown. (C) Quantitative PCR analysis of the E14-NKX2-5-EmGFP cells and wild type E14 cells for NKX2-5 RNA levels
during cardiomyocyte formation showed that the reporter does not affect NKX2-5 RNA levels. NKX2-5 mRNA levels started to increase at day 4 and
were highest at days 5–6. (D) Quantitative PCR analysis of pooled E14-NKX2-5-EmGFP EBs or wild type E14 EBs shows that EmGFP is detectable only in
the E14-NKX2-5-EmGFP cell line and that EmGFP levels rise at day 4; however, the EmGFP mRNA levels persist at days 7 and 8, even when NKX2-5
RNA levels decrease, consistent with the known long half-life of EmGFP mRNA. Error bars represent+/21 SD of technical triplicates from pooled EB
samples. The differentiation timecourse and qPCR analysis were performed in duplicate.
doi:10.1371/journal.pone.0002532.g002

Figure 3. Quantitative PCR analysis of NKX2-5 marked E14 cells after fluorescence activated cell sorting (FACS). (A) Embryoid bodies
formed by suspension culture from the NKX2-5-marked E14 ES cell line were FACS sorted into negative (2EmGFP; 13.9%), intermediate (+EmGFP;
14.5%), and high EmGFP (++EmGFP; 5.8%) expressing fractions at day 9. (B) Expression levels of EmGFP mRNA in FACS-sorted cell populations. (C)
Expression levels of NKX2-5 in FACS-sorted cell populations, showing that NKX2-5 mRNA levels are increased in cells with higher EmGFP mRNA levels.
The FACS analysis was performed in triplicate. Error bars represent+/21 SD of technical triplicates.
doi:10.1371/journal.pone.0002532.g003
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assessment of NKX2-5 expression was limited by the long

fluorescence half-life of EmGFP.

The modular structure of our reporter cassette allows different

fluorophores to be used for future constructs, including mCherry

or mOrange [1] (Table 1) or destabilized forms of GFP. In

addition, we created a marker cassette for making future reporters

for human stem cells. Although the SV40-neomycin selection

cassette has been used in human and mouse cells, viral promoters

display varying abilities to express reporter constructs in different

cell types [13,29]. The pEnt2-mCherry construct contains a

neomycin selection marker driven by the Rex-1 promoter, which

is active only in undifferentiated ES cells [30,31] (Fig. S1F). Both

the eukaryotic and prokaryotic selection markers are also flanked

by FRT sites for optional excision by FLP recombinase. This series

of constructs will be particularly useful for creating reporters from

unmodified human BACs and complement existing resources for

mouse BAC reporters [12].

The modular system described here will allow rapid generation

of libraries of genetic markers for expanded applications in flow

cytometry, gene expression studies, and ES cell differentiation

studies. The modular design allows a wide variety of reporter

molecules to be used, including those with long or short half-lives

to maximize detection sensitivity or temporal fidelity, respectively.

In addition, these modular constructs will allow rapid introduction

of different combinations of reporters and selection markers for use

in different cell types and for testing constructs in mouse ES cells

before introduction into human ES cell lines. The 2A site can be

used to create reporter constructs that preserve the regulatory

sequences at the 59 end of the open reading frame. Finally, the use

of a 2A ribosomal skip sequence is a viable method of linking

multiple polypeptides together in a single cistron, particularly for

use in ES cells [32]. This method will be useful for co-expression of

different reporter and effector molecules, such as the tetracycline

transactivator, Cre recombinase, additional antibiotic selection

markers, or an engineered receptor [33–35]. We are hopeful that

this system will facilitate rapid development of multifunctional

expression constructs for creating reporter ES cell lines.

Materials and Methods

pEnt-Emr reporter cassette plasmids
A generalized strategy for the reporter construct method is

presented in Fig. 1. Briefly, the pEnt-Emr/Tet reporter cassette

(Fig. S1A) was created in the Invitrogen (Carlsbad, CA) Gateway

entry vector plasmid pEntr2B. PCR cloning was used to introduce

the 2A sequence (P2A version), EmGFP, and pA sequences in

frame with the AttL1 site. The SV40-neomycin-pA cassette, PCR

amplified from pDest27 (Invitrogen), was included for eukaryotic

selection; a tetracycline-resistance cassette from pBR322 [36] was

included for bacterial selection. The individual cassettes were

separated by unique restriction sites, allowing easy swapping of

individual components (Fig. S1A). Because of technical concerns

that the tetracycline resistance gene could interfere with selection

of the modified BACs, we created the pEnt-Emr/Zeo reporter

cassette (Fig. S1B) by inserting a zeocin-resistance cassette from

pDoner/Zeo (Invitrogen) in place of the tetracycline-resistance

cassette. Derivative vectors with mCherry or mOrange [1] or the

Rex-1 promoter [30,31] are shown in Table 1 and Fig. S1C–F. All

sequence maps were generated using VectorNTI 10 (Invitrogen).

The reporter constructs in Table 1 and the RP11-88L12

NKX2-5-EmGFP (described below) can be obtained from the

BACPAC Resources Center at the Children’s Hospital Oakland

Research Institute (http://bacpac.chori.org) or by emailing

bacpacorders@chori.org.

pExp/pD27/pEnt-Emr expression vector
The pExp/pD27/pEnt-Emr expression vector (Fig. S2) was

created by Gateway recombination of the pEnt-Emr/Tet reporter

cassette (entry vector) with the pDest27 (Invitrogen) destination

vector using LR Clonase II (Invitrogen), according to the

manufacturer’s instructions.

Western blot and microscopy
For the western blot experiments, 1 or 5 mg of pExp/pD27/

pEnt-Emr or 1 mg of empty pDest27 was introduced into 293HEK

Figure 4. Transgenic embryos generated by the laser-ablation method show expression of NKX2-5 in the heart and foregut. (A, B)
Right-sided view of a mouse e9.5–10 embryo showing strong expression of NKX2-5-EmGFP in the folding heart tube (h). (C, D) Right-sided and (E, F)
anterior views of a mouse e12.5–13 embryo showing expression of NKX2-5 EmGFP in the heart (h) and foregut/stomach (f), as well as faint signal in
the nasal pits (np). 1-mm scale bars are indicated in white.
doi:10.1371/journal.pone.0002532.g004
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cells with lipofectamine (Invitrogen), according to the manufac-

turer’s instructions. EmGFP fluorescence was confirmed 24 h later

by microscopy, and whole-cell protein extract was obtained by lysis

in RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1%

Triton X-100, 0.1% SDS) with protease inhibitor cocktail

(Complete, Mini, EDTA-free, Roche Molecular Biochemicals,

Indianapolis, IN). After quantitation of protein content by the Dc

protein assay kit (BioRad Laboratories, Hercules, CA), 60 mg of

protein for each sample was separated on a NuPAGE 12% Bis/Tris

MOPS buffer protein gel (Invitrogen) and blotted onto nitrocellulose

membrane (0.45-mm pore) as directed by the manufacturers. The

western blot was probed using a 1:750 dilution of anti-GFP antibody

(BD Biosciences #632375, San Jose, CA), a 1:10,000 dilution of anti-

mouse-HRP secondary antibody (Amersham/GE Healthcare

NA931, Piscataway, NJ), and detected using the SuperSignal West

Pico Chemiluminescent Kit (Pierce, Rockford IL). All images were

captured on a Zeiss Axiovert 200M inverted microscope equipped

with an Axiocam HRC camera and GFP reflector cubes.

BAC modification
The RP11-88L12 (chr5: 172,467,260–172,659,285 in NCBI

Build 36.1) human BAC (RP11 library, BACPAC Resources)

containing the NKX2-5 open reading frame with 60 kb of upstream

and 130 kb of downstream sequences was selected for modification

with a variant of the BAC recombineering method [10]. The BAC

ends were reconfirmed by BAC end sequencing. The marker

component of pEnt-Emr/Zeo was amplified using long-range PCR

with the forward and reverse primers containing 50 nt of homology

sequence (Table 2A). The PCR product and BAC were introduced

into the heat-sensitive recombinase strain DY380. Recombined

BAC candidates selected by Zeocin resistance were screened by PCR

for correct 59 and 39 recombination events (Table 2B and C) and

confirmed by NotI digest on a pulse-field gel electrophoresis (CHEF-

DRIII, BioRad) to check for deletion mutants. The final BAC was

named RP11-88L12 NKX2-5-EmGFP (Fig. 1; Fig. S3). The final

construct was sequenced from the marker cassette outwards towards

the genomic sequence, using the forward and reverse cassette

primers (Table 2B) to confirm the correct reading frame and

integration site of the marker cassette.

NKX2-5 BAC reporter ES cells
Feeder-independent mouse ES cells (129/OlaHsd strain, subline

E14Tg2A.4) were maintained in normal growth media supplement-

ed with murine leukemia inhibiting factor as described [37]. RP11-

88L12 NKX2-5-EmGFP BAC DNA (10 mg) was linearized with the

homing enzyme PI-SceI (New England Biolabs, Ipswich, MA),

which cuts once in the pBAC-e3.6 backbone of the RP11-88l12

BAC. The DNA was electroporated into 36106 ES cells using a

BioRad Gene Pulser XCell at 800 V, 10 mF, and Tc = 0.3. ES cell

cultures were selected in normal growth media [37] supplemented

with 175 ng/ml neomycin (Gibco BRL/Invitrogen, Carlsbad, CA)

for 10 days. Four robustly growing colonies were identified, and

three were subsequently identified as carrying the BAC transgene by

PCR screening for the 59 junction (Table 2B). Two of these cell lines

showed similar immunohistochemistry results, and line 2 was

arbitrarily chosen for the remaining experiments. The third line

did not show EmGFP expression.

ES cells were differentiated into cardiomyocytes by the hanging

drop method as described [38,39]. Briefly, 20-ml droplets of

differentiation medium (ES cell growth medium [37] without

leukemia inhibitory factor and supplemented with 20% FBS),

containing 500 mouse ES cells were suspended upside-down for 2

days in V-bottom 96-well plates, causing the cells to aggregate into

EBs. EBs were maintained in suspension cultures for 5 days and

then plated onto gelatin-coated, 24-well or 96-well tissue-culture

plates (one EB per well), or onto gelatin-coated glass cover-slips.

The medium was replaced every 2–3 days. By day 8 of

differentiation, clusters of myocytes within the EBs could be

observed contracting spontaneously. Immunohistochemistry and

video microscopy was done on EBs after 11 days of differentiation.

Table 2. Primer Sequences.

A. BAC Recombineering primers for NKX2-5 into pEnt-Emr/Zeo

NKX2-5 Forward CCCTTCTCAGTCAAAGACATCCTAAACCTGGAACAGCAGCAGCGCAGCCTGAACCAATTCAGTCGACAAT 3.36 kb

NKX2-5 Reverse TGTTTCCTCCTCACCTTTCTTTTCGGCTCTAGGGTCCTTGGCTGGGTCGGTCAGTGGTGACACTGGTTC

B. BAC Screening primers (59 Junction)

NKX2-5 Genomic Forward ACCTGGCGCTGTGAGACT 362 bp

Marker Cassette Reverse CAGATGAACTTCAGGGTCAG

C. BAC Screening primers (39 Junction)

Marker Cassette Forward AGGACTGAGAATTCGAACG 367 bp

NKX2-5 Genomic Reverse GTTTCTTGGGGACGAAAG

D. Sybr Green primers

NKX2-5-F2 CAAGTGCTCTCCTGCTTTCC 136 bp

NKX2-5-R2 GGCTTTGTCCAGCTCCACT

EmGFP-F2 AGCAAAGACCCCAACGAGAA 60 bp

EmGFP-R2 GGCGGCGGTCACGAA

ActB-F1 TTGCTGACAGGATGCAGAAG 141 bp

ActB-R1 ACATCTGCTGGAAGGTGGAC

(A) BAC recombineering primers for PCR amplification of the marker cassette. Regions of homology to the NKX2-5 open reading frame are indicated in italics. Regions
that are complementary to sequences within the pEnt-Emr/Zeo marker cassette are indicated in bold. (B, C) BAC screening primers for the 59 and 39 recombination
junctions are listed. The marker cassette reverse sequencing primer binds within the EmGFP gene, and the marker cassette forward binds within the zeosin resistance
gene. Both marker cassette primers can be used to for confirmation by sequencing. All primer sequences are listed 59 to 39. Product sizes are listed in the right-most
column. (D) SybrGreen primers used for Figure 2 of this study.
doi:10.1371/journal.pone.0002532.t002
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For analysis of RNA expression, total RNA from the EBs was

isolated using RNAStat-60 (Iso-Tex Diagnostics, Friendswood,

TX), according to manufacturer’s instructions. Quantitative PCR

analysis of mRNA levels was done on an Applied Biosystems

(Foster City, CA) 7900HT real-time thermocycler with SybrGreen

primers for NKX2-5 and EmGFP [40] and normalized to beta

actin levels. The NKX2-5 and beta actin primers were designed

using Primer3 [41] as described [42].

For the FACS experiments, EBs were formed from NKX2-5-

marked E14 ES cells with a suspension culture system as described

[26]. The suspension culture helps minimize cell losses that may

occur when EBs are dissociated from adhesion cultures. Briefly, ES

cells were propagated in maintenance medium (Glasgow MEM,

Sigma-Aldrich, St. Louis, MO) supplemented with 10% FBS

(HyClone, Logan, UT), 1 mM 2-mercaptoethanol (Sigma), 2 mM

L-glutamine (Gibco-BRL), 1 mM sodium pyruvate (Gibco-BRL),

0.1 mM minimum essential medium containing nonessential

amino acids (Gibco-BRL), and leukemia inhibitory factor (LIF)-

conditioned medium (1:1,000). EBs were formed by culturing

ESCs (66105 per well) for 3 days in ultra-low attachment six-well

plates (Corning, Lowell, MA) in differentiation medium (DM) with

the same components as maintenance medium but with 20% FBS

and no LIF. EBs were maintained in suspension culture until

dissociation with trypsin at day 9. Individual cells were sorted on a

fluorescence-activated cell sorter (FACS DiVa, BD Biosciences)

into negative, intermediate, and high EmGFP fluorescence

fractions (Figure 3A). Total mRNA was isolated using RNAStat-

60, and quantitative PCR analysis was done using mouse Taqman

primers for NKX2.5 (ABI Mm00657783_m1), beta actin (ABI

Mm00607939_s1) and GFP [43].

Immunohistochemistry
EBs landed on gelatin-coated cover slips at day 7 of the

cardiomyocyte differentiation protocol were allowed to grow until

day 11, when clear beating regions could be identified. Immuno-

histochemistry was performed using the rabbit NKX2-5 H114

primary antibody (sc-14033, 1:250 dilution, Santa Cruz Biotechnol-

ogy, Santa Cruz, CA) and an Alexa-594 goat-anti-rabbit secondary

antibody (A11037, 1:250 dilution, Molecular Probes/Invitrogen).

Immunohistochemistry controls for auto-fluorescence and back-

ground staining are shown in Fig. S4. All images were captured on a

Zeiss Axiovert 200M inverted microscope equipped with an

Axiocam HRC camera and GFP and rhodamine reflector cubes.

Chimeric mice
Mouse chimeras were generated by the Gladstone Transgenic/

Gene Targeting Core facility by injection of E14 ES cells carrying

the RP11-88L12/NKX2-5-EmGFP transgene into eight-cell em-

bryos assisted by a Xyclone laser system (Hamilton Thorne

Biosciences, Beverly, MA), as described [28], to maximize chimerism

for analysis of F0 progeny [27]. Forty-eight embryos were implanted

in four surrogate mothers. Two of three embryos recovered at e12.5-

13, and three of 14 embryos recovered at e9.5-10, were positive for

cardiac EmGFP expression by whole-embryo fluorescence micros-

copy on a Leica MZLLIII dissecting microscope. Images were

captured using a Zeiss Axiocam camera with GFP filters.

Supporting Information

Figure S1 Maps of the different marker constructs with major

features indicated. (A) pEnt-Emr/Tet and (B) pEnt-Emr/Zeo used in

this manuscript. Unique restriction sites are noted in maroon, and

restriction sites with more than one recognition sequence are in

black. Additional marker cassettes have also been created, including

(C) pEnt-Emr/Amp, (D) pEnt-mCherry, (E) pEnt-mOrange, and (F)

pEnt2-mCherry. Note that pEnt2-mCherry contains a ccdB gene to

increase the yield of correct targets after recombineering. In

addition, a human Rex-1 promoter is used to drive the neomycin

resistance gene. Both the eukaryotic and prokaryotic selection

markers are flanked by FRT sites to allow optional excision.

Found at: doi:10.1371/journal.pone.0002532.s001 (0.07 MB PDF)

Figure S2 Map of pExp/pD27/pEnt-Emr expression vector

indicating major features. Unique restriction sites are indicated in

maroon, and restriction sites with more than one recognition

sequence are in black.

Found at: doi:10.1371/journal.pone.0002532.s002 (0.02 MB PDF)

Figure S3 Maps of the modified region from the RP11-88L12

NKX2-5 BAC (RP11-88L12 NKX2-5-EmGFP). (A) Location of the

human NKX2-5 open reading frame (blue, chr5: 172,591,744–

172,594,868) within the RP11-88L12 BAC (black, chr5:

172,467,260–172,659,285 in NCBI Build 36.1). A second gene,

BNIP1, was identified on RP11-88L12 by BAC-end sequencing (red,

chr5: 172,504,146–172,523,950). (B) Enlargement of the modified

NKX2-5 open reading frame showing insertion of the pEnt-Emr/

Zeo marker cassette and locations of primers. (C) Sequence from the

5’ junction showing locations of the 5’ region of the NKX2-5 protein,

2A, primers, and emerald GFP.

Found at: doi:10.1371/journal.pone.0002532.s003 (0.03 MB PDF)

Figure S4 Immunohistochemistry background controls. Repre-

sentative photographs of wild type E14 (A–C) and E14-NKX2-5-

EmGFP (D–F) embryoid bodies examined at day 7 of differen-

tiation show that NKX2-5 EmGFP fluorescence is easily

detectable in the E14-NKX2-5-EmGFP EB, but no EmGFP

fluorescence is present in the wild type EB. In addition, minimal

auto-fluorescence in the rhodamine channel is detected in both the

wild type and E14-NKX2-5-EmGFP lines. Twelve EBs derived

from each line were examined. (G–I) Immunohistochemistry with

the Alexa-594 secondary antibody, but no NKX2-5 primary

antibody, on day 8 E14-NKX2-5-EmGFP embryoid bodies (after

landing and attachment onto coverslips) show diffuse but

detectable EmGFP (as previously seen in Fig. 2B) and no

background staining by the Alexa-588 secondary antibody. White

scale bars indicate 100 mm.

Found at: doi:10.1371/journal.pone.0002532.s004 (5.50 MB TIF)

Movie S1 GFP-fluorescence Quicktime movies of an NKX2-5-

EmGFP fluorescent beating area. Beating ES cell derived

cardiomyocytes (d11 after hanging) show EmGFP fluorescence.

Phase microscopy images of the same beating region is shown in

Movie S2. Rhodamine filter images to determine regions of auto-

fluorescence are shown in Movie S3.

Found at: doi:10.1371/journal.pone.0002532.s005 (8.13 MB

MOV)

Movie S2 Phase image Quicktime movies of an NKX2-5-

EmGFP fluorescent beating area. Beating ES cell derived

cardiomyocytes (d11 after hanging) showing EmGFP fluorescence

(Movie S1) visualized here with phase microscopy.

Found at: doi:10.1371/journal.pone.0002532.s006 (11.70 MB

MOV)

Movie S3 Rhodamine-fluorescence Quicktime movies of an

NKX2-5-EmGFP fluorescent beating area. Beating ES cell

derived cardiomyocytes (d11 after hanging) showing EmGFP

fluorescence (Movie S1) are visualized here with phase microscopy

to demonstrate minimal auto-fluorescence.

Found at: doi:10.1371/journal.pone.0002532.s007 (3.15 MB

MOV)
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