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Abstract

The prevalence of common chronic non-communicable diseases (CNCDs) far overshadows the prevalence of both
monogenic and infectious diseases combined. All CNCDs, also called complex genetic diseases, have a heritable genetic
component that can be used for pre-symptomatic risk assessment. Common single nucleotide polymorphisms (SNPs) that
tag risk haplotypes across the genome currently account for a non-trivial portion of the germ-line genetic risk and we will
likely continue to identify the remaining missing heritability in the form of rare variants, copy number variants and
epigenetic modifications. Here, we describe a novel measure for calculating the lifetime risk of a disease, called the genetic
composite index (GCI), and demonstrate its predictive value as a clinical classifier. The GCI only considers summary statistics
of the effects of genetic variation and hence does not require the results of large-scale studies simultaneously assessing
multiple risk factors. Combining GCI scores with environmental risk information provides an additional tool for clinical
decision-making. The GCI can be populated with heritable risk information of any type, and thus represents a framework for
CNCD pre-symptomatic risk assessment that can be populated as additional risk information is identified through next-
generation technologies.
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Introduction

Common chronic non-communicable diseases (CNCDs) are

caused by a combination of genetic and environmental risk factors.

These diseases account for the majority of disease burden, and the

majority of health care cost, globally. Pre-symptomatic risk

assessment of an individual for CNCDs, and personalized

management to extend the healthy lifespan and reduce costs, is

increasingly a global priority [1]. CNCDs include diseases that are

not monogenic in nature, not purely environmental (trauma), and

not purely somatic. They do include the most common forms of

disease such as heart disease, metabolic disorders, neurological and

mental health disorders, heritable cancers, and many non-

congenital/non-monogenic pediatric disorders. Examples include

myocardial infarction, arrhythmia, diabetes, Alzheimer’s disease,

prostate cancer, and autism spectrum disorder.

Recent advances in genotyping technology have greatly

improved our understanding of the genetic risk factors that

contribute to such diseases. In particular, whole-genome associ-

ation studies have uncovered many common variants that increase

an individual’s risk of developing a disease during his/her lifetime.

Since disease prevention will be the most effective means to ensure

a healthier population in the coming decades, it is necessary to

understand how to integrate inherited genetic risk information into

our clinical decision-making process early in life so that we can

minimize the chance of developing disease in the future. Low

effect size common SNP variants, rare and private variants, DNA

copy number variants and epigenetic modifications are together

believed to account for most of the inherited risk. When we can

fully articulate the relative contribution of each of these elements

to any specific disease, and the effects of their interactions with one

another, our predictive accuracy will peak.
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Accurately estimating an individual’s risk to develop a CNCD is

a challenging task. To begin, the risk is determined by many

factors including the genetic risk factor load, environmental

factors, gender, age etc and not all contributing factors are known.

It is therefore clear that for most conditions the best risk

assessments can only provide a probabilistic estimate. In order

to accurately estimate the risk of an individual, one has to take into

account the different associated variants, their effect sizes, their

frequency in the population, the environmental factors affecting

the individual, such as diet, age, family history and ethnic

background as well as their interactions. Large-scale studies that

investigate all of these factors at once are prohibitively expensive to

conduct, and to our knowledge, none have been conducted.

Here, we study the performance of risk estimates based on the

genetic composition of an individual alone, keeping all other

factors fixed. Several approaches for risk estimation based on

genetics alone have been proposed in the past [2–4]. These

methods generally use the assumption that the disease-associated

loci are independent of one another and that the relative risk of

each locus is given. In practice, the relative risks are normally not

known since in case-control studies, the odds-ratios and not the

relative risks are given. In [2], the relative risks are inferred from

the odds ratios by solving a set of equations that takes into account

the prevalence of the disease, the frequencies of the genotypes and

the odds ratios. Here, we suggest using a new method which aims

at estimating the risk over the lifetime of an individual. The

probability of disease as calculated using our method will be

referred to as the Genetic Composite Index (GCI) or the GCI

score (see Methods).

Similarly to previous approaches, we rely on several assump-

tions, main among them being the assumption of independence

between the disease-associated loci. We use simulated data as well

as real data to assess the performance of the risk estimates under

different conditions. Importantly, we find that the assumption of

independence does not greatly affect the generality of our method

and modest SNP-SNP interactions in simulated data do not seem

to significantly affect its predictability.

In order to measure the quality and effectiveness of GCI and

similar methods, it is important to understand their limitations and

merits. For example, [2] use Receiver Operating Characteristic

(ROC) curves in order to measure the effectiveness of various risk

measures. We adapt their use of ROC curves to evaluate our

proposed score, and in particular, we consider the use of GCI in

the context of three different diseases: Type 2 Diabetes, Crohn’s

disease and Rheumatoid Arthritis. We use simulations to calculate

the predictive power of these different methods under an ideal

‘‘best-case’’ theoretical scenario, in which all the genetic factors are

known. This ideal risk assessment depends on several factors

including the heritability and the average lifetime risk of the

disease. We find that the predictive power currently achieved for

these diseases is substantially lower than the ideal predictive

power, suggesting that major interactions and possible epigenetic

factors are yet to be discovered. We emphasize that GCI is not a

substitute for large-scale studies designed to simultaneously test

multiple risk factors, but is rather an index that can be used when

the result of such studies are simply not available, as is the case for

virtually all common diseases.

Results

Evaluation of the GCI risk score and its assumptions
We use the Wellcome Trust Case Control Consortium

(WTCCC) data [5] to test our GCI methodology. This dataset

contains the genotypes of approximately 14,000 individuals

divided into seven subpopulations based on disease phenotypes

and one unaffected control subpopulation of 1,500 samples from

the UK Blood Service Control Group. We limited our attention to

the Type 2 Diabetes, Crohn’s Disease and Rheumatoid Arthritis

subpopulations and the common control group and did not

consider any environmental variables in this analysis. We used

SNPs that were reported to be significantly associated with each of

these conditions in literature (see Table 1) and that passed a set of

quality criteria. The main criteria were that i) The SNP association

was consistently replicated within a given ancestral group and ii)

The number of cases and controls were at least 250 when the effect

size was less than 1.5 (Details about genotyping quality criteria in

WTCCC data are given in [5]. There are no other criteria with

respect to genotyping except that the SNPs chosen were reported

in high quality studies that use good genotyping methodology). For

each of the chosen SNPs, we computed the relative risk (see

Methods) based on the empirical distribution of alleles found in the

WTCCC dataset and used the GCI formula to calculate an

estimated risk per individual. We note that some of the known risk

variants are not present on the Affymetrix 500k GeneChip array

that was used by the WTCCC, and therefore we expect the

predictability of the GCI to be better than what is presented in our

analysis below.

As noted before, we use Receiver Operating Characteristic

(ROC) curve analysis [12] in order to evaluate the ability of GCI

to serve as a predictive test for a condition. ROC curves have been

previously used as a measure of the reliability of a genetics-based

risk assessment test [2]. For a perfect test, a threshold t could be

chosen such that all individuals with a score larger than t develop

the condition, and all individuals with a score less than t don’t.

However, in practice, we will find that for any given threshold

there is some fraction of false positive and false negative

assignments. The ROC curve graphically depicts the relationship

between false positive rates and true positive rates, and thus it can

be used to guide the tradeoffs between test sensitivity and

specificity. We use the area under the ROC curve (AUC) as a

quantitative measure to compare different risk scores. In general,

the larger the value of the AUC, the better the score used for the

classification. If classification were done randomly, the AUC is

expected to be 0.5 and for the perfect score the AUC is equal to 1.

Comparisons with an interactions model
One of the assumptions made by the GCI framework is that the

disease-associated SNPs are independent. This assumption is

useful since the score can then be calculated just from summary

data; furthermore, when interactions are modeled based on

limited data, there is a risk of over-fitting. Nevertheless, in an

attempt to quantify how much information might be lost by the

independence assumption, we compared our method with a model

that accounts for both SNP-SNP interactions and the marginal

contribution of each SNP. Particularly, we used logistic regression

to account for the interactions. If the SNPs are s1, s2…sn, then the

model assumes that the logit transformation of the binary outcome

reflecting disease or non-disease status is X ~ cza1s1 z a2s2

z . . . zansn z a12s12z . . . zan{1,nsn{1,n, where sij is the inter-

action between si and sj. We first trained the model using the

WTCCC data and then generated a ROC curve based on its

probability estimates. Since this model takes into account the pair-

wise interactions between SNPs, it should be at least as accurate as

the GCI score, which does not consider them. Note that the

logistic regression model is an optimistic upper bound on the GCI

since it can easily over-fit the model to the data; therefore, we are

being conservative in our estimation of the information lost under

the independence assumption. Figure 1 shows the ROC curves

Lifetime Disease Risk
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Table 1. Allele frequencies and the relative risks of Type 2 Diabetes, Crohn’s Disease and Rheumatoid Arthritis SNPs.

Disease dbSNP rs id Relative risk1 for RR Relative Risk1 for RN Frequency2 of RR Frequency2 of RN

Type 2 Diabetes rs10012946 [6] 1.1464 1.0239 0.5000 0.4667

rs10811661 [7] 1.3008 1.1282 0.6667 0.2500

rs1801282 [7] 1.4128 1.2417 0.8667 0.1167

rs4402960 [7] 1.1602 1.1233 0.1167 0.3500

rs4506565 [5] 1.6133 1.2738 0.0847 0.3729

rs5215 [7] 1.1681 1.0935 0.1000 0.6167

rs8050136 [8] 1.3609 1.1176 0.1167 0.6667

rs9494266 [9] 1.4909 1.2296 0.0169 0.0847

rs10923931 1.1948 1.0947 0.0167 0.2000

rs4607103 1.1392 1.0681 0.6333 0.3500

rs7961581 1.1355 1.0664 0.0500 0.3667

rs864745 1.1530 1.0747 0.3158 0.4035

rs5015480 1.1456 1.0451 0.3167 0.4833

Crohn’s Disease rs10883365 1.6154 1.1989 0.3000 0.4000

rs2066845 11.4381 3.0164 0.0000 0.0333

rs10489276 1.4130 1.1888 0.0333 0.3667

rs1894603 1.4608 1.2088 0.2542 0.4407

rs4871611 1.1654 1.0795 0.3667 0.5000

rs6679677 1.7116 1.3085 0.7167 0.2833

rs17234657 2.3052 1.5360 0.0667 0.2000

rs11175593 2.3532 1.5353 0.0000 0.0333

rs11584383 1.3899 1.1790 0.4333 0.4500

rs1456893 1.4371 1.1989 0.3667 0.5333

rs1736135 1.3898 1.1790 0.3000 0.5000

rs17582416 1.3432 1.1590 0.1667 0.4333

rs2872507 1.2527 1.1193 0.2167 0.5000

rs3764147 1.5580 1.2484 0.0847 0.3220

rs4263839 1.4852 1.2188 0.4167 0.4667

rs744166 1.3898 1.1790 0.3276 0.4483

rs762421 1.2751 1.1292 0.2500 0.4833

rs10210302 1.8433 1.1890 0.3000 0.5000

rs7746082 1.3663 1.1690 0.1017 0.4915

rs7927894 1.3432 1.1591 0.2333 0.3833

rs9858542 1.8316 1.0895 0.0333 0.4167

rs11805303 1.8525 1.3875 0.1000 0.3833

rs1000113 1.9102 1.5354 0.0000 0.0667

rs2066844 3.2543 1.9609 0.0000 0.2203

rs17221417 1.9118 1.2883 0.1000 0.5167

rs2542151 1.9997 1.2980 0.0500 0.2833

rs10761659 1.5461 1.2287 0.2333 0.6333

Rheumatoid rs10118357 [10] 1.7278 1.3152 0.2712 0.5254

Arthritis rs13207033 [10] 1.7559 1.3258 0.6667 0.3167

rs6457617 [5] 5.0847 2.3414 0.2167 0.5667

rs6679677 [11] 3.1672 1.6847 0.0000 0.2833

rs6920220 [5] 1.7023 1.1965 0.0000 0.3500

1. The relative risks provided here were calculated using the GCI methodology, as explained in the Methods section. RR means risk-risk genotype and RN means risk-
nonrisk genotype.
2. The allele frequencies are taken from the HapMap project’s CEU population.
doi:10.1371/journal.pone.0014338.t001
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for the three disease scenarios and Table 2 gives their AUCs. We

observe that the AUCs for GCI and logistic regression are quite

similar for these three diseases, leading us to the conclusion that

SNP-SNP interactions do not add substantial information to the

risk assessment for the diseases investigated here. We can therefore

justify our assumption (at least in these cases) that SNP-SNP

interactions can be ignored as long as there is no evidence for such

an interaction from previous studies.

Theoretical upper bound for disease-risk predictability
The number of SNPs used in our analysis reflects the current

knowledge about the effect of common SNPs on the risk of a

disease. These, however lack many other factors such as epigenetic

factors, rare variants, copy number variants, interactions etc. The

question remains as to how much more accurate could we

potentially be when considering genetic factors alone. We shed

light on this by comparing our empirical results to theoretical

disease models that assume that the disease is affected by both

environmental and genetic factors, and that the two factors are

independent (see Methods). Our model assumes that there are

many small genetic effects that are cumulative and therefore the

genetic factors include a normally distributed random variable. It

takes into account the heritability and lifetime risk of the condition,

resulting in a realistic extrapolation of the unknown genetic risk

factors based on the currently known ones.

Formally, the theoretical model uses a phenotype variable P,

and it assumes that P ~ G z E, where G is the genetic risk and E

is the environmental risk and an individual will develop the

condition in his/her lifetime if P w bfor a fixed b (see Methods for

more details). We generated 100,000 random samples for the

distribution of P based on our theoretical models for G and E and

determined their disease status. We then assumed that G is known

for each individual (but E is unknown), and generated a ROC

curve for the samples using this information alone. This curve

represents an optimal scenario where the genetic risk is entirely

understood and can be measured correctly for every individual but

environmental risk factors are completely unknown. We will refer

to the area under the ROC curve in this case as the theoretical

genetic maximum. Figure 1 shows the ROC curves for such a

scenario and Table 2 gives their areas. We observe that the GCI

area under the curve with currently known variants is much less

than that of the optimal theoretical genetic models, which suggests

that many additional unknown genetic variants and/or interac-

tions are expected to affect these diseases.

Based on Figure 1, we conclude that there is room for

improvement in predictive modeling that will most likely come

through the discovery of additional genetic variants and gene-

environment interactions for the three conditions discussed in this

text. It is useful to know what percentage of the genetic factors

have been captured to date. Under the assumption that all the

major genetic factors have already been discovered and that there

are no gene-gene or gene-environment interactions, we can

estimate the number of variants that will suffice to obtain a ROC

curve with an AUC as large as the theoretical genetic maximum. If

we assume that the GWAS studies performed to date have

sufficient density to identify all large effect size common variants in

Figure 1. ROC curves for the WTCCC dataset. A. Crohn’s Disease.
B. Type 2 Diabetes. C. Rheumatoid Arthritis. In each plot, the black line
corresponds to random expectation, the blue lines correspond to
theoretical expectations (under the two disease models described in
Methods) when the genetic variable is known, the red line corresponds
to GCI, and the green line corresponds to logistic regression.
doi:10.1371/journal.pone.0014338.g001
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the genome, and that all the unknown variants are common

(minor allele frequency = 10%), yet of weak effect size and that

such variants contribute relative risks of 1.1 for the homozygous

risk genotype and 1.05 for the heterozygous genotype; then our

results show that under these assumptions the number of

undiscovered risk factors is quite large (in the 1000s). Furthermore,

we observe that only about 6% of the genetic variance is explained

by the known variants for Type 2 Diabetes, about 9% for Crohn’s

disease, and about 14% for rheumatoid arthritis. It is also

reasonable to assume that additional large-effect size variants will

be discovered through the use of next-generation technologies and

take the form of rare/de novo nucleotide variants, copy number

variants and epigenetic modification of the primary nucleotide

sequence – and that it is likely that a blend of a few of these larger

effects will account for the missing heritability together with a

larger number of common and weak effect size variants.

Attempts to estimate the number of causal variants in complex

diseases have been made in the past [19–21]. These attempts

reach somewhat different conclusions than ours, i.e. these studies

estimate the number of genetic effects to be found to be quite

modest, even under the assumption of independence between

genes and environment. The main difference in the methodology

between our approach and these previous approaches is that

previous approaches have been published prior to the results

achieved by GWAS studies. Thus, they do not make the

assumption that the major common effects have already been

found, and they do not take into account the heritability and

lifetime risk. We note that [22] used a model similar to ours to

investigate the relationship between the number of disease loci and

the relative risk of the loci and their results are broadly similar to

ours. They use the prevalence of the disease instead of lifetime risk.

It must be mentioned that inaccuracies in the heritability estimates

can affect these numbers, but as long as they are not off by an

order of magnitude, we expect the results to be qualitatively

similar.

Theoretical effect of unknown SNP-SNP interactions
Our GCI score is based on the assumptions that all SNPs are in

linkage equilibrium and that they have independent effects on the

risk of the disease. As discussed above, the three examples studied

here show no significant difference between the GCI model and a

model in which pair-wise dependencies among the SNPs are

included through logistic regression. This assumption may not

always hold since, we know of some rare examples for which there

is evidence of epistasis [23]. If these interactions are known, they

can easily be incorporated into the GCI model by considering the

interacting SNPs together as a combination. However, it is

important to understand the effect of unknown SNP-SNP

interactions on the multiplicative risk estimates.

In order to further explore the issue of interactions, we

simulated datasets under a model in which a single pair of SNPs

is interacting. Formally, the model can be described as follows. Let

li denote the relative risk of the disease for a particular

combination of genotypes (gi) and p denote the average lifetime

risk. If all SNPs are independent, the total risk is proportional to

li ~ P
n

j~1
lijwhere lij denotes the relative risk for the jth locus. In

the interactions model, we assume that for a particular pair, the

relative risk for some combinations of genotypes is c times larger

than the product of their relative risks. For all other SNPs and for

all other genotype combinations, relative risks are assumed to be

multiplicative. Thus, for example, if SNPs x and y interact, then

the relative risk for the pair, K ~ clixliyfor certain configurations

of (gix, giy), and K ~lixliyfor other combinations. The total risk in

this case would be K P
n

j1x,j1y
lij.

We set the values of lix, liy for the interacting SNPs x and y so

that the relative risks for each of these SNPs under univariate

models is equal to what is observed in real data (given in Table 1).

We assign the probability that an individual is a case to be

P (disease j gi) ~ Cli, where C is a normalizing factor, and li is

the relative risk of individual i based on the interactions model. We

choose C so that the fraction of cases is close to the average

lifetime risk of the disease.

Let RR, RN and NN denote the observed values of relative risks

for any SNP for risk-allele homozygote (2), heterozygotes (1) and

non-risk-allele homozygote (0) respectively and let rr, rn and nn

denote the respective genotype frequencies. Since lij for any locus

j can only take 3 possible values corresponding to the 3 possible

genotypes, we will denote these by lij0, lij1, and lij2 respectively

and set lij0 ~ 1for all SNPs. We obtain values of lix1, liy1, lix2,

liy2 for SNPs x and y by solving the following system of equations:

RRx ~ (crrylix2liy2 z crnylix2liy2 z

nnylix2)=(rryliy2z rnyliy1 z nny)

RNx ~ (crrylix1liy2 z crnylix1liy1 z

nnylix1)=(rryliy2z rnyliy1 z nny)

RRy ~ (crrxliy2lix2 z crnxliy2lix1 z

nnxliy2)=(rrxlix2z rnxlix1 z nnx)

RNy ~ (crrxliy1lix2 z crnxliy1lix1 z

nnxliy1)=(rrxlix2z rnxlix1 z nnx)

Based on the risks in the interactions model, we assigned disease

status labels for 100,000 randomly drawn samples. We used this

Table 2. The area under the ROC curve for the three diseases under three different scenarios.

Disease Heritability Average Lifetime Risk Optimal Scenario1 GCI score Logistic Regression

Type 2 Diabetes 64% [13] 25.0% [16] 0.894 0.613 0.644

Crohn’s Disease 80% [14] 0.56% [17] 0.992 0.689 0.757

Rheumatoid Arthritis 53% [15] 1.54% [18] 0.944 0.675 0.689

1. The ideal score when the complete genetic information is known.
doi:10.1371/journal.pone.0014338.t002

Lifetime Disease Risk
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simulated case-control data to plot ROC curves based on two

approaches for risk assessment. First, we calculate the relative risk

of an individual according to the true interactions model. Then,

we assigned relative risks assuming the independence model. As

observed in Figure 2 and in Table 3, we find that the ROC

curves can differ marginally when the interaction factor is high (i.e.

c= 10). However, it can be argued that strong deviations from the

independence model will also be more detectable in genome wide

association studies. Particularly, whole-genome association studies

often report that SNP-SNP interactions were tested but were not

found to be significant (e.g. [24]). Therefore, when no interactions

have been reported in the literature for a set of SNPs, it seems

unlikely that the classification accuracy of the multiplicative test

will differ dramatically from that of the true model that includes

interactions.

Measuring the Absolute Error in the Risk Estimate
The ROC curve serves as one metric for evaluating a diagnostic

in that it provides a quantitative measure of the ability of the test to

distinguish between unaffected and affected individuals. However,

when estimating the lifetime risk, the ROC curve alone may not

be sufficient if a score does not directly estimate the correct

probabilistic measure (i.e. the probability of developing disease in

one’s lifetime) but instead computes some function of this

probability. In particular, for any given pair of score functions,

f1(G) and f2(G), the ROC curves of the functions will be identical

as long as f1 is a monotonic increasing function of f2. For instance,

we could simply assign f2(G) ~ log(f1(G)), and in this case by

using the scores f1 and f2 to estimate risk we will get exactly the

same ROC curves. However, these two functions may give very

different lifetime risk estimates to individuals. Therefore, ROC

curves alone are not sufficient for tests that report probabilistic

risk. For quality assessment, we also need a more informative

quantity, the absolute value of relative error between the true risk

probability and the estimated risk probability. The relative error is

defined as the difference between the estimated and true risk

probability divided by the true risk probability. Thus, the absolute

value of relative error is given by:

jEstimated Risk Probability - True Risk Probabilityj=

True Risk Probability

Since the true probability of developing a disease is unknown,

we simulated a scenario in which case-control data is used to

calculate the GCI parameters (i.e. the relative risks), and then

applied the GCI risk estimates to another independently simulated

population. The disease model we used for the simulation assumes

that the genetic factors of the disease can be decomposed into a

small number of large effects and a large number of small effects

that can be approximated by a normal distribution (see Methods).

Since most diseases are diagnosed later in life, we introduced the

age of onset of the disease to the model. For each individual that

has been determined to develop the disease based on the model,

we choose the age of onset of the disease based on some

distribution for the age of onset (Normal distribution with mean

= 50 and SD = 13). Thus, in our simulation, some of the controls

may in fact be cases that have not been diagnosed at the time of

the study. To create a realistic simulation of an age-matched case-

control study, we first repeatedly simulated the genetic and

environmental factors, as well as the age of onset for individuals;

we picked the age of the individuals from a uniform distribution

between 0 and 100. We generated 10,000 cases using this process.

For each of these cases, we generated an age-matched control by

sampling 10,000 controls conditioned on their age. We estimated

the odds ratios for each SNP based on this case-control data, and

then used these odds ratios to calculate the relative risks for each

SNP associated with the disease, using our GCI methodology.

The above procedure was used to generate a simulated set of

relative risk values. We then generated 500 individuals randomly

according to the theoretical disease model. Since the variables are

known for each of these individuals, we know the correct genetic

risk to develop the condition. We use these ‘true risks’ as a baseline

for the accuracy measure. We compare the GCI based risk

estimates to this baseline, as well as a variant of the GCI in which

the relative risks are replaced by the odds ratios. We note that

methods that calculate disease risk based on prevalence (e.g. [2])

will usually get relative risks that are close to the odds ratios.

In Figure 3, we plot the distribution of the absolute value of

relative errors for a simulated disease with average lifetime risk of

25% and heritability of 64% (Figure 3a), and for a disease with

average lifetime risk of 42% and heritability of 57% (Figure 3b).

These values roughly correspond to the lifetime risk and

heritability of Type 2 Diabetes and Myocardial Infarction

respectively. It is clear from the Figure that there is a dramatic

difference between the lifetime risks when using the relative risks

and when using the odds ratios. This may not be noticeable using

a ROC curve that only measures the classification accuracy. Thus,

using odds ratios or prevalence based calculation for relative risk

Table 3. The area under the curve (AUC) for the different interaction scenarios.

Simulated Interaction Factor 21 Simulated Interaction Factor 102

Interaction risk estimate GCI risk estimate (Multiplicative) Interaction risk estimate GCI risk estimate (Multiplicative)

Crohn’s Disease 0.722 0.722 0.739 0.724

Rheumatoid Arthritis 0.679 0.674 0.720 0.673

Type 2 Diabetes 0.597 0.594 0.607 0.595

1. The two columns correspond to the case where there is a SNP-SNP interaction in which the effect of a certain combination of genotypes has two times the product of
the marginal effects.
2. The two columns correspond to the case where there is a SNP-SNP interaction in which the effect of a certain combination of genotypes is 10 times the product of
the marginal effects.
doi:10.1371/journal.pone.0014338.t003

Figure 2. ROC curves for models with interactions vs the simple multiplicative model. A. Crohn’s Disease. B. Rheumatoid Arthritis. C. Type
2 Diabetes. In each plot, 1,000 threshold points were used.
doi:10.1371/journal.pone.0014338.g002
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generally inflates the results for lifetime risk calculations, and

under some circumstances can generate lifetime risk estimates that

are larger than 100% (hence these are not good enough for

lifetime risk calculations and our methodology is necessary).

Can the addition of environmental risk factors improve
our current predictions?

In the previous sections, we used only the genetic information to

estimate the risk of disease. In order to estimate the potential

contribution of known environmental factors to disease prediction,

we now consider the case where both environmental and

genotypic data are used to estimate risk. Such an example was

studied for the case of Type 2 Diabetes in [2]. Here, we

demonstrate the utility of environmental factors across Type 2

Diabetes, Crohn’s Disease and Rheumatoid Arthritis, which have

very different heritability and average lifetime risk values. As in

[2], we also assume that the risks and frequencies across all SNPs

as well as across all environmental factors are independent and

multiplicative. Based on this assumption, we generalized the GCI

score for the case where environmental factors are also taken into

account. We call the resulting statistic for lifetime risk Environ-

mental-Genetic Composite Index (EGCI). The EGCI score (like

the GCI score) is defined as the product of relative risks across all

the markers and all of the environmental factors normalized by a

constant. Note that when calculating the EGCI, the different

levels/classes of any particular environmental factor are treated in

exactly the same way as the different alleles of a marker in GCI.

Thus, environmental factors are mathematically no different from

additional markers. Table 4 gives the frequencies and relative

risks of the environmental variables for the 3 diseases.

We simulated the genotype and environmental factor values for

a set of 100,000 individuals based on their known frequencies in

the population (See Tables 1 and 4). For every individual, we

randomly and independently generate each genotype and

environmental variable using these frequencies (In particular, we

use a uniform random number between 0 and 1 for doing this).

We then randomly assigned a disease status for all individuals

based on the lifetime risk probabilities calculated from the

generalized multiplicative model (i.e. EGCI). Next, we compared

the predictive power of the pure genetics based GCI score to the

new generalized EGCI score. The ROC curves for Type 2

Diabetes, Crohn’s Disease and Rheumatoid Arthritis are shown in

Figure 4. The added value of environmental factors is not

dramatic for Crohn’s Disease and Rheumatoid Arthritis, however

it is substantial for Type 2 Diabetes. This is driven by the fact that

Body Mass Index is crucially affecting the risk for Type 2 Diabetes

(with a relative risk of 42.1 when BMI .35 [25]). Note that for a

disease such as Crohn’s disease we do not expect environmental

factors to play a major role since the heritability of this condition is

roughly 80%.

GCI and EGCI for Type 2 Diabetes case-control data from
the GENEVA study

GENEVA study refers to the Gene Environment Association

Studies initiative (www.genevastudy.org) funded by the trans-NIH

Genes, Environment, and Health Initiative (GEI). The goal of this

study is to identify novel genetic factors that contribute to Type 2

Diabetes Mellitus through a large-scale genome-wide association

study of well-characterized cohorts of nurses and health profes-

sionals. In this study, around 1 million SNPs have been genotyped

in about 2712 cases with Type 2 Diabetes and 3179 controls. A

variety of environmental variables have also been collected for

these individuals. We illustrate the performance of GCI and EGCI

methodology using 15 disease SNPs present in the GENEVA

dataset. We only used unrelated individuals of Caucasian ancestry

for this analysis. For calculating EGCI, we considered 2

environmental variables namely the Body Mass Index (BMI) and

the smoking status (Table 5 gives their relative risks). The results

obtained are shown in Figure 5 and the SNPs used are listed in

Table 6.

Discussion

The Human Genome Project [26], the HapMap project [27],

and related initiatives have resulted in a reference human

genome sequence, a catalog of common genetic variation and a

haplotype map of several reference populations. Furthermore, this

Figure 3. Relative errors for the estimated lifetime risk
probabilities. A. Comparison of odds ratios and relative risks for
Type 2 Diabetes with lifetime risk of 25% and heritability of 64%. B.
Comparison of odds ratios and relative risks for Myocardial Infraction
with lifetime risk of 42% and heritability of 57%.
doi:10.1371/journal.pone.0014338.g003
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information combined with cost-effective technologies to test

associations between variations throughout the genome and traits

and diseases of all sorts, has resulted in dozens of common variants

shown to be unequivocally statistically associated with the risk of

common diseases. These common variants can be used much like

population-derived environmental risk factor data in assessing

probabilistic pre-symptomatic risk of disease.

We have presented a new method for the estimation of an

individual’s lifetime risk based on genetic data through a genetic

score function (the GCI). The GCI, like all estimates of a

particular quantity, requires a set of assumptions that may bias the

risk estimates. Particularly, the assumptions made by the GCI

score are that the allele frequencies of the causal SNPs and effect

sizes are known, and that all the SNPs are independent of each

other. We show through simulation studies and by the analysis of

the WTCCC data that, moderate SNP-SNP interactions have

almost no effect on the power of the multiplicative GCI score.

However, in principle strong non-additive effects between variants

might affect the risk estimates, and thus care has to be taken when

interpreting the results. In most scenarios, we expect that such

effects will likely be discovered prior to the use of GCI and can be

incorporated in the risk calculation. So, we view this as a minor

problem, especially given that no significantly strong SNP-SNP

interactions have been uncovered in whole genome association

studies performed over the past several years.

We used the ROC curve analysis and the heritability of each of

the conditions we considered to find the total genetic variation

explained by known variants, compared to the expected genetic

variation based on heritability. We find that current scientific

knowledge can explain approximately 6%-14% of the total genetic

variation for these conditions. This suggests that the risk estimates

provided by the GCI may vary considerably in the future, as more

genetic variants are found and used for risk estimation (e.g. see

[24]). The fact that only a small fraction of the genetic variants

have been found to date suggests that the variance of the risk

calculated by the GCI is still large; however, the GCI score aims at

estimating the expected frequency of individuals with a given

genetic load that will develop the condition during their lifetime,

and the accuracy of the estimate of expectation will not be affected

by the number of unknown variants.

It is clear that next-generation technologies will be used in study

designs similar to GWAS to identify additional heritable risk factors

for CNCDs. As each new genetic association is validated to the

appropriate industry thresholds, this new genetic risk information

can be added into the GCI in a scalable fashion, on a disease-by-

disease basis to improve the accuracy of the GCI in real time.

Given these interpretations of the GCI score, it is informative to

use such a score in order to estimate the risk of an individual based

on their genetic data. The medical benefits of such individualized

knowledge are intuitive, but have to be clinically proven through

prospective studies. The main open question is whether individuals

will benefit by change of behavior, early diagnosis or an

individualized course of treatment based on their genetic

information for actionable CNCDs. We believe that tools such

as the GCI score will facilitate such studies and help transition us

into the era of personalized preventive medicine.

Methods

Ethics Statement
The datasets used were approved by the relevant boards in

Navigenics Inc and University of California Davis.

Introduction
We consider a disease for which k risk loci have been identified.

As done in [2,3], we assume that the different loci are acting

Table 4. Relative risks of environmental variables for Type 2 Diabetes, Crohn’s disease and Rheumatoid Arthritis.

Disease Environmental Variable Level
Proportion in the
population Relative risk

,23 0.20 1.00

23–23.9 0.16 1.00

24–24.9 0.14 1.50

25–26.9 0.27 2.20

Type 2 Diabetes Body Mass Index 27–28.9 0.14 4.40

29–30.9 0.06 6.70

31–32.9 0.02 11.6

33–34.9 0.01 21.3

. = 35 0.01 42.1

Never Smoked 0.50 1.00

Smoking Ex-Smoker 0.39 1.10

,20 cigs/day 0.04 1.50

. = 20 cigs/day 0.07 1.70

Never Smoked 0.545 1.00

Crohn’s Disease Smoking Ex-Smoker 0.245 1.70

Current-Smoker 0.198 3.00

Never Smoked 0.498 1.00

Rheumatoid Arthritis Smoking Ex-Smoker 0.276 1.40

Current-Smoker 0.227 1.30

doi:10.1371/journal.pone.0014338.t004
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independently, and thus Pr(g1, . . . ,gkjD)~ P
k

i~1
Pr(gijD), and

Pr(g1, . . . ,gk)~ P
k

i~1
Pr(gi), where gi is genotype of an individual

in locus i, and D represents the event that the individual will

develop the disease across his or her lifetime. As noted by [2], it is

straightforward to extend this model to cases where some

interactions are known. Previous methods consider D as the event

that the individual is currently diseased and thus the risk estimated

by these methods is for a snapshot in time. Such risk is related to

the overall lifetime risk of the disease but with obvious differences.

This difference can be quite dramatic in some cases, as we show in

the results section.

When calculating the risk across multiple SNPs for an individual

with genotypes (g1,…,gn), we are interested in finding the

probability Pr(Djg1, . . . ,gn). Using Bayes law and the indepen-

dence assumption

Figure 5. ROC curves for the GENEVA dataset. Effect of genetic
(15 SNPs given in Table 6) and environmental factors (BMI, Smoking)
versus genetic factors alone for predicting Type 2 Diabetes in 2600
cases and 3000 controls in the GENEVA data. The AUCs of the two
curves are 0.727 and 0.565 respectively. The relative risks for BMI and
Smoking are given in Table 5.
doi:10.1371/journal.pone.0014338.g005

Figure 4. EGCI vs. GCI in simulated data. A. Effect of known
genetic and environmental factors versus known genetic factors alone
for Crohn’s Disease. The AUCs of the two curves are 0.74 and 0.78. We
considered smoking as the environmental variable in addition to the
genetic factors. B. Effect of known genetic and environmental factors
versus known genetic factors alone for Type 2 Diabetes. The AUCs of
the two curves are 0.58 and 0.79 respectively. We considered Body Mass
Index, alcohol intake and smoking frequency as the environmental
factors for Type 2 Diabetes, in addition to the genetic factors. C. Effect
of genetic and environmental factors versus genetic factors alone for
Rheumatoid Arthritis. The AUCs of the two curves are 0.685 and 0.690.
We considered smoking as the environmental variable in addition to
the genetic factors. The relative risks for the environmental variables are
provided in Table 4.
doi:10.1371/journal.pone.0014338.g004
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Pr(Djg1, . . . ,gn)~
Pr(g1, . . . ,gnjD)Pr(D)

Pr(g1, . . . ,gn)

~
Pr(D) P

n

i~1
Pr(gijD)

P
n

i~1
Pr(gi)

~
P
n

i~1
Pr(Djgi)

Pr(D)n-1

In order to estimate the lifetime risk of a specific individual, we

therefore need to have an estimate of the average lifetime risk

Pr(D) across the entire population and the risk of developing the

disease across the lifetime of an individual with genotype gi. The

former has been estimated for a wide range of conditions using

prospective studies [16–18]. The latter can be estimated using our

method from case-control studies as described below.

Odds ratios vs. relative risk
In epidemiology literature, the relative risk is often considered

an intuitive and informative measure of risk. The relative risk is

defined as li~
Pr(Djai)

Pr(Dja0)
, where a0, a1, and a2 correspond to the

genotypes with 0, 1, and 2 risk alleles. If the relative risks are

known, we could estimate Pr(D|ai) by using the following:

Pr(D) ~ Pr(D j a2)Pr(a2) z

Pr(D j a1)Pr(a1) z Pr(D j a0)Pr(a0)
ð1Þ

Equation 1, together with the relative risks provide three

independent equations with three variables, since Pr(ai) can be

found by considering a reference population, and Pr(D) is known.

Unfortunately, the relative risk cannot be directly calculated in the

context of case-control studies and whole-genome association

studies. The relative risk can usually be estimated through

prospective studies in which a set of healthy individuals is studied

over a long period of time. In contrast, odds ratios are normally

reported in case-control studies. The odds-ratio is the ratio

between the odds of carrying the risk allele in cases vs. controls.

For rare diseases, the odds ratio is a good approximation of

relative risk; however for common diseases, the odds ratio could

result in a misleading estimate of risk, where the odds ratios may

be quite high even when the increase in risk is minor.

As previously noted [2], one can estimate the relative risks from

the odds ratios by solving a set of equations. However, the

equations proposed in [2] assume that the control population will

never develop the disease. In the context of lifetime risk estimation

this assumption is no longer valid since a subset of the control

population might eventually develop the disease.

Table 6. SNPs used when analyzing the GENEVA genotype data.

Disease dbSNP rs id Relative risk1 for RR Relative risk1 for RN Frequency2 of RR Frequency2 of RN

Type 2 Diabetes rs153143 1.1586 1.0772 0.0170 0.1670

rs11634397 1.0961 1.0472 0.3280 0.5340

rs8042680 1.1112 1.0545 0.0330 0.3670

rs10012946 [6] 1.1464 1.0239 0.5000 0.4667

rs10811661 [7] 1.3008 1.1282 0.6667 0.2500

rs1801282 [7] 1.4128 1.2417 0.8667 0.1167

rs4402960 [7] 1.1602 1.1233 0.1167 0.3500

rs4506565 [5] 1.6133 1.2738 0.0847 0.3729

rs5215 [7] 1.1681 1.0935 0.1000 0.6167

rs8050136 [8] 1.3609 1.1176 0.1167 0.6667

rs10923931 1.1948 1.0947 0.0167 0.2000

rs4607103 1.1392 1.0681 0.6333 0.3500

rs7961581 1.1355 1.0664 0.0500 0.3667

rs864745 1.1530 1.0747 0.3158 0.4035

rs5015480 1.1456 1.0451 0.3167 0.4833

1. The relative risks provided here were calculated using the GCI methodology, as explained in the Methods section. RR means risk-risk genotype and RN means risk-
nonrisk genotype.
2. The allele frequencies are taken from the HapMap project’s CEU population.
doi:10.1371/journal.pone.0014338.t006

Table 5. Relative risks of environmental variables for Type 2
Diabetes.

Disease
Environmental
Variable Level Relative risk

,23 1.00

. = 23 and ,25 2.67

Body Mass Index . = 25 and ,30 7.59

. = 30 and ,35 20.1

Type 2 Diabetes . = 35 38.8

Never Smoked 1.00

Smoking Ex Smoker 1.23

Current Smoker 1.44

doi:10.1371/journal.pone.0014338.t005
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Calculating Risk in the Presence of Diseased Controls
We now turn to the calculation of Pr(D|gi) given that an a

fraction of the controls will eventually develop the disease along

their lifetime. We consider a locus in which m+1 different alleles

are present. This allows us to deal with general scenarios, in which

gi may represent any number of interacting SNPs, and where

m = 3s
, where s is the number of SNPs represented by gi.

We will denote the m+1 possible alleles by a0, a1…, am, where

a0 is the non-risk allele, and their respective allele frequencies in

the general population as f0, f1,…, fm. Given that an a fraction of

the controls will eventually develop the condition, we can write the

odds ratios as:

ORi~
Pr(Djai)(aPr(Dja0)z(1{a)(1{Pr(Dja0))

Pr(Dja0)(aPr(Djai)z(1{a)(1{Pr(Djai))

~
Pr(Djai)((2a{1)Pr(Dja0)z1{a)

P(Dja0)((2a{1)Pr(Djai)z1{a)

From this, we get: Pr(Djai)~

(1{a)ORiPr(Dja0)

1{az(1{2a)Pr(Dja0)(ORi{1)

ð2Þ

Similar to Equation 1, we know that Pr(D)~
Pm
i~0

f iPr(Djai).
Therefore, by Equation 2, we get the following:

Pr(D)~
Xm

i~0

f i(1{a)ORiPr(Dja0)

1{az(1{2a)Pr(Dja0)(ORi{1)

For a fixed a, we can solve this equation using a binary search

on the variable Pr(D|a0); there is exactly one solution between 0

and Pr(D) since the right hand side of this equation is an increasing

function of Pr(D|a0) and binary search is guaranteed to find that

solution.

Generally, the value of a is unknown and it has to be

determined based on the age characteristics of the study

population. For instance, if the control population is a sample

from the general population, then a should be taken as the average

lifetime risk of the disease. However, if the control population was

chosen so that their age range is after the age of onset of the

disease, a should be close to 0. When case-control genotype data is

given, one can use maximum likelihood estimation to calculate a.

Calculating the GCI score
The GCI method essentially provides a way to compute the

relative risks of an individual as compared to an individual with

non-risk alleles at each of the disease-associated marker. In order

to calculate the lifetime risk, we take the product of the relative

risks across all loci (this is the overall relative risk of the individual

under the multiplicative model) and multiply it by the average

lifetime risk of the disease in the population. We then divide this

product by the average overall relative risk of the population. To

approximate the average relative risk of the population, we assume

that the SNPs at different loci are independent of one another (i.e.

in linkage equilibrium). Under this assumption, the average overall

relative risk of the population is equal to the product of the average

relative risks at each disease-associated marker.

If all the markers effects are independent, the relative risk of

individual i is equal to li~ P
n

j~1
lij where lij denotes the relative

risk for the jth locus. Let Pr(D) denote the average lifetime risk of

the disease in the population. Then, the GCI lifetime risk

probability or GCI score of an individual i is:

Pr(D) P
n

j~1
lij= P

n

j~1
(
Xk~m

k~0

fjkljk)

Here, m+1 alleles are possible at each marker locus and ljk

denotes the relative risk of the kth allele of the jth locus and fjk
denotes its frequency in the sample.

Theoretical Disease Models
We compared the GCI score to the optimal risk scores

calculated under two different theoretical disease models. These

models assume that the disease is affected by both environmental

and genetic factors, and that the two factors are independent of

each other. We denote the phenotype P~GzE, where G is the

genetic variable and E is the environmental variable. Our first

model assumes that both G and E are normally distributed with

standard deviations of sG and sE respectively, and that an

individual will develop the condition in his or her lifetime if

P w afor a fixed a. Similar models have often been used when

heritability calculations are made [28]. We fix sG, sE and a using

the constraint that h~sG
2=(sG

2zsE
2), and that the average

lifetime risk is equal to Probability (P wa). Since the heritabilities

and average lifetime risks are known for each of the conditions we

test, we can set the parameters of the models according to the

disease. For this disease model, we can analytically show that the

theoretical genetic maximum of AUC (i.e. when G is known but E

is unknown) only depends on the heritability and the average

lifetime risk of the disease (See next section) and not on the choice

of sG, sE, or a which are difficult to estimate.

In the second model, a variant of the previous model, we

assume that G~
P

liXizG1, where G1 is normally distributed

with standard deviation sG1, and Xi *B(2, pi) is Binomially

distributed. In this case, Xi corresponds to SNPs with large effects

and G1 represents many other small genetic effects; if there are

enough small genetic effects, we expect that the asymptotic

behavior of their sum would be according to a normal distribution.

By setting the parameters l, sG1 and p appropriately, we can

control the relative risks of the large effect SNPs. We tune these

parameters such that the relative risks are close to values observed

in Table 1 (see below). As for the previous model, we can show

that when G is known (but E is unknown) and the relative risks of

the large effect SNPs and risk-allele frequencies are fixed, the area

under the ROC curve for the second model only depends on the

heritability and the average lifetime risk of the disease (see below).

Proof for theoretical disease model 1
In this section, we will show that the theoretical genetic

maximum of the area under the ROC curve for model 1 depends

on the average lifetime risk (ALTR) and the heritability of the

disease alone. Let se denote the variance in the environmental

variable and sg denote the variance in the genetic variable. In

model 1, both genetic (G) and environmental (E) variables are

normally distributed. The theoretical maximum of ROC curve is

obtained when the genetic variable is known exactly while the

environmental variable is unknown. An individual is a true case if

G z E waand a true control otherwise. For any cutoff chosen for

the genetic variable, the individuals who are above that cutoff will

be counted as cases and the rest as controls. The true positive

fraction (TPF) is the fraction of true cases that are called as cases
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and false positive fraction (FPF) is the fraction of true controls that

are called as cases. The TPF versus FPF for different values of

cutoffs gives us the ROC curve.

The probability that an individual’s genetic variable is greater

than some cutoff (c) is given by: P(G w c)~

ð?
bsg

e{x2=2sg
2

dx=ffiffiffiffiffiffi
2p
p

sg

where b~ c =s
g
.

The probability that an individual’s genetic variable is greater

than the cutoff and the individual is a true case is: P(G w c and

GzE wa)~

ð?
bsg

e{x2=2sg
2

(

ð?

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg

2zse
2

q
{x

e{y2=2se
2

dy=
ffiffiffiffiffiffi
2p
p

se)dx=

ffiffiffiffiffiffi
2p
p

sg

where c~ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg

2zs
p

e

2
. Note that for any non-zero average

lifetime risk, c is fixed because a increases linearly withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg

2zs
p

e

2
.

By definition heritability, h~sG
2=(sG

2zsE
2).

The integral within the brackets in the previous double integral

can be expressed in terms of the error function, erf. Because the

cumulative distribution function of normal distribution is given by

0:5(1zerf(y=
ffiffiffi
2
p

se)), the integral inside the brackets is

0:5{0:5erf(½c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

gzs2
e

q
{x�=

ffiffiffi
2
p

se).

Thus, the probability that an individual is a true case and its

genetic variable is greater than c can expressed as:

ð?
bsg

e{x2=2sg
2

(0:5{ 0:5erf(cf(h){g(h)x=
ffiffiffi
2
p

sg))dx=
ffiffiffiffiffiffi
2p
p

sg, where f(h) and

g(h) are some functions of the heritability. Substituting

t ~ x=
ffiffiffi
2
p

sg into this equation, we can see that
ffiffiffi
2
p

sgdt ~ dx.

Therefore, P (G.c and G+E.a) can be expressed as:

ð?
b=

ffiffiffi
2
p

e{t2 (0:5 { 0:5erf(cf(h){g(h)t))dt=
ffiffiffi
p
p

Similarly, the probability that an individual is a true control and its

genetic variable is greater than c i.e. P(G w c and GzE v~

a) ~

ð?
b=

ffiffiffi
2
p

e{t2

(0:5z0:5erf(cf(h){g(h)t))dt=
ffiffiffi
p
p

:

Therefore, the true positive fraction for any given b only depends

on h and ALTR since: TPF ~ P (G w c and G z E w a)=ALTR.

The same is also true for false positive fraction since

FPF ~ P (G w c and G z E v~ a)=(1 - ALTR). Hence, the to-

tal area under the theoretical ROC curve, which is based on TPF

and FPF at all possible values of b, is independent of se and sg.

Proof for theoretical disease model 2
In this section, we prove a result similar to that in the previous

section for disease model 2. In particular, we will show that if the

relative risks of SNPs known to be associated with a disease and

the risk-allele frequencies (pi) are fixed, then the theoretical genetic

maximum of the area under the ROC curve depends only on the

heritability and the average lifetime risk of the disease. In model 2,

the genetic variable is given by: G~
P

liXizG1. Here

G1 *N(0,sg1)and the Xis are distributed according to a

Binomial distribution of B(2, pi), where pi is the allele frequency

of the risk allele at locus i. B(2, pi) gives the number of risk allele

copies in an individual at locus i. Xi ~ 0means homozygous for

non-risk allele, Xi ~ 1 means heterozygote and Xi ~ 2 means

homozygous for risk allele. The normal variable represents the

unknown genetic component. As before, the environmental

variable E is also normally distributed with mean 0 and standard

deviation se. The phenotype is given by P~GzE and individuals

with P w aare diseased whereas the rest are controls. a is chosen

such that the fraction of diseased individuals equals the average

lifetime risk of the disease.

Heritability for this model is h ~ ½sg1
2 z

P
2li

2

pi(1 - pi)�=½sg1
2 zse

2 z
P

2li
2 pi(1 - pi)� : Let us assume that

the relative risks of the known SNPs for heterozygous genotypes

are fixed and denote these by RNi. By definition, the relative risk

of heterozygote is given by:

RNi ~ Pr(G z E w a j Xi ~ 1) =Pr(G z E w a jXi~0)

~ ½
X

Pr(G1 z E w a - z - li)Pr(W ~ z)�=

½
X

Pr(G1 z E wa - z)P(W ~ z)�,

where W~
P
j1i

ljXj.

Let erf denote the error function and erfc denote the

complementary error function (i.e. 1 – erf(x)). Since G1+E is

N(0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
), the relative risk expressed in terms of

complementary error function is given by: S0.5erfc[(a - z - li)/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(sg1

2zse
2)

p
]Pr(W ~ z)/S0.5erfc[(a - z)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(sg1

2zse
2)

p
)]

Pr(W ~ z). Thus, if lis with disease cutoff a represent the

solutions for the SNPs for some choice of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
, then Llis

with cutoff of La will necessarily be solutions if the standard

deviation of G1 and E get changed by a factor of L. This is

because z is always a linear combination of lis. Therefore, li/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
and c~a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
are independent offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sg1
2zse

2
p

and depend on heritability and ALTR alone.

By definition, h(sg1
2 zse

2) ~ (1 - h)
P

2li
2 pi(1 - pi) zsg1

2.

This therefore means that: sg1
2 = (sg1

2zse
2) ~ h - (1-h)P

2li
2pi (1 - pi)= (sg1

2 zse
2): Since li/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(sg1

2zse
2)

p
and pi

are independent of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
, sg1

2=(sg1
2zse

2) is a function

of heritability and ALTR alone. Let Z ~
P

liXi and V denote

the vector of Xi values. Then, if Z ~ z for V ~ v,

z=
ffiffiffi
2
p

sg1 ~ b(h, ALTR, v) is a function of the heritability, ALTR

and v alone and is independent of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
.

The true positive fraction is defined as: Pr(G.c & G+E.a)/

Pr(G+E.a) where c denotes the cutoff for genetic variable. Let

b~ c =sg1. The numerator for TPF can be calculated as:

P
Pr(V~v,Z~z)

ð?
bsg1{z

e{x2=2sg1
2

(

ð?

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

q
{x{z

e{y2=2se
2

dy=
ffiffiffiffiffiffi
2p
p

se)dx=
ffiffiffiffiffiffi
2p
p

sg1

Using the error function to express the cumulative distribution

function of the normal distribution, Pr(G.c & G+E.a) is:

X
Pr(V~v,Z~z)

ð?
bsg1{z

e
{x2=2sg1

2
(0:5{0:5erf ½r(h,ALTR,v)

{s(h,ALTR)x=
ffiffiffi
2
p

sg1�)dx=
ffiffiffiffiffiffi
2p
p

sg1

where r and s are some functions. Substituting t ~ x=
ffiffiffi
2
p

sg into
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this equation, we can see that
ffiffiffi
2
p

sgdt ~ dx. Therefore, P (G.c

and G+E.a) can be expressed as:

X
Pr(V~v,Z~z)

ð?
(b=

ffiffiffi
2
p

){b(h,ALTR,v)

e{t2 (0:5

{0:5erf ½r(h,ALTR,v){s(h,ALTR)t�)dt=
ffiffiffi
p
p

Similarly, the probability that an individual is a true control and

its genetic variable is greater than c i.e.

P (G w c and G z E v~a) ~

X
Pr(V~v,Z~z)

ð?
(b=

ffiffiffi
2
p

){b(h,ALTR,v)

e{t2 (0:5

z0:5erf ½r(h,ALTR,v){s(h,ALTR)t�)dt=
ffiffiffi
p
p

Note that ALTR ~ P (G z E w a) and Pr(V~v, Z~z) is fixed

if pis are fixed. Therefore, the true positive fraction for any given b
only depends on the h and ALTR. The same is also true for false

positive fraction since FPF ~ Pr(G w c and G z E v~a) =
(1 - ALTR). So, the area under the theoretical ROC curve,

which is based on TPF and FPF at all possible values of b, is

independent of se, sg1 and lis.

Solving for li=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
We first note that 1 - (sg1

2=(h(sg1
2 zse

2))) ~ (1-h)
P

2li
2pi

(1 - pi)=(h(sg1
2 zse

2)). So, this equation implies that 0 v~

li=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
v~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=(2pi(1{pi)(1{h))

p
since LHS is always

less than 1. In practice, we can obtain a simultaneous solution for all

li=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
by using the following iterative procedure:

Initially, determine the li=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
for each SNP assuming

that it is the only SNP present (i.e. assuming lj ~ 0 for

all j not equal to i using a binary search between 0 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=(2pi(1{pi)(1{h))

p
(Note that RNi increases with

li=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
). These values will be our initial guesses for

li=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
. Then,

1) Determine l1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
assuming that lj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
for other SNPs are equal to what was calculated in the previous

step by using a binary search between 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(h=(1{h)) {

X
j=1

2lj
2pj(1{pj)=(sg1

2zse
2)�=(2p1(1{p1))

s
:

2) Determine l2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
assuming that lj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
for other SNPs are equal to what was calculated in the previous

step by using a binary search between 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(h=(1{h)){

X
j=2

2lj
2pj(1{pj)=(sg1

2zse
2)�=(2p2(1{p2))

s
:

……

n) Determine ln=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
assuming that lj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
for other SNPs are equal to what was calculated in the previous

step by using a binary search between 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(h=(1{h)) {

X
j=n

2lj
2pj(1{pj)=(sg1

2zse
2)�=(2pn(1{pn))

s
:

If all RNj values are sufficiently close to the observed values,

stop. Else go back to step 1.

Simulation experiments indicated that the above heuristic

converges to a simultaneous solution for all lj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sg1

2zse
2

p
whenever a solution exists.

Obtaining robust estimates of heritability and lifetime
risk from literature

Since heritability can vary by population, age, environmental

variation, phenotypic definition, sample size or standard error; we

sought multiple references and chose the most robust estimate

based on the method of calculating heritability, sample size,

ancestral origin and study population. If several articles had good

methodology, we tried to pick one ‘‘in the middle’’ of the range of

reported estimates. For lifetime risk, there is often not multiple

references and sometimes we relied on incidence data.

Obtaining lifetime risk estimates from Incidence data
When lifetime risk data was not available from the literature (for

Crohn’s disease and Rheumatoid Arthritis), we used incidence

data to obtain an estimate of the average lifetime risk (ALTR)

using a conversion formula. Namely, we used the following

formula:ALTR ~ (N=ni) x incidence, where N represents the

total number of individuals in the US from the 1990 or 2000

census data depending on the study used to identify incidence, ni is

the number of live births in the US in the year 2000; each from the

appropriate gender and ethnicity. The main assumptions in this

formula are: 1. Fixed population size. 2. Maximum life span for all.

We first validated our formula to determine if incidence data

could incorrectly estimate lifetime risk using incidence and lifetime

risk data from the Surveillance Epidemiology and End Results of

the National Cancer Institute (USA) for a number of common

cancers. Using our calculation with incidence data we estimated

the published lifetime risk within 1% for breast, colon, prostate

and lung cancers (results not shown). Thus, we are confident that

our lifetime risk calculations are reliable.
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