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Abstract

High-throughput microarray technology has been widely applied in biological and medical decision-making research during
the past decade. However, the diversity of platforms has made it a challenge to re-use and/or integrate datasets generated
in different experiments or labs for constructing array-based diagnostic models. Using large toxicogenomics datasets
generated using both Affymetrix and Agilent microarray platforms, we carried out a benchmark evaluation of cross-platform
consistency in multiple-class prediction using three widely-used machine learning algorithms. After an initial assessment of
model performance on different platforms, we evaluated whether predictive signature features selected in one platform
could be directly used to train a model in the other platform and whether predictive models trained using data from one
platform could predict datasets profiled using the other platform with comparable performance. Our results established
that it is possible to successfully apply multiple-class prediction models across different commercial microarray platforms,
offering a number of important benefits such as accelerating the possible translation of biomarkers identified with
microarrays to clinically-validated assays. However, this investigation focuses on a technical platform comparison and is
actually only the beginning of exploring cross-platform consistency. Further studies are needed to confirm the feasibility of
microarray-based cross-platform prediction, especially using independent datasets.
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Introduction

Microarrays, as efficient tools to simultaneously monitor the

expression of tens of thousands of genes, have been widely applied

in both mechanistic and decision-making research during the past

decade [1–4]. The large number of commercially available

microarray platforms has expanded the use of the technology

and made it more widely available to different laboratories.

However, left unresolved is the issue of whether inter-platform

differences may conceal or confound biologically significant

information with respect to potential biomarkers and prediction

models. Thus, the concern that one needs to stay within a

particularly microarray platform manufacturer slows down the

identification and qualification of genomic biomarkers [5].

The extent to which different microarray technologies influence

the identification of differential gene expression has been

addressed by a large number of studies and is the subject of a

review paper [6]. Despite the conflicting information given by a

handful of early published studies where both concordance[7–9]

and discordance[10–12] between technologies was demonstrated,

the maturation of microarray technology and data analysis

methods has led to improved cross-platform correlations[6,13].

Moreover, the first phase of FDA-led Microarray Quality Control

project (MAQC-I) has further confirmed the reproducibility of the

identification of differentially expressed genes across different

platforms [5,14–16]. These studies suggest that similar results

should be expected regardless of microarray platform if appropri-

ate experimental and analysis protocols are applied, meaning that

mechanistic research can incorporate datasets from multiple

sources without significant concern about platform-specific affects.

The clinical use of array-based diagnostics is relatively late in

coming; this is partially due to the demand of a substantial number

of patient samples to be used for training, since estimates of a

predictor’s error rate during model construction are more prone to

be biased for small datasets[17]. Therefore, an attractive approach

would be the re-use of relevant pre-existing sets of expression

profiles as training data. Although researchers have demonstrated

that reciprocal validation can be achieved using different patient

cohorts and microarray platforms[18], few benchmark analyses

have been carried out until recently to confirm the feasibility of re-

using datasets obtained from different platforms for diagnostic

models. Based on the toxicogenomics datasets generated in phase

II of the MAQC project using both Rat Genome 230 2.0 Array

(Affymetrix platform) and Rat Oligo 2-color G4130A Array
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(Agilent platform) on the same tissue samples, our recent study[19]

evaluated and confirmed that high cross-platform concordance of

predictive signature genes and classifiers can be achieved for

binary classification. However, in reality, decision-making is not

always binary. For example, subtype identification in disease

diagnosis[20,21], toxicant discrimination[22] and the stratification

of toxicity severity in drug risk/safety assessment[23] can, in most

cases, only be achieved using multiple-class prediction. Thus, the

consistency of microarray platforms with regard to multiple-class

prediction discussed in this study is also of importance to the future

success of microarray-based predictive models in clinical applica-

tion and safety evaluation.

The primary issue we addressed is the comparability of models

constructed from different platforms. We then further evaluated

cross-platform consistency with regard to whether predictive

signature features selected on one platform could be directly used

to train a model on the other platform and whether predictive

models trained using one platform could predict datasets from the

other platform with comparable performance. In this study, three

commonly-used multi-class machine learning algorithms were

applied: fuzzy k-nearest neighbors (FKNN)[24,25], linear discrim-

inant analysis (LDA)[26] and support vector machine (SVM)[27].

The results provide a baseline confirmation of the cross-platform

consistency of multiple-class prediction.

Materials and Methods

Datasets
The same datasets and the way in which they were divided

into training and test sets have been previously described [19]. All

data is MIAME compliant and the raw data are available through

GEO (series accession number: GSE16716) and ArrayTrack

(http://www.fda.gov/nctr/science/centers/toxicoinformatics/Array

Track/). Rather than a binary score, the outcome variable

selected was the RHI (Response to Hepatocellular Injury) score,

which ranges from 0 to 2 that are associated with the severity of

chemically-induced hepatotoxicity [23]. Briefly, the toxicoge-

nomics datasets for Affymetrix Rat Genome 230 2.0 Array with

31,099 probe sets (AFX) and Agilent Rat Oligo 2-color G4130A

Array with 22,075 probes (AGL) were profiled from the same set

of 418 samples (RNA isolated from the liver from each of the 318

treated and 100 control rats), resulting in 418 and 318 arrays,

respectively. For hybridizations performed on the Agilent

platform, each of the 318 treated samples was labeled and

hybridized against a pooled RNA sample generated from the

control samples.

A prerequisite for platform comparison is that all datasets are

represented by a common set of probes. Three different

approaches were used to identify probes associated with the same

transcript: SeqMap, RefSeq, and Unigene, resulting in 4860,

6312, and 9954 common transcripts[19], respectively. SeqMap is

a sequence-based approach to identifying common probes

generated, and was also used in the MAQC-I project [16].

RefSeq is a less restrictive method of matching Agilent probes with

Affymetrix probes based on the RefSeq database, while Unigene is

the least stringent approach for identifying matching probes across

platforms using the Unigene database.

Due to the technological difference in experimental design

between Affymetrix (intensity) and Agilent 2-color (ratio) plat-

forms, three analysis configurations (ACs 1-3, illustrated in Figure
S1) were designed to ensure that both datasets matched in

comparison. AC 1 utilized the original datasets (i.e., AFX intensity

vs. AGL ratio), while AFX datasets in AC 2 were converted to

ratio and compared with the AGL ratio data, and AGL datasets in

AC3 were converted to intensity and compared with the AFX

intensity data. Briefly, the Affymetrix ratio data was calculated

using its intensity data in a way similar to Agilent platform, i.e.,

treated samples were compared to an average of the correspond-

ing samples. In AC3, the intensity data in AGL is the average

value of Cy3 and Cy5 corresponding only to the treated samples.

Note that the 318 arrays profiled from the same samples using

both platforms were used in AC 2 and AC 3, while AFX in AC 1

retained the original 418 arrays. Combined with the three

classification algorithms (FKNN, LDA, SVM), a total of 27

comparisons were carried out, corresponding to 3 ACs, each with

3 classifiers, and each classifier having 3 probe-mapping methods.

Detailed information on the datasets, probe mapping procedures,

and ACs has been published previously [19,28,29].

Study design
Detailed information for the study design is illustrated in

Figure 1; additional information about model construction

procedures is available in Supplementary Methods. Both

AFX and AGL datasets were divided into the predefined training

and test sets. The analysis protocol starts with the construction of

the best classifier using either the AFX or AGL training set

(Figure 1(a)) and ends by using a best classifier to predict the test

sets of both platforms. Corresponding to different destinations,

three designs (Figure 1(b–d)) were utilized in this study.

To evaluate the performance of models constructed using

different platforms, a best classifier was developed independently for

both the AFX and AGL training data and then used to predict the

corresponding test set. This procedure was repeated 500 times,

resulting in 500 sets of predictions[1,30]. The performance of

models was then compared with respect to that of the overall

samples and those in each subclass.

Next, signature genes selected in the best classifier on the training

set of one platform (e.g., AFX) were transferred to the training set

of the other platform (e.g., AGL) to train another classifier. This

procedure was repeated 500 times, and the overall prediction

accuracy as well as the prediction accuracy for each subclass was

calculated and recorded.

Lastly, in order to evaluate whether classifiers developed from

one platform could perform well on the other platform, the whole

classifier (i.e., the best classifier) developed on the training set of one

platform (e.g., AFX) was transferred to predict the test set of the

other platform (e.g., AGL). The obtained prediction performance

of test sets from both platforms for the 500 repetitions of the

procedure were recorded and compared.

T-index
The T-index score proposed in our previous study[19] was also

used to evaluate the comparability of model performance metrics

(e.g., accuracy) obtained from the two platforms. The T-index is

defined as
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where TA indicates the comparability degree, N is the number of

iterations (N = 500), PA
k and PB

k represents the prediction

accuracies for the test sets of platforms A and B obtained from

500 iterations, respectively, and SD is the standard deviation of

(PA
k {PB

k ). Note that T-index score ranges from 0 to 1, with a score
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Figure 1. Detailed information on the study design. (a) Approach to development of the best classifier. (b) Assessment of performance of the
best classifiers derived from different platforms. (c) Transferability of signature genes, i.e., whether predictive signature features selected in one
platform could be directly used to train a model in the other platform. (d) Transferability of classifiers, i.e., whether predictive models trained using
data from one platform could predict datasets profiled using the other platform with comparable performance.
doi:10.1371/journal.pone.0016067.g001

Figure 2. Comparison of different platforms. (a) Overall prediction accuracy for both test sets using models generated from each platform. Blue,
yellow and brown bars represent ‘SeqMap’, ‘RefSeq’, and ‘Unigene’ for AFX, while corresponding circles faced green are for AGL. (b) Prediction
accuracy for samples in each subclass using FKNN. (c) Prediction accuracy for samples in each subclass using LDA. (d) Prediction accuracy for samples
in each subclass using SVM.
doi:10.1371/journal.pone.0016067.g002

Cross-Platform Consistency for Microarray
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smaller than 0.5 indicating the failure of transferability. In other

words, a larger T-index score indicates better transferability.

Results and Discussion

This is a benchmark analysis to evaluate the feasibility of re-

using pre-existing datasets as training samples for multiple-class

prediction models. We focused on the following three questions:

First, do models constructed from different platforms have similar

predictive performance both overall and for individual sub-classes?

Second, can predictive signature genes selected from one platform

be used to directly train a model on another platform? Lastly, can

predictive classifiers trained on one platform perform well on data

generated using another platform?

Comparison of different microarray platforms
Figure 2(a) illustrates the overall prediction accuracy for models

trained from both platforms on corresponding test sets using different

combination of analysis configurations (ACs 1-3), probe matching

protocols (SeqMap, RefSeq, Unigene), and classification algorithms

(FKNN, LDA, SVM). No difference in predictive accuracy between

the AFX and AGL datasets was observed for AC 2 and AC 3;

however, AC 1 demonstrated slightly higher accuracy for AFX.

Generally, probe matching protocols and classification algorithms

showed no impact of overall predictive accuracy.

Figure 2(b–d) gives detailed illustrations of model perfor-

mance for samples using FKNN, LDA, and SVM as classification

algorithms, respectively. The nearly indistinguishable model

performance of the AFX and AGL datasets in AC 2 and AC 3

further confirmed the comparability of different microarray

platforms. Moreover, the consistently higher accuracy of AFX

for samples with score 0 in AC 1 (Figure 2(b–d)) implies that the

unexpected better performance of AFX in overall prediction

accuracy (Figure 2(a)) might be attributable to the additional 100

control samples in AFX over AGL. Further evidence for this was

given by the comparable performance of both platforms for overall

samples and those in each subclass shown in Figure S2, where the

100 control datasets were removed and only the 318 treated

samples were retained in the AFX dataset.

Generally, consistent model performance exists across different

microarray platforms for multiple-class prediction, both for the

complete set of samples and for those with different RHI scores,

regardless of the ACs, probe-mapping methods, and classification

algorithms. This strongly suggests that predictive models could be

successfully developed using different microarray platforms as long

as classifiers with the best performance could be constructed for

each platform.

Transferability of predictive signature genes
Figure 3(a–b) delineates the overall prediction accuracy for

both test sets when signature genes selected from one platform

were transferred to train a model in the other platform.

Corresponding results for samples in each subclass using different

classification algorithms are illustrated in Figure 3(c–d) and
Figure S3. Figure 3a shows very similar performance in AC 2

and AC 3 for a model trained and tested on AFX data and a

model using the same predictive features trained and tested on

AGL data. Likewise, Figure 3b shows similar performance in

ACs 2 and 3 for a model trained and tested on AGL data and a

model using the same predictive features trained and tested on

Figure 3. Transferability of predictive signature genes. (a) Overall prediction accuracy for both test sets using signature genes selected from
AFX (AFX to AGL). (b) Overall prediction accuracy for both test sets using signature genes selected from AGL (AGL to AFX). In (a) and (b), blue, yellow
and brown bars represent ‘SeqMap’, ‘RefSeq’, and ‘Unigene’ for AFX, while corresponding circles faced green are for AGL. (c) Prediction accuracy for
samples in each subclass using FKNN in the transfer of AFX to AGL. (d) Prediction accuracy for samples in each subclass using FKNN in the transfer of
AGL to AFX.
doi:10.1371/journal.pone.0016067.g003
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AFX data. This conclusion is further supported by corresponding

T-index scores higher than 0.8 for most cases shown in Tables S1
and S2. Note that the relatively lower T-index scores around 0.72

for samples with a score of 1 should be attributed to the apparently

worse performance in predicting such samples as shown in

Figure 3(c–d) rather than poor transferability. As to the

consistently higher performance of AFX in AC 1 for overall

samples and those with a score of 0, it might also be ascribed to the

additional 100 controls samples that were pooled for the AGL-

generated data. The overlap of model performance shown in

Figure S4 supports not only the interpretations mentioned above,

but also the successful transfer of signature genes using different

ACs and probe-mapping methods.

These results provide excellent evidence that predictive

signature genes selected from one platform can be successfully

transferred to train a predictive model in the other platform

regardless of the types of analysis configurations, probe-mapping

methods, and classification algorithms used, as long as the datasets

are capable of producing informative-enough predictive models

(i.e., intrinsic predictable). This has the potential to improve the

diagnostic use of array-based predictive models by avoiding the

additional work and complexity of selecting different predictive

signature genes for each platform, and allowing the combination

of smaller datasets from multiple platforms that are not large

enough on their own to obtain a highly informative gene set.

Transferability of predictive classifiers
Figure 4(a–b) depicts the overall prediction accuracy for both

test sets where predictive classifiers generated on one platform

were used to predict datasets profiled with the other platform.

Figure 4a shows that predictive models trained with AFX data

have similar predictive performance when applied to both AFX

and AGL data; Figure 4b shows the same for models trained with

AGL data, with the exception of AC 1. Combined with the

corresponding T-index scores around 0.78 (Table S3), the results

suggest that the transferability of predictive classifiers with respect

to the overall performance was acceptable, except for the transfer

of AFX to AGL using AC 1. Based on the previous observation of

the effect of the additional 100 control samples on the

transferability between AFX and AGL, we decided to conduct

another analysis using the 318 common samples. The resulting

decreased difference between the predictive accuracy for the AFX

and AGL test sets (Figure S5) further confirmed the acceptable

transferability of predictive classifiers. Moreover, further analysis

combining data sets from AFX and AGL platforms confirmed that

the classifiers trained by the combined data sets performed well for

independent data sets from both AFX and AGL platforms (Table
S4). Generally, probe-mapping methods and classification algo-

rithms did not evidently impact on either the overall model

performance or the transferability between different platforms.

The predictive performance for the individual sub-classes,

however, shows a much different pattern. As shown in

Figure 4(c–d) and Figure S6 in which different classification

algorithms were utilized, predictive models trained with AGL data

show similar performance when applied to the AGL or AFX test

set. Models built with the AFX data show greatly reduced

predictive accuracy in the AGL test set as compared to the AFX

test set, particularly for samples with scores of 1 or 2. This finding

was further verified by T-index scores around or smaller than 0.5

for many cases in Table S5. This performance deficit appears to

be consistent across both probe-mapping methods and classifica-

tion algorithms.

Figure 4. Transferability of predictive classifiers. (a) Overall prediction accuracy for both test sets using classifiers trained on AFX (AFX to AGL).
(b) Overall prediction accuracy for both test sets using classifiers trained on AGL (AGL to AFX). In (a) and (b), blue, yellow and brown bars represent
‘SeqMap’, ‘RefSeq’, and ‘Unigene’ for AFX, while corresponding circles faced green are for AGL. (c) Prediction accuracy for samples in each subclass
using FKNN in the transfer of AFX to AGL. (d) Prediction accuracy for samples in each subclass using FKNN in the transfer of AGL to AFX.
doi:10.1371/journal.pone.0016067.g004
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We found that predictive classifiers trained on one platform

could predict datasets profiled using another platform with

acceptable overall predictive performance, despite slight differ-

ences between different directionality of transfer and analysis

configurations (ACs). However, when the transferability was

considered for each subclass, the performance of the test set that

corresponded to the data used to train the model was noticeably

better. Generally, the transferability of AFX to AGL was relatively

poor (especially for samples with RHI scores of 1 or 2), while the

transferability of AGL to AFX was much better. As was observed

consistently in this study, probe-mapping methods and classifica-

tion algorithms did not impact significantly on either model

performance or the overall transferability.

The diversity of microarray platforms has made it a challenge to

re-use and/or integrate datasets generated in different experiments

to construct array-based diagnostic models. Thus, in this study, we

investigated the consistency of multiple-class prediction models

generated using datasets from different platforms in three aspects:

the comparability of model performance from different platforms,

whether predictive signature genes selected from one platform

could be directly utilized to train another model on the other

platform, and whether classifiers trained from one platform could

predict datasets profiled from the other platform with comparable

performance. The results supported the potential applications in

biological and medical decision-making for cross-platform analyses

of both new and existing microarray datasets. Moreover, probe-

mapping methods and classification algorithms did not exert an

apparent affect on either model performance or consistency

between microarray platforms. However, the relatively high

concordance achieved in this benchmark investigation is only

the beginning of exploring cross-platform consistency because it is

based on two microarray datasets generated on identical biological

samples using different platforms, i.e., this investigation is mainly

focused on a technical platform comparison. Undoubtedly, further

studies are needed to confirm the feasibility of microarray-based

cross-platform prediction, especially using independent datasets.

Supporting Information

Figure S1 Three analysis configurations (ACs 1-3) used in this

study.

(TIF)

Figure S2 Model performance for AFX after removing the

additional 100 control samples in platform comparison using AC 1.

(TIF)

Figure S3 Transferability of predictive signature genes. (a)

Prediction accuracy for samples in each subclass using LDA in

the transfer of AFX to AGL. (b) Prediction accuracy for samples in

each subclass using LDA in the transfer of AGL to AFX. (c)

Prediction accuracy for samples in each subclass using SVM in the

transfer of AFX to AGL. (d) Prediction accuracy for samples in

each subclass using SVM in the transfer of AGL to AFX.

(TIF)

Figure S4 Model performance in transferability analysis of

predictive signature genes using AC 1 after removing the

additional 100 control samples in AFX.

(TIF)

Figure S5 Overall model performance for AC 1 in transferabil-

ity analysis of predictive classifiers after removing the additional

100 control samples in AFX.

(TIF)

Figure S6 Transferability of predictive classifiers. (a) Prediction

accuracy for samples in each subclass using LDA in the transfer of

AFX to AGL. (b) Prediction accuracy for samples in each subclass

using LDA in the transfer of AGL to AFX. (c) Prediction accuracy

for samples in each subclass using SVM in the transfer of AFX to

AGL. (d) Prediction accuracy for samples in each subclass using

SVM in the transfer of AGL to AFX.

(TIF)

Table S1 Overall prediction accuracy and corresponding T-

index scores for both platforms in transferability analysis of

predictive signature genes.

(DOC)

Table S2 T-index scores for samples in each subclass in

transferability analysis of predictive signature genes.

(DOC)

Table S3 Overall prediction accuracy and corresponding T-

index scores for both platforms in transferability analysis of

predictive classifiers.

(DOC)

Table S4 Prediction accuracy for models generated from the

combined data.

(DOC)

Table S5 T-index scores for samples in each subclass in

transferability analysis of predictive classifiers.

(DOC)

Methods S1

(DOC)
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