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Abstract

Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth
insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in
other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortiso-
lism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-)
and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been
thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that
causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live
with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and
corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis.
Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH
and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated
corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive
hormone loss and hypocortisolism.
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Introduction

Congenital pituitary hormone deficiency in humans occurs with

a frequency of approximately 1 in 4000 live births and is caused

primarily by mutations in genes important for pituitary develop-

ment [1,2]. Multiple pituitary hormone deficiency (MPHD) results

from a variety of transcription factor mutations, including

mutations in PROP1, POU1F1 (PIT1), HESX1, LHX3, LHX4,

OTX2, SOX2, SOX3, and GLI2 (reviewed in [3]). Mutations in

POU1F1 almost always cause deficiencies in GH, prolactin (PRL),

and thyroid stimulating hormone (TSH) in addition to overall

pituitary hypoplasia [4,5,6,7]. Mutations in Prophet of PIT1

(PROP1) are the most common known causes of MPHD in

humans. The hormone deficiencies are similar to those caused by

POU1F1 mutations, except that the deficiencies include reduced

gonadotropin production requiring sex hormone substitution and

there is a strong tendency toward progressive hormone loss leading

to lower circulating adrenocorticotropic hormone (ACTH) later in

life, requiring glucocorticoid replacement therapy [8,9,10,

11,12,13]. Another interesting difference between PROP1 and

POU1F1 patients is the tendency of patients with PROP1 mutations

to undergo apparent degeneration of the pituitary gland during

childhood [14,15]. Initially, magnetic resonance imaging analysis

may reveal a hyperplastic, or enlarged, pituitary gland, which

usually evolves to a hypoplastic appearance a year or so later. The

progressive hormone loss and transient pituitary hyperplasia

associated with PROP1 mutations are not well understood.

Several mouse models have been used to dissect the mechanism

of Prop1 action in pituitary development and function. The Ames

dwarf (Prop1df/df) and the Prop1null (Prop1-/-) mouse mutants

recapitulate the human MPHD phenotype in that adult mutants

are profoundly deficient in TSH, GH, PRL, have low circulating

gonadotropins, and pituitary hypoplasia [16,17,18,19]. Studies in

Prop1 mutant mice show that precursor cells fail to colonize the

anterior lobe resulting in reduced cell proliferation and enhanced

apoptosis after birth leading to hypoplasia that becomes evident in

the weeks after birth [20,21]. Prop1 mouse mutants differ from

humans with PROP1 mutations in that the hormone deficits are
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consistently congenital rather than progressive, thyroid hormone

and growth hormone replacement are sufficient for fertility, and

there is no clear evidence for transient pituitary hyperplasia.

The genetic background exerts a considerable influence on the

phenotype of the Prop1 deficient mice, although both alleles,

Prop1df/df and Prop1-/-, have the same features when normalized for

genetic background [19]. Similarly, humans with the same

mutation in PROP1 can have different clinical presentations

[10]. Enrichment of the 129S1/SvImJ (129) background enhances

the frequency with which newborn Prop1 mouse mutants die of

respiratory distress. The lack of pituitary TSH results in fetal

hypothyroidism, reduced expression of the thyroid hormone

inducible transcription factor TTF1 in the lung, and inadequate

production of surfactants, known target genes of TTF1. The lungs

fail to inflate, causing respiratory distress and lethality [19].

Increasing the contribution of C57BL/6J (B6) strain background

tended to protect against this survival defect in newborns. Here we

report that the B6 background increases the sensitivity of Prop1

deficient mice to lethality after weaning. The reason for this

juvenile lethality has not been explored.

Corticotroph development does not appear to be affected in the

Prop1 deficient mice, and corticosterone levels are not reduced in

newborn mutants [19,22,23]. Because most PROP1 patients who

have been closely followed appear to have evolving hypocortiso-

lism [13], and the underlying cause of the juvenile lethality of Prop1

mutant mice is not known, it is necessary to investigate pituitary

adrenal function in young and old Prop1 deficient mice on a

sensitized (B6) genetic background.

We report no evidence for progressive ACTH loss in juvenile and

young adult Prop1 deficient mice. In contrast, our results show

increased serum ACTH and corticosterone levels in young and old

Prop1 mutants. The pituitary-adrenal axis is functional in young

adult Prop1null mice as demonstrated by elevated activity in response

to restraint stress. Prop1 mutants have significantly reduced blood

glucose levels, as expected for GH deficient animals, which could

trigger the activation of the pituitary-adrenal axis. Untreated

hypoglycemia can cause mortality in both humans and mice [24].

We conclude that both of the Prop1 mouse alleles we tested on

various genetic backgrounds differ from human patients by

maintaining elevated pituitary adrenal axis activity through 1 year

of age, with no evidence for evolving hypocortisolism.

Materials and Methods

Mice
All mice were housed in a 12-h light, 12-h dark cycle with

unlimited access to tap water and Purina 5008 or 5020 chows. All

procedures using mice were approved by the University of

Michigan Committee on Use and Care of Animals, and all

experiments were conducted in accordance with the principles and

procedures outlined in the NIH Guidelines of the Care and Use of

Experimental Animals.

The Prop1Sactm1 heterozygous null mice, referred to here as

Prop1+/2, were generated from R1 (129/Sv x 129/Sv-CP) ES cells

by replacing the coding region of exon 1, intron 1, and a portion of

exon 2 with cassettes encoding b-galactosidase and neomycin

resistance (19, 37). The chimeras were mated to C57BL/6J mice

(B6) (The Jackson Laboratories, Bar Harbor, ME) to generate F1

heterozygous animals and were first analyzed on a mixed F2

C57BL/6J-129S1/SvImJ background (B6/129). The F2 Prop1+/2

heterozygous mice were backcrossed to B6 mice for four

generations to establish the Prop1+/2 N4 B6 breeding colony,

which is theoretically 93.75% pure B6. Mice used in the study of

pituitary-adrenal function were from the N4 B6 genetic back-

ground unless expressly stated otherwise. Prop1-/- mice were

determined by PCR as previously described [19,20].

The DF/B-Prop1+/df stock is not inbred. It was obtained from

Dr. A. Bartke at Southern Illinois University in 1988 and

maintained at University of Michigan. This stock was backcrossed

to B6 to N4 [19].

Restraint stress and blood collection
Young adult mice (8–10 weeks old, N4 B6) were housed

individually 12 hours prior the experiment, with special precau-

tions to avoid stress associated with noise and cage handling. The

blood samples were collected in the morning (between 9:00am and

10:30am) by retro orbital bleeding in heparinized collection tubes

(Microvette CB300; Sarstedt, Inc., Newton, NC). The retro orbital

bleeding was done in less than one minute after initial mouse

handling to prevent stress-induced corticosterone release. Animals

were subjected to restraint stress for 30 minutes, after which

another blood sampling was performed by the same method

[25,26,27]. Plasma was prepared according to the manufacturer’s

protocol for the Microvette CB300 (Sarstedt).

For ACTH measurements in non-stressed conditions, animals of

various ages were anesthetized with metaphane, rapidly decapi-

tated within less than 1 min from the time of initial handling, and

blood samples collected.

Corticosterone, ACTH, and glucose measurements
ACTH and corticosterone were measured by radioimmunoas-

say (RIA) in plasma using a 125I RIA kit (ICN Diagnostics, Costa

Mesa, CA) according to the manufacturer’s protocol [28]. The

blood-glucose measurements were done using a FreeStyle glucose

meter (TheraSense, Alameda, CA). Duplicate measurements were

done for each sample collected. According to manufacturer’s

instructions, glucose levels below 60 mg/dL are considered

evidence of hypoglycemia. Glucose measurements were performed

on 3.5 to 5 week, 5 to 6.5 week, and 8 to 10 week pre- and post-

stressed N4 B6 animals. The device’s lowest sensitivity level is

20 mg/dL (http://www.abbottdiabetescare.com). If glucose levels

were below the level of detection, an arbitrary number of 19 mg/

dL was assigned for the purpose of statistical analysis.

Histology and Immunohistochemistry
Adrenals were collected immediately after euthanizing and

rinsed in ice-cold PBS prior to 1 h fixation in 4% paraformalde-

hyde on ice (diluted in PBS, pH 7.2). Samples were washed in

PBS, dehydrated in a graded series of ethanol, and embedded in

paraffin. Seven-micrometer sections were prepared and either

stained with hematoxylin and eosin. The 20a-hydroxysteroid

dehydrogenase antibody was generously provided by Yacob

Weinstein and used at 1:2000-3000 dilution [29].

Statistical analysis
Data were processed and plotted using StatView software

(Abacus Concepts, Inc., Edinburgh, United Kingdom), with the

exception of the qRT-PCR data that was processed using

Microsoft Excel Software. ANOVA (analysis of variance) and

Fisher’s exact test were used to evaluate the data. All data are

shown as +/2 1 SEM (standard error of the mean). P-values of less

than 0.05 were considered to be statistically significant.

Results

Prop1 deficiency can cause postnatal lethality
We analyzed the viability of two different mutant alleles of Prop1

on several genetic backgrounds. The Ames dwarf mutant, Prop1df/df,

Prop1 Mutants Maintain ACTH Production
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arose spontaneously on a poorly defined genetic background (DF/

B), and it carries a missense mutation in the homeodomain,

Ser83Pro [18,30]. We generated a null allele, Prop1+/2, on a mixed

background comprised of C57BL/6J (B6) and 129S1/SvImJ (129)

[19]. We frequently observed a crisis in mutant viability after

weaning. On the 129/B6 mixed background 37% (13/35) of the

Prop1-/- animals exhibited lethargy, wasting, and death between 3

and 7 weeks of age. Death usually occurred within 3-5 days of initial

signs of distress. More males were affected than females (p = 0.03). A

similar wasting and lethality phenotype was also observed in 27%

(6/22) of compound heterozygotes, Prop1df/-, on a mixed back-

ground.

We back-crossed both strains, DF/B-Prop1df/+ and 129/B6-

Prop1+/2, four times to B6 to be able to compare the phenotypes of

the two alleles on a consistent genetic background. We observed

identical viability of the homozygous mutants for each allele at two

weeks of age: 17.5% Prop1df/df and 19.5% Prop1-/- for each on N4

B6, p = 0.69 [19]. The N4 B6 background, however, increased the

risk of lethality after weaning in homozygotes for both of the Prop1

mutant alleles.

Prop1 deficient mice exhibit elevated levels of circulating
ACTH and corticosterone

To determine whether the observed post-weaning lethality on

the N4 B6 background could arise from evolving hypocortisolism,

we examined ACTH and corticosterone production. We analyzed

the serum of 3.5 to 5 week old Prop1-/- and normal mice on the N4

B6 background by RIA to address the ability of Prop1 mutant

corticotrophs to secrete ACTH (Fig. 1). There was no evidence

for reduced ACTH production. Although these N4 B6-Prop1-/-

mice showed a trend towards increased serum ACTH compared

to wild type and heterozygote littermates, the difference was not

significant. Western blots revealed similar ACTH protein content

in the pituitary glands of normal and Prop1 mutant mice (data not

shown).

To determine whether Prop1 mutants exhibit evolving hypo-

cortisolism at older ages we aged Prop1 mutant animals with three

different genotypes and genetic backgrounds (Prop1-/-, Prop1df/-,

and Prop1df/df) to 7–12 months old and measured both ACTH and

corticosterone. All genotype combinations of Prop1 mutants had

significantly elevated ACTH and corticosterone (Fig. 1). ACTH

levels were 2 to 2.5x elevated in mutants relative to normal

littermates, and the corticosterone levels were even more

dramatically heightened in mutants. Our evidence for up

regulation of the pituitary-adrenal axis in Prop1 deficient mice is

consistent with previous reports of elevated corticosterone in Ames

dwarf mice [31,32], and the increased corticosterone levels we

reported in Prop1-/- newborns [19]. Thus, there is no evidence that

Prop1 mutant mice develop the age related ACTH deficiency and

hypocortisolism that has been observed in some human patients

with PROP1 mutations.

Prop1 deficient mice respond to restraint stress
Stress increases pituitary ACTH release and subsequent

corticosterone secretion by the adrenal gland [27,33,34]. We

exposed Prop1 mutant and normal animals to restraint stress to test

the ability their pituitary-adrenal axis to respond to this challenge

(Fig. 2). Serum corticosterone levels were measured in N4 B6

Prop1-/-, Prop1+/2 and Prop1+/+ male and female mice at 8–10

weeks of age prior to and following 30 min of restraint stress.

Prop1-/- animals had dramatically elevated basal, serum levels of

corticosterone compared to wild type and Prop1+/2 mice (Fig. 2A
and 2B, white bars). Basal corticosterone was 4 fold higher in

nonstressed male mutants than normal littermates, and 3 fold

higher for female mutants vs. normals. Following restraint stress,

both Prop1-/- males and females exhibited elevated serum

corticosterone compared to Prop1+/- and wild type mice (Fig. 2A
and 2B, black bars). The fold increase in corticosterone from

Figure 1. No evidence for evolving hypocortisolism in Prop1
deficient animals. Blood plasma was collected from 3.5 to 5 wk N4B6
(Panel A) and 34 to 52 wk mixed genetic background (Panel B) animals
from and the circulating ACTH levels were determined by RIA. Males
and females were included together because the individual analysis
showed no difference in the ACTH levels of aged-matched animals of
the same genotype. At 3.5 to 5 weeks Prop1-/- (n = 6) animals tended to
have higher circulating levels of ACTH than Prop1+/2 (n = 10) or Prop1+/+

(n = 10) animals, but the difference was not statistically significant (top).
At 34 to 52 weeks three different genotypes of Prop1 mutant animals,
Prop1-/- (n = 8), Prop1df/- (n = 20), and Prop1df/df (n = 12), exhibited an
increase in circulating ACTH levels compared to Prop1+/+ (n = 9)
(bottom). Values represent the mean ACTH production (pg/mL) 6 SE.
*, P,0.01; **, P,0.005; ***, P,0.0005. Corticosterone levels were
measured in serum from aged male Prop1+/+ (n = 4), Prop1df/df (n = 4),
Prop1df/- (n = 11), and Prop1-/- (n = 7) mice (Panel C). All three genotypes
of Prop1 deficient mice show elevated basal levels of corticosterone
compared to wild type. Prop1df/df mice have statistically higher basal
levels of corticosterone compared to Prop1df/- or Prop1-/- mice. Values
represent the mean corticosterone (ng/mL of blood) 6 SE. *, P,0.005;
**, P,0.0005; ***, P,0.05.
doi:10.1371/journal.pone.0028355.g001

Prop1 Mutants Maintain ACTH Production
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basal to post-stress measurements is less for Prop1-/- animals

compared to the wild type (2-3 fold compared to 11-16 fold).

While this could be described as a blunted response, the absolute

value of circulating corticosterone following restraint was higher in

mutants than normal littermates. Post stress, the corticosterone

values for male and female mutants were 504 +/2 29 ng/ml and

normal littermates were 373 +/2 18 ng/ml. The post stress values

in the 500 ng/ml range may be the maximal response. Thus, there

is no evidence for impaired pituitary-adrenal axis function.

Prop1 mutant adrenal glands are enlarged relative to
body weight

ACTH is important for the development and growth of the

adrenal gland in mice and other mammals [35,36,37]. The

adrenal weights of N4 B6 Prop-/- mice were compared to Prop1+/2

and wild type to determine the consequence of elevated ACTH on

adrenal growth. The absolute size of the adrenal gland is smaller in

the Prop1-/- dwarf males compared to wild type. However, the

ratio of adrenal weight to body weight is actually increased in the

Prop1-/- males compared to wild type (Fig. 3). This is consistent

with the chronically elevated ACTH secretion in Prop1-/- mice.

The mouse adrenal gland is comprised of the adrenal medulla,

which is important for the production of catecholamines such as

norepinepherine and epinephrine, and the adrenal cortex which is

important for corticosterone biosynthesis and contains the zona

glomerulosa and zona fasciculata [38]. We examined adrenal develop-

ment and morphology in N4 B6 normal and Prop1-/- male and

female mice at 3.5, 5, 8, 10 weeks of age. The zona fasciculata and

zona glomerulosa are morphologically indistinguishable in normal

and mutant mice (Fig. 3, and data not shown). The adrenal X-

zone is typically present between the zona fasciculata and medulla

throughout postnatal development and then regresses in male

mice starting at 3 weeks of age and in females during the first

pregnancy [39]. The X-zone is not well understood, but it is

thought to be analogous to the fetal zone in the human adrenal

gland. Growth of the X-zone is regulated by pituitary gonadotro-

pins and activin [40]. The X-zone is marked by 20a-hydroxyste-

roid dehydrogenase immunostaining and is present but smaller in

female Prop1-/- mice at 5 wks and nearly undetectable at 8 wks [41]

(Fig. 3). Thus, the X-zone is formed but is underdeveloped and

apparently regresses early in Prop1 mutants.

We used Western blotting to evaluate the levels of steroidogenic

enzymes in Prop1-/- adrenals (data not shown). Similar levels of 21-

hydroxylase enzyme, which is important for corticosterone

biosynthesis [42,43], steroidogenic acute regulator protein (StAR),

which mediates the acute steroidogenic response [44] and the

p450 cholesterol side chain cleavage protein (SSC) [45,46], were

observed in Prop1-/- adrenals compared to Prop1+/2 or wild type.

These results are consistent with functioning adrenal glands in

Prop1-/- mice.

Prop1 deficiency causes low blood glucose
We hypothesized that reduced glucose levels secondary to

growth hormone deficiency could cause the elevated basal levels of

ACTH and corticosterone in the blood of Prop1 deficient mice.

Prop1 deficient mice produce very few somatotrophs and lack

detectable circulating GH [18,47]. GH has pleiotropic functions

that involve many target organs. In the liver GH activates the

production of insulin-like growth factor 1 (Igf1) [48]. Quantitative

RT-PCR measurements revealed a 50-fold decrease in Igf1

expression in the Prop1-/- mouse livers compared to wild type

(data not shown). Growth hormone is important for metabolism

and glucose homeostasis though its role in modulating Igf1

production [49]. GH deficiency can cause hypoglycemia in

rodents and humans [50]. We performed blood glucose measure-

ments on a variety of different Prop1 mutant genotypes at several

ages (Fig. 4). At 3.5 to 5 wks the blood-glucose level of Prop1-/-

mice (N4 B6 background) is similar to that of heterozygous

littermates and wild types, 140 +/2 14 mg/dL vs. 177 +/2

16 mg/dL, p = 0.048 (Fig. 4A). By 5 to 6.5 weeks however, the N4

B6 Prop1-/- mice had approximately two-fold lower blood-glucose

levels than either Prop1+/+ or Prop1df/+ mice, 80 +/2 18 vs. 162 +/

2 22 mg/dL, respectively (Fig. 4B). Thus, mutants this age have

borderline hypoglycemia since a level of less than 60 mg/dL is

considered clinically hypoglycemic. Mice affected by wasting were

clearly hypoglycemic with blood glucose at 36 +/2 9 mg/dL

(Fig. 4B). Moreover, the corticosterone levels in wasting mice 5 to

6.5 wk old mice are strikingly elevated: 2.9 fold relative to wild

type and 1.9 fold relative to healthy mutants (Fig. 4C). The

corticosterone values are 136 +/2 40 in Prop1+/+ (N = 11), 193 +/

2 55 in Prop1df/- (N = 12), and 211 +/2 36 in healthy Prop1-/-

(N = 12), and 393 +/2 86 in sick Prop1-/- mice, (N = 7). The very

high corticosterone levels support the idea that the wasting

phenotype is not due to failure of the pituitary adrenal axis. The

elevated levels are consistent with a response to metabolic stress,

but it is difficult to determine whether the cachexia is the cause or

the effect of severe hypoglycemia.

Figure 2. Elevated basal corticosterone levels in young adult
Prop1 deficient mice become higher in response to restraint
stress. RIA analysis of circulating corticosterone was carried out on
serum from 8 to 10 week males (A) and females (B) of segregating the
Prop1 null allele at N4 B6 prior to (white bars) and following restraint
stress (black bars). Male Prop1-/- (n = 6) had significantly elevated basal
and post-stress levels of corticosterone compared to Prop1+/2 (n = 7)
and Prop1+/+ (n = 3). Values represent the mean corticosterone (ng/mL
of blood) 6 SE. *, P,0.0001. Female Prop1-/- (n = 3) mice had both
elevated basal and post-stress levels of corticosterone compared to
Prop1+/2 (n = 5) and Prop1+/+ (n = 6). Values represent the mean
corticosterone (ng/mL of blood) 6 SE. *, P,0.005.
doi:10.1371/journal.pone.0028355.g002

Prop1 Mutants Maintain ACTH Production
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The low glucose levels persist in older Prop1 deficiency mice.

At 8–10 weeks the N4 B6 Prop1-/- mice had lower glucose levels

(ave. 117 +/2 4 mg/dL) than controls (178 +/2 10 mg/dL)

(Fig. 4D). All genotype combinations of Prop1 mutants had

reduced serum glucose levels at older ages, 34–52 weeks,

although the levels were not low enough to be considered

clinically hypoglycemic: 186 +/2 14 mg/dL for Prop1+/+, 139

+/2 6 Prop1df/df, 128 +/2 5 Prop1df/-, and 128 +/2 4 mg/dL

for Prop1-/- (Fig. 4E). Thus, all genotype combinations of

mutants have significantly lower glucose levels after 5 wks

(p,0.0001), with the lowest levels in wasting mice.

We tested whether N4 B6 Prop1-/- mutants would respond to

30 min restraint stress with elevated glucose levels (Fig. 4D).

The pre- and post-stress values for mutants were 117 +/2 4 and

242 +/2 23 mg/dL, and the pre- and post-stress control values

were 178 +/2 10 and 382 +/2 22. Although the mutants

responded with elevated blood glucose, their post-stress glucose

levels were lower than control littermates. The fold change pre-

and post-stress, however, was similar in mutants and normal

littermates. These results demonstrate that Prop1 deficiency

causes a reduction in circulating glucose levels, but this

deficiency does not block the elevation of blood glucose in

response to stress.

Discussion

The main goal of this research was to study the pituitary-

adrenal axis in two different mutant Prop1 alleles on different

genetic backgrounds to detect any evidence of ACTH deficiency

and subsequent hypocortisolism. If ACTH deficiency were

detected, then the mice would correspond to the findings of

acquired hypocortisolism in human MPHD patients with lesions in

the PROP1 gene [11,12,13]. We found no evidence for reduced

pituitary-adrenal axis function in Prop1 mutant mice. Instead, the

pituitary adrenal axis is activated, including both elevated ACTH

and corticosterone in the setting of blood low glucose levels. These

results are consistent with reports for DF/B-Prop1df/df mice [31].

The GH deficiency of Prop1 mutant mice is associated with

reduced transcription of Igf1 in the liver, reduced blood glucose

levels, and activation of the pituitary adrenal axis. Despite these

metabolic alterations, affected mice are able to mount a stress

response yielding further elevations of ACTH, glucocorticoids,

and circulating glucose. Thus, we find no evidence of impaired

pituitary-adrenal axis function in Prop1 deficient mice for either the

df or null alleles on the backgrounds and ages tested. While we

cannot rule out the possibility that some combination of

parameters could provoke hypocortisolism in Prop1 mutant mice

Figure 3. Adrenal glands of Prop1 deficient mice are not hypotrophic. Adrenal glands were dissected from 5 and 8 week old female N4 B6
Prop1+/+ and Prop1-/- mice, fixed, embedded, sectioned, and stained with hemotoxylin and eosin (Panels A, C, E, G) and immunostained for 20a-
hydroxysteroid dehydrogenase [59] and developed with diaminobenzidine (brown, Panels B, D, F, H) to visualize the X-zone (brackets). The ratio of
adrenal weight to body weight (Panel I) was increased in Prop1-/- (n = 5) compared to Prop1+/2 (n = 6) or Prop1+/+ (n = 3) N4 B6 male mice at 8 to 10
wks. Values represent the mean adrenal weight (mg) per body weight (g) 6 SE. *, P,0.0001; **, P,0.0005.
doi:10.1371/journal.pone.0028355.g003

Prop1 Mutants Maintain ACTH Production

PLoS ONE | www.plosone.org 5 December 2011 | Volume 6 | Issue 12 | e28355



[51], it appears that evolving ACTH deficiency is a feature that

distinguishes mutant mice from the human patients with PROP1

mutations.

Both Prop1 null and df mutant mice have the lowest circulating

glucose levels of 25-75 mg/dl between weaning and adulthood,

which is sometimes associated with lethality of unknown cause. We

observed the highest susceptibility to lethality after 5 wks on the B6

strain background, irrespective of the Prop1 mutant allele. Normal

B6 mice have a lower body weight and food intake than many

other strains during the time when Prop1 mutant lethality occurs

(Jax phenome database; http://www.jax.org/phenome). It is

possible that severe hypoglycemia contributes to the increased

susceptibility of Prop1 mutants to lethality on the B6 background,

although other differences in metabolism may be responsible. For

Figure 4. Prop1-defiency results in low blood glucose levels. Blood glucose levels were measured in normal and Prop1 mutant mice at four
ages. (A) Basal glucose levels in 3.5 to 5 week Prop1-/- mice (n = 6) were lower than Prop1+/+ (n = 10) and Prop1+/2 (n = 10) mice from mixed genetic
backgrounds, but the difference was not statistically significant at this age. (B) On mixed genetic backgrounds the blood-glucose measurements from
5 to 6.5 wk old Prop1+/+ (n = 6) and Prop1df/df (n = 6) were normal, but Prop1df/- (n = 3), Prop1-/- healthy (n = 12) and Prop1-/- wasting (n = 7) mice had
significantly decreased blood-glucose levels. Values represent the mean blood glucose levels (mg glucose/dL blood) 6 SE. *, P,0.01; **, P,0.005. (C)
The low glucose levels in mutants shown in panel B are associated with elevated corticosterone levels (ng corticosterone/ml blood +/2 SE.) (D)
Blood-glucose levels were measured in 8 to 10 week old mice of the N4 B6 background prior to (white bars) and following restraint stress (black bars).
Prop1-/- (n = 8) mice had decreased basal and post-stress blood-glucose levels compared to Prop1+/+ (n = 9) and Prop1+/2 (n = 11). Values represent the
mean blood glucose levels (mg glucose/dL blood) 6 SE. *, P,0.0001; **, P,0.0005. (E) Blood-glucose levels in 34 to 52 wk old mice on mixed genetic
background were decreased in all genotypes of Prop1 mutants, Prop1df/df (n = 4), Prop1df/- (n = 11), Prop1-/- (n = 7), compared to normals, Prop1+/+

(n = 4). Values represent the mean blood glucose levels (mg glucose/dL blood) 6 SE. *, P,0.005; **, P,0.0005; ***, P,0.0001.
doi:10.1371/journal.pone.0028355.g004
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example, the livers of healthy Prop1 deficient mice resemble livers

of normal fasted mice, and sickly mutant livers are more affected

(data not shown) [52]. The Prop1 mutants that survive to

adulthood have significantly longer life spans than their normal

littermates, like other strains with reduced insulin like growth

factor activity [32].

The lower glucose levels we observed in Prop1 deficient mice are

consistent with clinical data from human patients with GH

deficiency. Approximately 5% of humans with GH deficiency also

had hypoglycemia, and 10% of the hypoglycemic patients died

[53]. Another study showed that approximately 3% (37/1366) of

GH deficient children died and that 24% (9/37) of those who died

suffered from severe hypoglycemia [54]. Pituitary aplasia also

causes severe hypoglycemia, thus representing a serious life

threatening problem in neonates with MPHD if not quickly

treated [55,56]. Differences in the GH signaling pathway involving

AKT2 can cause hypoglycemia, seizures and death [57,58]. The

reason for the individual variation in susceptibility to severe

hypoglycemia and lethality in humans and mice are not known.

We found no evidence for disruption of the pituitary-adrenal

axis in Prop1 deficient mice. In direct contrast to the human

MPHD cases with progressive ACTH loss and hypocortisolism,

Prop1 deficient mice exhibit elevated ACTH and corticosterone

and reduced glucose levels at 6 mo and 1 yr of age. Young adult

Prop1 deficient mice respond to restraint stress with further

elevation of ACTH, corticosterone and glucose levels, and show

no reduction in adrenal content of steroidogenic enzymes,

indicating that the pituitary-adrenal axis can react functionally

to this challenge. In addition, the adrenals of the Prop1-/- mice are

enlarged relative to normal mice when normalized to body weight,

as expected for chronic ACTH secretion in rodents and other

mammals, including primates [36,37]. Finally, sickly, young Prop1

mutants have even higher corticosterone levels than healthy

mutants.

The basis for the evolving nature of the hormone deficiencies,

including hypocortisolism, in human PROP1 deficient patients

remains elusive. It is tempting to speculate that it arises from

depletion of progenitors, but species differences in function are

also possible. Genetic background affects the viability of young

Prop1 deficient mice, largely due to different responses of target

organs to pituitary hormone deficiency. Multiple Prop1 mutant

alleles and genetic backgrounds support elevated ACTH and

corticosterone levels and lower glucose levels that persist with age.

Although mice with MPHD have been invaluable for understand-

ing the molecular basis for human disorders of hormone-deficiency

and dwarfism, pituitary growth, and pituitary cell specification,

they may be less pertinent for understanding the nature of

progressive hormone deficiency that characterizes humans with

PROP1 mutations.
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