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Abstract

We model a spatially detailed, two-sex population dynamics, to study the cost of ecological restoration. We assume that
cost is proportional to the number of individuals introduced into a large habitat. We treat dispersal as homogeneous
diffusion in a one-dimensional reaction-diffusion system. The local population dynamics depends on sex ratio at birth, and
allows mortality rates to differ between sexes. Furthermore, local density dependence induces a strong Allee effect,
implying that the initial population must be sufficiently large to avert rapid extinction. We address three different initial
spatial distributions for the introduced individuals; for each we minimize the associated cost, constrained by the
requirement that the species must be restored throughout the habitat. First, we consider spatially inhomogeneous,
unstable stationary solutions of the model’s equations as plausible candidates for small restoration cost. Second, we use
numerical simulations to find the smallest rectangular cluster, enclosing a spatially homogeneous population density, that
minimizes the cost of assured restoration. Finally, by employing simulated annealing, we minimize restoration cost among
all possible initial spatial distributions of females and males. For biased sex ratios, or for a significant between-sex difference
in mortality, we find that sex-specific spatial distributions minimize the cost. But as long as the sex ratio maximizes the local
equilibrium density for given mortality rates, a common homogeneous distribution for both sexes that spans a critical
distance yields a similarly low cost.
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Introduction

Ecological restoration aims to replenish an ecosystem’s biodi-

versity, often responding to human-induced losses of indigenous

species [1,2]. When ecosystem managers reintroduce a species to

its former habitat, the restoration effort’s success is ordinarily

defined by combined ecological and economic criteria [3].

Similarly, optimizing biological-control programs may integrate

impact on the target species with costs of deploying the control

agent [4].

Consider an example where restoration failed. Historical

records indicate that Canada lynx (Lynx canadensis) were found in

New York State (NYS), but were seen only rarely during most of

the 20th century [5]. Between 1989 and 1992, no fewer than 80

lynx were captured in Canada and released in the Adirondack

Mountains of NYS. Each animal carried a radio-collar, so that

survival and dispersal could be monitored. The lynx rapidly

dispersed; mortality during dispersal was high. Lynx population

density grew too low for successful reproduction, and the species is

now considered extirpated in NYS [5].

Generalizing the example, we envision restoration of a single

species whose population dynamics depends on the density of each

sex. Before evaluating costs, we must identify those spatial

distributions of the initial population that assure successful

restoration. Suppose that we initiate restoration with a single

spatial cluster, within which individuals are distributed at a

uniform density. Then we must find the ‘‘critical cluster’’ size, the

minimal area the species must occupy to sustain positive

population growth. Analysis of the critical-cluster criterion has

advanced understanding of spatial systems in both physics [6–8]

and ecology [9–12]. However, if ecosystem managers can vary

initial densities according to location, non-uniform spatial

distributions might reduce restoration cost. Given multiple initial

population distributions assuring sustained population increase,

the most preferred option should minimize cost. Our study

investigates how the minimum cost of successful restoration

depends directly on spatial pattern, and how the optimal pattern

depends on sex ratio, and on sex-specific mortality rates.

In this context, we model a species’ restoration as a spatially

detailed, one-dimensional, two-sex reaction-diffusion system. We

optimize the initial densities and spatial distributions of the sexes to

minimize the cost of restoring the species to its positive, stable

(homogeneous) equilibrium density throughout a habitat. The

prototype of such models is the Fisher-Kolmogorov equation

[13,14]

Ltu~D+2uzau(1{u), ð1Þ

which describes the dynamics of single-sex populations with

logistic growth and diffusive dispersal. Our model extends the

basic reaction-diffusion framework to include sex-structured
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dynamics [15–17], where an Allee effect [18,19] generates an

unstable fixed point between extinction and the habitat’s carrying

capacity.

In many natural and managed populations, per-capitum growth is

reduced as density becomes small; this is termed an Allee effect

[20–22]. Different behavioral, ecological and genetic mechanisms

can induce an Allee effect [23]. Low population density may

diminish individual reproduction by reducing mate encounters,

making prey capture more difficult, or by leaving individuals more

susceptible to their own predators [24,25]. Allee effects will be

amplified if dispersal into unoccupied habitat reduces local

population density; a sufficiently high dispersal rate can generate

negative population growth, thwarting restoration [18].

Generically, the cost of restoration can be can defined as:

C~c�
ð
V

u(r,t~0)dr, ð2Þ

where V represents the extent of the habitat, and u(r,t) is the

population density at location r. Without loss of generality, we can

consider a constant per-capitum cost (c�~1). Mathematically, the

restoration cost, which we seek to minimize, is a functional of the

initial population’s spatial distribution. The constraint requiring

population persistence cannot be expressed analytically, since that

would require solving the model’s partial differential equations

exactly. Therefore, we develop a population dynamics with simple

processes and easily interpretable parameters, and obtain the

minimum cost with analytical and numerical techniques.

We organize the rest of the paper as follows. First, we introduce

our sex-structured population dynamics, and outline the analytic

and numerical methods we employ in this paper. In the Results

section we conduct a systematic study of the restoration cost in

multiple stages, considering different initial spatial population

distributions in each stage. Starting with a simplified, single-sex

version of our model, we derive an unstable, aperiodic stationary

solution for the PDE, and use it as initial distribution, resulting in a

single-sex cost. We then continue with the sex-structured model

and analyze the way restoration cost depends on model

parameters, given a simple, homogeneous initial distribution of

individuals inside a cluster. We refer to this initial setup as

‘‘rectangular’’, for its shape on a density vs location plot. We

analyze this setup first with the constraint of equal cluster sizes for

both sexes; later we relax this constraint. In the third stage we

allow any possible shape of initial population distribution and

study how the cost can be reduced as a result. Finally, in the

Discussion we compare the minimum costs found in each stage,

and conclude which approach yields the most economical

restoration.

Methods

General Assumptions
Our model’s key parameters include the sex ratio at birth and

sex-specific mortality rates. We assume that females and males

disperse independently by homogeneous diffusion, and that males

encounter females as a mass-action process, equivalent to random

mating [26]. The fraction of matings leading to successful

reproduction is proportional to the unoccupied fraction of the

environment, (1{m{f ) [15–17]. That is, the population grows

in a self-regulated manner. Hence, we have:

Ltf ~Df +2f zh 1{m{fð Þfm{mf f

Ltm~Dm+2mz 1{hð Þ 1{m{fð Þfm{mmm, ð3Þ

where f (x,t) and m(x,t) denote the local densities of females and

males, respectively. Diffusion rates are described by coefficient Df

for females and Dm for males. Three parameters characterize the

local dynamics: h, mm, and mf , which denote the fraction of

individuals born female, and density-independent mortality rates

for males and females, respectively. Note that while Eqs. (3) do

incorporate spatial effects, they retain a ‘‘mean-field’’ character

(the statistical physics terminology) in that correlation functions of

the underlying stochastic individual-based model are factorized

into products of densities [27,28]. In principle, by extending the

above deterministic reaction-diffusion equations with appropriate

noise terms [29–31], the resulting stochastic partial differential (or

Langevin-type) equations [32] can capture the relevant macro-

scopic features of the underlying spatial, stochastic individual-

Figure 1. Stationary solutions in the single-sex model. (a) Phase plot of stationary solutions, described by Eq. (10). D~1:0, m~0:05. The dots
indicate fixed points, the thick lines indicate separatrices. Different curves correspond to different E parameters, however, values of E were not
chosen uniformly, for aesthetic reasons. (b) The stationary solutions found by integrating along the S2 separatrix, for multiple mortality rate
parameters; D~1:0; x is distance form the habitat’s center.
doi:10.1371/journal.pone.0077332.g001
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based model [33–35]. (Note, however, that the rigorous derivation

of such stochastic partial differential equations can be rather

challenging [36–38]).

Our model [Eq. (3)], with spatial detail and diffusion removed,

is identical to that studied by Tainaka et al. [15]. In our earlier

work [17], we briefly analyzed the above two-sex dynamics with

diffusive dispersal, and found the critical radius (hence, critical

cluster size) for an initial population’s successful invasion of a two-

dimensional habitat. While our reaction-diffusion model includes

numerous simplifications for detailed application to particular

species, nevertheless it exhibits the essential ecological character-

istics of more complex two-sex models. Hence, implications of our

results for restoration will likely hold across a wide range of specific

models.

We can transform Eq. (3) to interpret it as a single-sex model by

making the equations symmetric. To do so, we must let h~0:5,

restrict mf ~mm~ : m, Df ~Dm~ : D and use the same initial-

density distributions for both males and females. In this way, the

two densities behave identically over time: f (x,t)~m(x,t)~u(x,t),
described by the following equation:

Ltu~D+2uz
1

2
u2(1{2u){mu: ð4Þ

This transformation bridges the single-sex and two-sex models;

using the constants in Eq. (4), we can directly compare results

between models without rescaling parameters. Note that the

(cubic) local dynamics also retains an Allee effect.

Analytic and Numerical Methods
Our first approach to cost minimization selects suitable unstable

stationary solutions of the PDE model as initial population

distributions, since we can derive them analytically for the single-

sex model. These are special ‘‘critical’’ solutions, which transform

to stable equilibrium solutions (either persistence or extinction)

depending on a small perturbation. The cost associated with each

stationary solution is found by numerical integration of the density

profile (i.e., the area under the curve). We obtain the stationary

solutions for the single-sex model by setting the left-hand side of

Figure 2. Scaling of critical cluster sizes vs diffusion coefficients, at various parameter values. (a) l�f ~l�m~l� , Df ~Dm~D; (b) l�f ~l�m~l� ,
Df ~1:0; (c) l�f ~1:0, Df ~Dm~D; (d) l�f ~1:0, Df ~1:0. In every case, initial (spatially homogeneous) densities are fixed: f0~m0~0:45.

doi:10.1371/journal.pone.0077332.g002
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Eq. (4) to zero, and deriving a relationship between the stationary

solution’s local value and its derivative.

For the sex-structured model, we cannot derive stationary

solutions analytically. Instead, we base our study on the model’s

critical limits of cluster size and density, which are directly related

to the minimum cost of successful restoration. For a rectangular

initial setup (homogeneous initial spatial distribution inside the

cluster with a specific population density), there exists a critical

cluster size, the smallest spatial extent such that the given density

achieves sustained positive growth. Symmetrically, for a given

cluster size, there is a critical initial density, the lowest density

assuring sustained population growth. In both cases, the critical

limit also corresponds to the minimum cost, since the cost is

proportional to both cluster size and density. The exact,

parameter-dependent values of these critical limits cannot be

derived analytically. Instead, we use binary search across a range

of possible values, accomplished by testing each value for

successful restoration vs extinction.

We discriminate restoration from extinction by numerically

integrating the model until it has converged to a global

equilibrium. We use second-order finite difference discretization

for spatial derivatives and explicit Euler method for integration

over time [39], with a sufficiently small time-step. Integration

stopped when all time-derivatives at all spatial coordinates were

less than 10{6. Finally, the cost is obtained by multiplying the

initial density and the initial cluster size, and summed for males

and females.

Next, we extend the rectangular initial setup approach by

allowing the initial cluster size to differ between males and females.

In this case, we first calculate the critical cluster size for males at a

fixed cluster size for females using binary search, resulting in a cost

with respect to the given female cluster size. Then, we use gradient

descent on this cost function to minimize it with respect to female

cluster size. Note, that during the gradient descent we always

change the female cluster size by one unit of spatial grid resolution,

and we keep moving toward the negative gradient even if the local

derivative is zero, because a small slope discretized with any grid

Figure 3. Scaling of (a) critical cluster length at introduction, and (b) cost, with respect to initial population density. The total density
shown on the x axis is divided equally between males and females. The point markers on the curves show the stable stationary densities of local
dynamics. (c) shows the cost landscape with respect to male and female densities; the blue cross marks the stable stationary density values; mf ~0:04,

mm~0:03, h~0:5. For all figures, D~1:0.
doi:10.1371/journal.pone.0077332.g003
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can result in zero local gradients before reaching the actual

minimum point. Note also, that we strongly rely on the convexity

of the cost function with respect to male and female cluster sizes.

Finally, we relax all constraints on the shape of the initial

population distribution; we optimize the spatially discretized shape

for lowest cost under the constraint of successful restoration.

Discretization is essential because it allows us to express the cost as

an n-dimensional function, instead of a functional, where n is the

size of the spatial grid. We use the same grid for shape

discretization and numerical PDE integration, for practical

reasons. Given the discretization, we use simulated annealing [40]

for optimizing the shape function. This is essentially a Monte

Carlo simulation, where random changes of the initial spatial

distribution (the shape function) are accepted or rejected according

to a specified acceptance probability function, such that the visited

cost states have a Boltzmann-distribution characterized by a

temperature-like parameter. As this parameter is lowered, the

expected value of the cost is also lowered, eventually leading to the

globally optimal, minimum cost state. For the specific steps of

simulated annealing, see Supporting Information (Section S5 in

File S1). In order to determine whether the constraint of successful

restoration is satisfied we must numerically integrate the model at

every Monte Carlo step. To reduce computational time, we

accelerated the PDE integration with GPGPU computation using

CUDA [41,42], which locates the global equilibrium of the PDE

in a fraction of a second, giving a total time for the simulated

annealing on the order of a few hours.

Results

The prerequisite for analyzing the cost of restoration is to ensure

the local stability of successful restoration, i.e., a positive stable

fixed point of local dynamics. The necessary stability condition for

the two-sex model [Eq. (3)] is given in our previous work [17]:

1{4
mf

h
z

mm

1{h

� �
w0 ð5Þ

Figure 4. Scaling of (a) critical cluster size and (b) cost, with respect to sex ratio, at different mortality rate combinations. D~1:0.
Rectangular initial populations were used with stationary population densities.
doi:10.1371/journal.pone.0077332.g004

Figure 5. Comparision of density-maximizing and cost minimizing sex ratios. Density-maximizing sex ratio h� [Eq. (17)] and numerical

bounds of cost-minimizing sex ratios ĥh are calculated using rectangular population distributions with stationary initial densities, D~1:0, (a) mm~0:01,
(b) mm~0:02, (c) mm~0:03.
doi:10.1371/journal.pone.0077332.g005
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Similarily, we can find the necessary stability condition for the

single-sex model [Eq. (4)]:

mv

1

16
: ð6Þ

These conditions provide us guidelines for selecting proper

model parameters when evaluating costs in the following sections.

Justification for Eqs. (5) and (6), and formulas for the fixed points

are presented in the Supporting Information (Sections S1 and S2

in File S1).

Unstable Stationary Solutions
An unstable stationary solution of the PDE seems a good

candidate for the initial spatial distribution. It is a critical solution,

in the sense that given a small perturbation, the unstable stationary

solution transforms to a stable, spatially homogeneous solution.

Positive perturbations result in positive homogeneous population

densities (successful restoration), and negative perturbations result

in zero densities (extinction).

Partial differential equations, such as Eqs. (3) and (4) have

infinitely many unstable stationary solutions. We cannot find these

solutions directly, but we can derive analytical formulas for the

relationship between the density and its spatial derivative. For the

single-sex model [Eq. (4)] we have the following definitions:

Lu

Lx
~v ð7Þ

Lv

Lx
~

{1

D

1

2
u2(1{2u){mu

� �
: ð8Þ

Using v, we change variables to write a first-order differential

equation:

v(u)
Lv

Lu
~

{1

D

1

2
u2(1{2u){mu

� �
: ð9Þ

By separating variables, we obtain the following analytical

solution:

Figure 6. Minimum cost found by allowing different initial cluster sizes for males and females, relative to the case where cluster
lengths are equal. Common parameter: D~1:0. Individual parameters: (a) mf ~0:01, (b) mf ~0:03.
doi:10.1371/journal.pone.0077332.g006

Figure 7. Shapes of initial density distributions that minimize cost, found by simulated annealing. The x axis shows discretization grid
coordinates; dx~0:1 length unit per grid point. Parameters: (a) h~0:5, mf ~0:04, mm~0:04, (b) h~0:1, mf ~0:01, mm~0:02, (c) h~0:7, mf ~0:04,

mm~0:02.
doi:10.1371/journal.pone.0077332.g007
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v(u)~+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3u4{2u3z6mu2z12DE

6D

r
, ð10Þ

where E is a free parameter. The phase diagram for this equation

is depicted in Fig. 1(a) (also in Fig. S2 in File S1), and its contents

are summarized as follows.

The fixed points Pi correspond to homogeneous stationary

solutions. Naturally, these are also fixed points of the original

equations [Eq. (4)], but here they are only special cases of

stationary solutions that do not vary spatially. Hence v(u)~0. P1

and P3 are saddle points (stable equilibrium nodes of the local

dynamics) corresponding to extinction (u~0) and persistence

(uw0), respectively. P2 is a center (unstable fixed point of the local

dynamics) corresponding to the unstable equilibrium due to the

local dynamics’ strong Allee effect.

Curves in Fig. 1(a) correspond to inhomogeneous stationary

solutions that can be classified by the value of the free parameter

E in Eq. (10). Separatrices S1, S2, and S3 correspond to the

following values (with the same subscripts, see Section S3 in File S1

for details):

E1~
1

48D
(u�2{2m)(u�2{6m) ð11Þ

E2~0 ð12Þ

E3~
1

24D
(u�3)2(u�3{6m), ð13Þ

where u�1, u�2, and u�3 are the equilibrium densities of local

dynamics, i.e., the values of u corresponding to P1, P2, and P3,

respectively:

u�1~0, ð14Þ

u�2,3~
1

4
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16
{m

r
: ð15Þ

The closed elliptical curves around P2 represent periodic

stationary solutions, and they are the only ones of interest,

because all other curves extend to infinitely large negative or

positive densities, neither having biological meaning.

Spatially periodic stationary solutions may offer candidate initial

population distributions. In principle, if minimum densities within

each period were close to zero, then we could select a segment of

the solution, one period in length between two density minima,

and apply it as an initial spatial distribution. However, in our case,

as the minimum value of u goes to zero, the period of the solutions

goes to infinity, and the curves converge to the S2 separatrix,

which corresponds to an aperiodic stationary solution. The exact

Figure 8. Comparison of minimum cost values in the symmetric
model. Comparision includes cost values found by integrating the
aperiodic stationary density, by using rectangular shape with stable
stationary densities, and with simulated annealing.
doi:10.1371/journal.pone.0077332.g008

Figure 9. Comparision of minimum cost values in the two-sex model. Comparision includes cost values found by using rectangular shape
with equal and unequal male and female cluster sizes, and by simulated annealing. (a) mf ~mm~0:02, (b) mf ~mm~0:03:
doi:10.1371/journal.pone.0077332.g009

Two-Sex Dynamics and Cost Minimization
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aperiodic shape of u(x) can be found by numerical integration

along S2, depicted in Fig. 1(b). Since u(x) converges to zero

rapidly, we can use it as an initial population distribution by taking

its central segment above an arbitrary small (biologically

meaningful) density threshold. Because of the fast convergence

to zero, the length of the segment will be finite. In our study, we

use 10{5 for the density threshold. Then, for every D and m
combination, we have an exact shape, and an exact cost value

defined as twice the area under the curve (counting both males and

females), denoted by Cstat. We will compare these costs with those

found by the other two methods described in the following

subsections.

As an interesting observation, we note that contrary to intuition,

the period length of the stationary solution does not converge to

zero as the solution curves approach P2, see Fig. S3 and further

details in Supporting Information (Section S4 in File S1).

For the sex-structured model [Eq. 3] we cannot derive unstable

stationary solutions analytically. Instead, we study the scaling of

restoration cost through a numerical analysis of the critical cluster

size.

Critical Cluster Size and Minimum Cost
Criticality of an initial cluster’s size occurs when density

reduction due to dispersal exactly balances the net effect of local

natality and mortality; Video S1 clearly shows this form of

criticality in one dimension. In two dimensions the expanding

population front’s speed is reduced in proportion to the curvature

of the cluster; therefore, it affects the critical cluster size. To avoid

confusing effects of curvature with other parameters’ impact on

the critical cluster size and, hence, the minimum cost, we restrict

our study to one dimension.

We begin our analysis of the critical cluster size by assuming a

rectangular initial setup. This is the most obvious choice, for its

mathematical simplicity, and its plausible application (e.g., an

animal population surrounded by a fence before release can be

modeled with a uniform spatial distribution). Therefore, we have

four parameters describing the distribution: f0, m0, lf , lm, which

represent female density, male density, length of space occupied by

females, and length of space occupied by males, respectively, at the

initiation of restoration. (Both female and male clusters are

centered symmetrically). We shall refer to lf and lm as the cluster

sizes of the initial population. The cost of the initial state is defined

simply as:

Crect~f0|lf zm0|lm, ð16Þ

and it is minimized by using the critical cluster sizes l�m and l�m, for

males and females, respectively. Note, that l�m and l�m are

themselves dependent on initial densities f0 and m0, as well as

model parameters Df , Dm, mf , mm, and h. Therefore, we

systematically study dependence of critical clusters on all

parameters.

As an initial step, we analyze the dependence of critical cluster

size on the diffusion coefficients. We anticipate that the critical

cluster size, i.e., critical length is proportional to the square root of

the diffusion coefficient. Similar scaling has been observed in two-

dimensions when a population with a strong Allee effect disperses

by diffusion [17,18]. Our aim here is to show the same behavior in

the one-dimensional reaction-diffusion system, and to ask whether

it holds when male and female diffusion coefficients and cluster

sizes differ.

Figure 2(a,b) shows that as long as we employ the same cluster

size for males and females, the critical cluster size has the expected

scaling behavior l�*
ffiffiffiffi
D
p

[18] with respect to both male and

female diffusion coefficients, even if one sex has a fixed diffusion

coefficient. Note that it is sufficient to study the dependence on the

diffusion of one sex (here, males) while the other is fixed (here,

females), because of the symmetric construction of the model.

Further, Fig. 2(c,d) indicates that fixing the cluster size of one sex

while measuring the critical cluster size of the other sex with

respect to diffusion coefficients yields non-trivial scaling. However,

we observe that a higher dispersal rate results in a larger critical

cluster size, and, hence, a larger restoration cost.

Continuing our analysis of critical cluster sizes, we now assume

that the critical cluster sizes are equal for both sexes (l�f ~l�m~ : l�);

we relax this constraint later. Even with the equal cluster-size

constraint, initial densities for males and females within that cluster

may, in principle, differ. In practice, a density difference could be

implemented for most diecious species. To find the best choice of

initial density values (with respect to minimizing cost), we aim to

relate them to model parameters, taken as given for the focal

population.

Naturally, the initial densities must exceed the Allee threshold

(the unstable fixed-point densities); otherwise, the population can

never achieve positive growth. Figure 3(a) shows that as the initial

density is lowered, the critical cluster size increases, and goes to

infinity as we approach the Allee threshold.

Scaling of the cost, however, is non-trivial. We can always find

the minimum cost at a density somewhere in the vicinity of the

positive stable fixed point of the system, but always slightly below

it. We understand this by considering the dynamics just after initial

introduction. If the population starts from its stationary density

(the stable, positive fixed point), then the local densities can only

decrease, due to diffusive dispersal. However, if the initial density

is lowered slightly, then the population has a chance to grow

locally (in particular, at the center of the cluster) before the effects

of diffusion reach it, while the eventual spread through the habitat

remains the same. In essence, the cost is slightly lowered by

handing over some of the spreading effort to growth dynamics.

However, as Fig. 3(b) and Fig. 3(c) show, this advantage in cost-

reduction is very small. We can conclude that using the stationary

densities as initial densities results in a sufficiently low cost. Also, it

provides a good choice of initial density based on model

parameters, because the stationary densities depend on local

dynamics, which in turn depend on model parameters. The

formulas for the stationary densities are included in the Supporting

Information (Sections S1 and S2 in File S1).

We expand on the cost-minimizing property of stationary

densities; we use them as initial densities throughout the rest of our

study. We continue with the analysis of the critical cluster size’s

dependence on model parameters. In particular, we focus on the

value of sex ratio at birth (h), because both population stability and

equilibrium density depend on this single parameter. For

population stability and persistence, there is a range of permissible

sex ratios, determined by the mortality rates (see Section S2 in File

S1). Within this range, we define the optimal sex ratio h� as the

value maximizing the equilibrium population density [15,17]:

h�~
1

1z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mm=mf

q : ð17Þ

Note, that when the mortality rates are equal, the optimal sex

ratio is 0:5, which is the parametrization, by definition, in the

symmetric single-sex model.

Two-Sex Dynamics and Cost Minimization
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We find that the smallest cluster size assuring restoration

corresponds closely to the optimal sex ratio, and that any small

deviation from the optimal value causes a small increase in the

critical cluster size [Fig. 4(a)]. However, since the equilibrium

population densities (serving as initial densities) decrease at

suboptimal sex ratios (by definition; see Fig. S1 in File S1), the

combined effect on the cost is non-trivial. As we see on Fig. 4(b),

restoration cost is minimized at approximately the same sex ratios

minimizing the critical cluster size, indicating that the cluster size is

more sensitive to biased sex ratios than to equilibrium densities.

We also find that strongly biased sex ratios approaching the

boundary of the stability range cause both cluster size and

restoration cost to diverge.

To complete the relationship between the sex ratio minimizing

restoration cost (ĥh) and the sex ratio that locally maximizes total

equilibrium population density (h�), we compare the two quantities

numerically. For the latter we have an analytical expression [Eq.

(17)]. But our cost-minimizing sex ratios have only limited

precision, since for each value of h we employed binary search

to determine the critical cluster size, which, in turn, determines the

cost. Therefore we define a computational error bound on ĥh as the

range of h values that give critical cluster sizes within the error

range of the minimum point’s cluster size found by binary search.

Figure 5 offers comparison of the density-maximizing and cost-

minimizing sex ratios. We can conclude that the sex ratio

maximizing equilibrium density is identical to the sex ratio

minimizing restoration cost, up to computational error.

To this point, our results reflect the assumption that individuals

of each sex are introduced across the same extent of habitat. We

now relax this constraint; that is, we permit l�f =l�m, and ask

whether the cost of restoration can be reduced by introducing

individuals into sex-specific lengths of habitat. We denote the ratio

of costs obtained by unequal and equal cluster sizes as:

crel~
Crect½l�f =l�m�
Crect½l�f ~l�m�

ð18Þ

Figure 6 presents our results. We find that optimality of the sex

ratio plays a central role in reducing the cost of restoration. In

particular, when the sex ratio equals the optimal (density-

maximizing) value determined by mortality rates, the minimum

cost is achieved with equally sized clusters. No further cost

reduction can be achieved by allowing different cluster sizes for

males and females. However, the relative advantage of sex-specific

cluster size increases as the sex ratio deviates from the optimal

value. If we consider that the absolute cost value diverges for

strongly biased sex ratios [see Fig. 4(b)] we conclude that in such

cases the savings achieved by adjusting the initial cluster sizes of

each sex could be substantial.

Simulated Annealing
We now relax all constraints on the initial cluster’s spatial

distribution, and use simulated annealing to optimize sex-specific

distribution shapes with respect to cost. At this stage we assume

only that the cost-minimizing distributions have a finite support,

and we carry out the minimization accordingly. However, the

support of the function is allowed to grow or shrink by random

shape changes during simulated annealing; see Supporting

Information (Section S5 in File S1) for details.

By analyzing a series of minimum cost distributions obtained

with simulated annealing, we observe the following. First, the

distributions indeed have a finite support. Although we initialize

them as such, the width of the optimal population distribution

tends to become smaller, rather than larger, during simulated

annealing. This effect during the minimization procedure is shown

by Video S2; typical final, optimized shapes are shown in Fig. 7. It

is also remarkable that the edges of the distributions go to zero

very sharply; this property develops without any influence inherent

to the procedure.

Generally, the final result is an ‘‘arch’’-shaped distribution, with

similar dimensions for females and males. Note that as the sex

ratio diverges from its optimal value, we observe a change in the

sizes of the two initial population distributions and in the height of

the peaks. These changes in spatial distributions occur roughly in

proportion to the system’s positive stationary densities [Fig. 7(b,c)].

Interestingly, the height of the peaks always falls between the

stationary densities and the Allee threshold. Note that this shape

provides the maximal rate of population growth possible during

the first moments of the simulation, hence it combats the diffusion-

amplified Allee effect most efficiently. Costs corresponding to the

optimized distributions are denoted CSA when we compare results

with other methods.

Discussion

We examined three approaches to minimizing the cost of a

species’ restoration; the approaches differ in both ecological

premises and mathematical methods. We considered the aperiod-

ic, spatially inhomogeneous solution to the single-sex dynamics

[Fig. 1(b)], critical cluster sizes of the rectangular initial setup

[Fig. 4(a)], and simulated annealing of sex-specific initial

distributions [Fig. 7].

Summary comparisons of the minimum restoration cost

achieved by the different methods for the symmetric single sex

model appear in Fig. 8. The aperiodic stationary solution to the

dynamics gives significantly larger cost than the other approaches.

Considering the shape of these distributions, they would likely

prove difficult to implement in application. Restricting attention to

the other two approaches, it is remarkable that simple rectangular

distributions and the results of simulated annealing yield essentially

identical costs.

Figure 9 compares minimum costs for each critical-cluster

analysis (i.e., a single cluster size and sex-specific cluster sizes) and

costs incurred under simulated annealing. The critical cluster

methods assume uniform initial population density within cluster

bounds; simulated annealing lets initial densities depend on spatial

location. The minimum cost varies little among methods as long as

the sex ratio at birth does not deviate too much from the optimal

value (here, h�~0:5). As sex-ratio bias increases, optimal sex-

specific initial cluster sizes can lower the minimum cost of

restoration. Simulated annealing reduces restoration cost even

further, but this advantage becomes significant only at strongly

biased (and biologically rare) sex ratios, and implementing such

spatial distributions in application could prove difficult, negating

any cost advantage. The same qualitative conclusions hold when

we fix the sex ratio and increase the difference between the sexes’

respective mortality rates, because the mortality bias can also

increase the difference between the optimal and any fixed sex

ratio.

Our model assumes deterministic dynamics, which does not

account for extinction due to demographic stochasticity in

populations near an extinction threshold [43,44]. This effect can

be exaggerated when a population’s spatial dispersion leaves

dynamically independent clusters near critical size [10,45].

We assume diffusive dispersal. Many plants, and some animals,

disperse only locally, i.e., the probability of long-distance dispersal
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is much lower than diffusion assumes [46–48]. Dispersal limitation

becomes important when the number of discrete individuals is

small [49], since random internal fluctuations can induce

population extinction. Given discreteness and stochasticity, neither

of which has a role in our cost-minimizing model, lattice-based

results show that expected growth from rarity demands greater

propagation, relative to mortality, as mean dispersal distance

decreases [11,50]. We also assume that no explicit interspecific

interactions affect the population during restoration. Species

occupying the community to be restored may facilitate restoration;

for example, trees may attract birds that disperse seeds of other

tree species [51]. Alternatively, resident species may resist the

introduced species biotically [52,53]. Interspecific interactions will

often affect the likelihood of restoration success, as well as the cost.

Consequences of these interactions can sometimes be expressed

abstractly through the introduced species’ positive equilibrium

density; in other cases, successful restoration may demand

quantification of these interactions.

We assume an Allee effect arises from interaction of self-

regulation with a birth rate that depends on the density of each

sex. In the context of restoration, a two-sex dynamics may be

essential to predicting spatial-expansion rate if dispersal differs

between sexes [54]. We model mating encounters via mass-action,

which should be reasonable for animals maintaining individual

home ranges, or for dioecious plants with random mating.

Alternative ‘‘marriage functions’’ [55] apply to certain species,

particularly for polygynous or polyandrous mating systems.

We modeled a single species’ restoration only. Habitat

restoration may attempt to manage particular multi-species

interactions, or may seek to promote growth of many threatened

species [1]. Our cost function ignores feedback of a species’

restoration on other biotic processes, or on economic stake-holders

who incur post-restoration costs [56].

Our results suggest some considerations for species restoration.

First, if a species disperses rapidly, individuals should be

introduced concurrently, rather than serially. The initial popula-

tion will increase only if the density exceeds any Allee threshold,

and continues to do so as individuals disperse. Intuitively, the

number/density of individuals introduced should increase with

their dispersal rate.

Second, restoration cost declines little by introducing a species

at a density below the (estimated) carrying capacity, unless the

species disperses very slowly. Third, a rectangular spatial

distribution adds little or no proportional cost over the ogive

profile assumed in our simulated annealing method, as long as the

sex ratio is close to optimal. Spatial uniformity will likely prove

more practical for most animals. Given a uniform density close to

the positive, stable equilibrium, restoration should focus on an

initial population whose expanse exceeds the critical-cluster size,

which (again) increases with dispersal rate.

Finally, adjusting frequencies of the sexes in an initial

population may decrease the cost of successful restoration. Of

course, if one sex always limits population growth, an excess of

that sex promotes restoration. If population growth depends on the

density of each sex, introducing the sexes at different densities, or

with different cluster sizes, may prove advantageous. Sex ratio at

birth may be unbiased, but mortality rates may differ between

sexes, particularly during dispersal. Adjusting the sex ratio at

introduction to match frequencies at positive equilibrium densities

should promote successful restoration, and reduce its cost.

Supporting Information

File S1 Includes derivations of fixed points of dynamics, stability

conditions, and technical details of simulated annealing.

(PDF)

Video S1 Evolution of density distributions of populations

during diffusive spreading, according to the single-sex model in

one dimension. Multiple independent simulations are presented

simultaneously, each having identical model parameters, except

for initial cluster length, as indicated on the legend. The video

clearly shows the presence of a critical cluster length; initial cluster

sizes above this limit result in population persistence (successful

restoration), smaller cluster sizes result in extinction (failed

restoration).

(AVI)

Video S2 Density distributions of males and females in one

dimension during simulated annealing. Red color denotes females,

blue denotes males. The horizontal orange and green lines show

the stable stationary densities of local dynamics, for males and

females, respectively. As time advances, the temperature-like

control parameter is lowered, resulting in decreasing intensity of

random fluctuations. Eventually, the cost-minimizing distribution

shapes are obtained. Model parameters: h~0:25, mf ~mm~0:03,

D~1:0.

(AVI)
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Author Contributions

Conceived and designed the experiments: FM TC GK. Performed the

experiments: FM CC. Analyzed the data: FM CC TC GK. Wrote the

paper: FM CC TC GK.

References

1. Lindenmayer DB, Manning AD, Smith PL, Possingham HP, Fischer J, et al.

(2002) The focalspecies approach and landscape restoration: a critique. Conserv

Biol 16: 338–345.

2. Hall RJ (2012) Restoration ecology. In: Hastings A, Gross LJ, editors.

Encyclopedia of Theoretical Ecology. Berkeley, CA: Univeristy of California

Press. pp.629–632.

3. Holl KD, Howarth RB (2000) Paying for restoration. Restor Ecol 8: 260–267.

4. Shea K, Possingham HP (2000) Optimal release strategies for biological control

agents: an application of stochastic dynamic programming to population

management. J Appl Ecol 37: 77–86.

5. New York State Department of Environmental Conservation (2012) Canada

lynx. Available: http://www.dec.ny.gov/animals/6980.html. Accessed 01 No-

vember 2012.

6. Rikvold PA, Tomita H, Miyashita S, Sides SW (1994) Metastable lifetimes in a

kinetic Ising model: dependence on field and system size. Phys Rev E 49: 5080–

5090.

7. Ramos RA, Rikvold PA, Novotny MA (1999) Test of the Kolmogorov-Johnson-

Mehl-Avrami picture of meta-stable decay in a model with microscopic

dynamics. Phys Rev B 59: 9053–9069.

8. Machado E, Buendı́a GM, Rikvold PA (2005) Decay of metastable phases in a

model for the catalytic oxidation of CO. Phys Rev E 71: 031603.

9. Gandhi A, Levin S, Orszag S (1999) Nucleation and relaxation from meta-
stability in spatial ecological models. J Theor Biol 200: 121–146.

10. Korniss G, Caraco T (2005) Spatial dynamics of invasion: the geometry of

introduced species. J Theor Biol 233: 137–150.

11. O’Malley L, Basham J, Yasi JA, Korniss G, Allstadt A, et al. (2006) Invasive

advance of an advantageous mutation: nucleation theory. Theor Popul Biol 70:
464–478.

12. Allstadt A, Caraco T, Korniss G (2007) Ecological invasion: spatial clustering

and the critical radius. Evol Ecol Res 9: 375–394.

13. Fisher RA (1930) The genetical theory of natural selection. OxfordUK:
University Press. 298 p.

14. Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial differential equations

in ecology: spatial interactions and population dynamics. Ecology 75: 17–29.

Two-Sex Dynamics and Cost Minimization

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e77332



15. Tainaka K, Hayashi T, Yoshimura J (2006) Sustainable sex ratio in lattice

populations. Europhys Lett 74: 554–559.
16. Schmickl T, Karsai I (2010) The interplay of sex ratio, male success and density-

independent mortality affects population dynamics. Ecol Model 221: 1089–

1097.
17. Molnár F Jr, Caraco T, Korniss G (2012) Extraordinary sex ratios: cultural

effects on ecological consequences. PLoS ONE 7(8): e43364.
18. Lewis MA, Kareiva P (1993) Allee dynamics and the spread of invading

organisms. Theor Popul Biol 43: 141–158.

19. Keitt TH, Lewis MA, Holt RD (2001) Allee effects, invasion pinning, and
species’ borders. Am Nat 157: 203–216.

20. Boukal DS, Berec L (2002) Single-species models of the Allee effect: extinction
boundaries, sex ratios and mate encounters. J Theor Biol 218: 375–394.

21. Aviles L, Abbot P, Cutter AD (2002) Population ecology, nonlinear dynamics,
and social evolution. I. Associations among nonrelatives. Am Nat 159: 115–127.

22. Berec L, Angulo E, Courchamp F (2006) Multiple Allee effects and population

management. Trends Ecol Evol 22: 185–191.
23. Courchamp F, Clutton-Brick T, Grenfell B (1999) Inverse density dependence

and the Allee effect. Trends Ecol Evol 14: 405–410.
24. Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for

behaviour, ecology and conservation. Trends Ecol Evol 14: 401–405.

25. Caraco T, Uetz GW, Gillespie RG, Giraldeau L-A (1995) Resource
consumption variance within and among individuals: on coloniality in spiders.

Ecology 76: 196–205.
26. Berec L, Boukal DS, Berec M (2001) Linking the Allee effect, sexual

reproduction, and temperature-dependent sex determination via spatial
dynamics. Am Nat 157: 217–230.

27. McKane AJ, Newman TJ (2004) Stochastic models in population biology and

their deterministic analogues. Phys Rev E 70: 041902.
28. Korniss G, Schmittmann B, Zia RKP (1995) Novel phase transitions in biased

diffusion of two species. Europhys Lett 32: 49–54.
29. Korniss G (1997) Structure factors and their distributions in driven two-species

models. Phys Rev E 56: 4072–4084.

30. Escudero C, Buceta J, de la Rubia FJ, Lindenberg K (2004) Extinction in
population dynamics. Phys Rev E 69: 021908.

31. Pigolotti S, Benzi R, Perlekar P, Jensene MH, Toschi F, et al. (2013) Growth,
competition and cooperation in spatial population genetics. Theor Popul Biol

84: 72–86.
32. Gardiner CW (1985) Handbook of Stochastic Methods for Physics, Chemistry

and the Natural Sciences. Berlin: Springer-Verlag. 442 p.

33. Van Kampen NG (1981) Stochastic Processes in Physics and Chemistry.
Amsterdam: Elsevier Science Ltd. 434 p.

34. Schmittmann B, Zia RKP (1995) Statistical Mechanics of Driven Diffusive
Systems, Volume 17 (Phase Transitions and Critical Phenomena). New York:

Academic Press. 220 p.

35. Hinrichsen H (2000) Non-equilibrium critical phenomena and phase transitions
into absorbing states. Adv in Phys 49: 815–958.

36. Doi M (1976) Stochastic theory of diffusion-controlled reaction. J Phys A Math
Gen 9: 1479–1495.
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