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Abstract

Thiamine monophosphatase (TMPase, also known as Fluoride-resistant acid phosphatase or FRAP) is a classic histochemical
marker of small- to medium-diameter dorsal root ganglia (DRG) neurons and has primarily been studied in the rat.
Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice. In addition, PAP
was expressed in a majority of nonpeptidergic, isolectin B4-binding (IB4+) nociceptive neurons and a subset of peptidergic,
calcitonin gene-related peptide-containing (CGRP+) nociceptive neurons. At the time, we were unable to determine if PAP
was present in rat DRG neurons because the antibody we used did not cross-react with PAP in rat tissues. In our present
study, we generated a chicken polyclonal antibody against the secretory isoform of mouse PAP. This antibody detects
mouse, rat and human PAP protein on western blots. Additionally, this antibody detects PAP in mouse and rat small- to
medium-diameter DRG neurons and axon terminals in lamina II of spinal cord. In the rat, 92.5% of all PAP+ cells bind the
nonpeptidergic marker IB4 and 31.8% of all PAP+ cells contain the peptidergic marker CGRP. Although PAP is found in
peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers
differs between species. Moreover, PAP+ axon terminals in the rat partially overlap with Protein kinase Cc (PKCc+)
interneurons in dorsal spinal cord whereas PAP+ axon terminals in the mouse terminate dorsal to PKCc+ interneurons.
Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.
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Introduction

It has long been known that small- to medium-diameter DRG

neurons contain an acid phosphatase called Thiamine monopho-

sphatase (TMPase; also known as Fluoride-resistant acid phos-

phatase or FRAP) [1,2,3,4,5,6]. TMPase activity was visualized

histochemically by incubating tissue sections with phosphorylated

substrates then detecting the deposition of an insoluble lead

precipitate on cell bodies and axons. TMPase was arguably the

first marker for nociceptive DRG neurons and was extensively

studied through the 1980s, primarily in rat tissues. TMPase was

also found in small- and medium-diameter DRG neurons of other

mammalian species, including mouse, rabbit, cat, dog, monkey,

cow and human, suggesting a species-conserved function for this

enzyme [3,4].

In general, nociceptive (‘‘pain-sensing’’) neurons can be divided

into peptidergic and nonpeptidergic subsets that differ molecularly,

anatomically, developmentally and functionally [7,8,9,10,11,12].

TMPase was originally thought to be a marker of nonpeptidergic

DRG neurons based on limited (1%) to no overlap with the

peptidergic marker Substance P [2,13]. However, subsequent

studies in the rat revealed that TMPase was found in most

nonpeptidergic neurons and a subset of peptidergic neurons.

Specifically, TMPase was extensively co-localized in cells and axon

terminals with the nonpeptidergic neuron marker IB4 and

partially co-localized (30–50%) with CGRP, a more broadly

expressed marker of peptidergic DRG neurons [14,15,16]. At the

time, it was not known what gene encoded TMPase so experiments

examining overlap could not be performed using double-label

immunofluorescence.

Recently, we found that TMPase was molecularly identical to

the transmembrane isoform of Prostatic acid phosphatase (PAP;

also known as ACPP). PAP was expressed in a majority of all

nonpeptidergic neurons and a subset of peptidergic nociceptive

neurons in the mouse [17]. Moreover, we found that PAP

functioned as an ectonucleotidase with relative specificity adeno-

sine 59-monophosphate [17,18].

There are two isoforms of PAP, a secreted isoform and a

transmembrane isoform [17,19,20]. Both isoforms are identical at

the amino acid level, including the N-terminal signal peptide and

catalytic region, but differ at the C-terminus because of alternative

splicing. As part of our previous study, we used antibodies
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generated against the secretory isoform of human PAP to detect

PAP in mouse DRG neurons and axon terminals in spinal cord

[17]. Our studies with PAP/TMPase in mice, combined with

previous studies on TMPase in rats, suggested PAP should be

present in rat DRG neurons. However, we were unable to detect

PAP immunoreactivity in sections from rat DRG or spinal cord

(unpublished observations). Two other groups were similarly

unable to detect PAP-like immunoreactivity in rat DRG using

antibodies directed against human PAP [2,3]. Here, we generated

a new antibody that recognizes PAP in mouse and rat tissues and

used it for comparative studies in DRG and dorsal spinal cord.

Results and Discussion

Generation and Validation of Chicken Antibodies to
Mouse PAP Protein

PAP was discovered over 70 years ago and was used

as a diagnostic marker for prostate cancer in humans

[21,22,23,24,25,26]. Over time, numerous antibodies were raised

against human PAP. Human (h)PAP is .80% identical to mouse

(m) and rat (r) PAP (Table 1) [20]. This similarity suggested that

some of the antibodies raised against hPAP might detect PAP in

rodent tissues. We thus tested four commercially available

antibodies directed against hPAP (including Biømeda-V2005,

Sigma-P5664, Abcam-ab9381, Axcell-YIA7411; we could not find

commercially available antibodies directed against mouse or rat

PAP). Of these, only the Biømeda antibody detected PAP in mouse

DRG neurons and axon terminals [17]. However, this antibody

did not recognize PAP in rat DRG neurons or spinal axon

terminals (data not shown). This lack of immunoreactivity could be

due to the lower percent identity/similarity between hPAP and

rPAP relative to hPAP and mPAP (Table 1). PAP is a glycosylated

protein [23], so differences in glycosylation might also affect

immunoreactivity. While our research with PAP was in progress

[17], Biømeda went out of business, making it impossible to obtain

this antibody for further studies.

To generate a polyclonal antibody that reliably detects PAP in

mouse tissues, we immunized chickens with the secretory isoform

of full-length recombinant mPAP protein, purified as described

previously [18]. This resulted in a high-titer antibody that

recognized secretory mPAP protein in enzyme-linked immuno-

sorbent assays (data not shown) and on western blots (Figure 1A).

This antibody also recognized secretory hPAP protein on western

blots, although the signal intensity was lower (Figure 1A). Since

similar amounts of mPAP and hPAP protein were loaded,

confirmed by staining a duplicate gel for total protein

(Figure 1B), this suggested our chicken antibody had greater

specificity for mPAP over hPAP protein. Lastly, this antibody

recognized the transmembrane isoform of mouse PAP (mTM-

PAP) and rat PAP (rTM-PAP) on western blots (Figure 1C).

We previously found that PAP was co-localized in a majority of

all IB4+ nonpeptidergic neurons and a subset of all CGRP+

peptidergic neurons in the mouse using the Biømeda antibody

[17]. In addition, we found that PAP was extensively co-localized

with IB4 in axon terminals, located in lamina II of dorsal spinal

cord. To determine if our chicken antibody recognized PAP in a

similar population of DRG neurons and axon terminals, we triple-

immunostained mouse DRG and spinal cord with our chicken

antibody and various markers (Figure 2). In mouse lumbar DRG,

66.6% of all PAP+ cells bound the nonpeptidergic marker IB4

whereas 9.6% of PAP+ cells contained the peptidergic marker

CGRP+ (n = 1289 cells counted) (Figure 2A–D). Conversely,

83.7% of all IB4+ cells were PAP+ and 14.8% of CGRP+ cells

were PAP+ (n = 1289 cells counted). In the mouse dorsal spinal

cord, PAP immunostaining overlapped extensively with IB4 and

was concentrated in axon terminals within lamina II (Figure 2E, F,

H). In contrast, there was limited overlap between PAP and

CGRP in lamina II (Figure 2E, G, H). PKCc marks a class of

interneurons in lamina IIinner and lamina III that are implicated in

neuropathic pain mechanisms and the detection of innocuous

stimuli [27,28,29,30]. PAP axonal staining was dorsal to and

largely non-overlapping with the band of PKCc interneurons

neurons (Figure 2I, K, L). As controls for the experiments

described above, no immunostaining was observed in DRG

neurons or spinal cord when using preimmune serum or when the

chicken anti-PAP antibody was omitted (data not shown). Taken

together, the cellular and axonal distribution of PAP, as revealed

with our chicken antibody, was similar to our previous study with

the Biømeda antibody [17]. These results indicated that our

chicken antibody reliably detects PAP in mouse tissues.

PAP Marks Peptidergic and Nonpeptidergic Nociceptive
Neurons in the Rat

We next triple-immunostained lumbar DRG and spinal cord

sections from the rat to determine if our polyclonal antibody also

recognized PAP in rat tissues. The chicken anti-PAP antibody

labeled a subset of small- to medium-diameter neurons in rat DRG

and labeled axon terminals in lamina II of the spinal cord

Table 1. Amino acid identity and similarity between the
secretory isoforms of mouse, rat and human PAP.

% Identity

mPAP rPAP hPAP

mPAP ----- 88 83

% Similarity rPAP 94 ----- 81

hPAP 91 89 -----

Calculated using BLASTP with GenBank accession #’s NP_062781.2 (mPAP),
NP_064457.1 (rPAP) and NP_001090.2 (hPAP). The less conserved N- and C-
terminal regions were not included in these alignments, resulting in higher
percent identity values relative to a previous study with rPAP and hPAP [20].
doi:10.1371/journal.pone.0008674.t001

Figure 1. Chicken antibody detects mouse, rat and human PAP
on western blots. (A) Western blot containing purified recombinant
mPAP protein and pure hPAP protein probed with chicken (Ck) anti-PAP
antibody. (B) Duplicate gel stained with GelCode blue to confirm that
equivalent amounts of protein were loaded. (C) Western blot of cell
lysates from untransfected HEK 293 cells and HEK 293 cells transfected
with rTM-PAP or mTM-PAP.
doi:10.1371/journal.pone.0008674.g001
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(Figure 3A, E, I). In lumbar DRG, 92.5% of the PAP+ cells bound

the nonpeptidergic marker IB4+ whereas 31.8% of PAP+ cells

contained the peptidergic marker CGRP+ (n = 443 cells counted

per condition) (Figure 3A–D). Conversely, 80.2% of all IB4+ were

PAP+ and 41.5% of all CGRP+ neurons were PAP+ (n = 356 cells

counted). These percentages obtained by triple immunofluores-

cence labeling closely matched previous studies where TMPase

(now known to be PAP) was co-localized with markers in sections

from the rat. Specifically, 95% of all TMPase+ cells were IB4+ and

50% of all TMPase+ cells were CGRP+ in the rat [14,15,31].

In the dorsal spinal cord, there was extensive co-localization

between PAP+ and IB4+ axon terminals in lamina II and partial

overlap with CGRP+ axon terminals (Figure 3E–H). Unlike the

mouse where PAP+ terminals and PKCc were largely non-

overlapping, there was significant overlap between PAP+ axon

terminals and PKCc interneurons in the rat (Figure 3I, K, L).

Indeed, we and others previously found that nonpeptidergic (IB4+)

afferents of rats and mice terminate in different locations relative

to PKCc+ interneurons [8,27]; also see Figures 2I–L and 3I–L.

Taken together, our studies indicate that PAP is found in

peptidergic and nonpeptidergic neurons of the rat, although the

extent of co-localization (both in DRG neurons and dorsal spinal

cord) differs with species. Notably, a larger percentage (31.8%) of

PAP+ neurons in the rat contains the peptidergic marker CGRP

when compared to mouse (14.8%). This correlates with a more

extensive overlap between PAP+ and CGRP+ axon terminals in

spinal cord of rat (compare Figure 2E–H with Figure 3E–H).

Considering the role of CGRP in inflammatory processes and heat

sensitivity [32,33,34], a species difference in CGRP expression

could differentially affect how rats and mice respond to

inflammatory and thermal stimuli. Additionally, we and others

found that rats and mice differentially express several other pain-

relevant genes in peptidergic and nonpeptidergic nociceptive

neurons, including the noxious heat receptor TRPV1 and Mas-

related G protein-coupled receptors [35,36,37]. These species

differences highlight the need for caution when extrapolating

physiological and behavioral findings that pertain to nociception

from one species to the other.

Materials and Methods

Chicken Anti-PAP Antibody Production
Recombinant mPAP protein containing a C-terminal thrombin-

hexahistidine epitope tag was purified using the baculovirus

expression system as previously described [18] and used to

immunize hens (Aves Labs). The IgY fraction was purified and

used in this study. Our chicken anti-PAP antibody is commercially

available through Aves Labs (Cat #PAP).

Figure 2. Chicken antibody detects PAP in mouse DRG neurons and dorsal spinal cord. (A–D) Sections from mouse L4-L6 DRG and (E–L)
lumbar spinal cord were stained with chicken anti-PAP antibodies (red) and with antibodies against various sensory neuron markers and spinal
interneuron marker PKCc (blue, green). (D, H, L) Merged images. All images were acquired by confocal microscopy. Scale bar in (D) 50 mm, (H)
100 mm.
doi:10.1371/journal.pone.0008674.g002
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Western Blots
Recombinant mPAP protein and hPAP protein (Millipore/

Chemicon Cat. #AG60) were separated by SDS-PAGE (0.2–

1.0 mg protein/lane). HEK 293 cells were transfected as described

[38] with pcDNA3.1 expression constructs containing full-length

rTM-PAP [19] or mTM-PAP [17]. Cell lysates were prepared

48 h post transfection in RIPA buffer containing protease

inhibitors (Roche Complete Mini, Cat. #1836153) and separated

by SDS-PAGE. Samples were not boiled prior to loading. Gels

were stained for total protein with GelCode Blue (Pierce/Thermo

Scientific, Cat. #24590) or were western blotted onto nitrocellu-

lose. Blots were blocked with 2% cold water fish gelatin, then

probed with chicken anti-PAP (1:40,000) overnight at 4uC, washed

in TBS-T (0.1 M Tris, pH 7.5, 0.16 M NaCl, 0.1% Tween-20),

then incubated with 1:5000 goat anti-chicken IgY IRDye 800

(Rockland, Cat #603-132-126) for 1 hr. Blots were imaged on a

Li-cor Odyssey system.

Immunofluorescence
All procedures involving vertebrate animals were approved by

the Institutional Animal Care and Use Committee at the

University of North Carolina at Chapel Hill.

Adult male mice (C57BL/6, 6–8 weeks) were sacrificed by

decapitation. Adult male Sprague-Dawley rats were sacrificed by

overdosing with pentobarbital. Lumbar DRG and spinal cord

were removed and immersed in 4% paraformaldehyde in 0.1 M

phosphate buffer (pH 7.4) for 4 h (mouse DRG), 8 h (mouse spinal

cord) or 12 h (rat tissues). Tissues were cryoprotected in 30%

sucrose in 0.1 M phosphate buffer after immersion-fixation. DRG

were sectioned frozen at 20 mm, collected on Superfrost plus slides

then immunostained on slides. Spinal cords were sectioned at

30 mm and processed free-floating. Sections were treated with 1%

hydrogen peroxide in phosphate-buffered saline (pH 7.4) for

30 min to reduce endogenous peroxidase. A high-salt (2.7%) Tris-

buffered saline containing 0.3% Triton-X (TBS/TX) was used for

all subsequent steps. Sections were incubated overnight at 4uC
with primary antibodies diluted in 10% normal donkey serum in

TBS/TX. Primary antibodies included: chicken anti-PAP

(1:4,000), rabbit anti-CGRP (1:750; Bachem/Peninsula, T-4032)

and rabbit anti-PKCc (1:750; Santa Cruz, C-19, sc-211). Chicken

anti-PAP staining was revealed through the use of a biotinylated

secondary (Jackson ImmunoResearch; 703-065-155), ABC com-

plex (Standard Elite, Vector Laboratories, PK-6100) and TSA-

Cy3 amplification (PerkinElmer, SAT704A). CGRP and PKCc
staining were revealed through the use of Cy5-coupled secondary

antibodies. Sections were treated with IB4-Alexa Fluor-488

(Invitrogen; I21412) after TSA-Cy3 amplification because IB4-

staining was difficult to detect if tissues were incubated with IB4

Figure 3. Chicken antibody detects PAP in rat DRG neurons and dorsal spinal cord. (A–D) Sections from rat L4-L6 DRG and (E–L) lumbar
spinal cord were stained with chicken anti-PAP antibodies (red) and with antibodies against various sensory neuron markers and spinal interneuron
marker PKCc (blue, green). (D, H, L) Merged images. All images were acquired by confocal microscopy. Scale bar in (D) 50 mm, (H) 100 mm.
doi:10.1371/journal.pone.0008674.g003
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before TSA-Cy3 amplification. Images were obtained using a

Zeiss LSM 510 confocal microscope.
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