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Abstract

Background: One of the most important weaknesses of the peer review process is that different reviewers’ ratings of the
same grant proposal typically differ. Studies on the inter-rater reliability of peer reviews mostly report only average values
across all submitted proposals. But inter-rater reliabilities can vary depending on the scientific discipline or the requested
grant sum, for instance.

Goal: Taking the Austrian Science Fund (FWF) as an example, we aimed to investigate empirically the heterogeneity of inter-
rater reliabilities (intraclass correlation) and its determinants.

Methods: The data consisted of N = 8,329 proposals with N = 23,414 overall ratings by reviewers, which were statistically
analyzed using the generalized estimating equations approach (GEE).

Results: We found an overall intraclass correlation (ICC) of reviewers̀ ratings of r= .259 with a 95% confidence interval of
[.249,.279]. In humanities the ICCs were statistically significantly higher than in all other research areas except technical
sciences. The ICC in biosciences deviated statistically significantly from the average ICC. Other factors (besides the research
areas), such as the grant sum requested, had negligible influence on the ICC.

Conclusions: Especially in biosciences, the number of reviewers of each proposal should be increased so as to increase the
ICC.
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Introduction

The legitimacy of the approval procedure at funding agencies

for basic research depends strongly on whether the reliability,

validity, and fairness of the procedure are guaranteed [1]. Quality

control undertaken by peers in the traditional peer review of

proposals for grants is essential in most research funding

organizations to establish valid and evidence-based approval

decisions by the board of trustees [2]. According to Marsh,

Jayasinghe, and Bond [3], one of the most important weaknesses

of the peer review process is that the ratings given to the same

proposal by different reviewers typically differ. This results in a

lack of inter-rater reliability (IRR). Cicchetti [4] defines IRR as

‘‘the extent to which two or more independent reviews of the same

scientific document agree’’ (p. 120). Overviews of the literature on

the reliability of peer reviews for grant applications[3–5] come to

similar conclusions as those for journal peer review (e.g., [6–7]):

There is on the average a low level of IRR.

To calculate IRR in the case of continuous ratings, intraclass

correlations (ICCs) are often used; roughly speaking, the ICC is

defined as a ratio of the variance of the mean ratings across all

reviewers of a grant proposal and the total variance across all

reviewers̀ ratings of a proposal.

Studies on the IRR of peer reviews mostly report average values

across all submitted proposals [4]. But this can lead to biased

estimation of the actual IRR, if reviewers’ ratings are not

homogeneous. Reviewers in some scientific disciplines can rate

proposals on average more strictly than reviewers in other

scientific disciplines do (heterogeneity with respect to the mean).

According to Marsh et al. [3], ratings of reviewers are affected

by a number of covariates called bias factors – including

applicant’s gender, reviewer’s gender, grant sum requested – that

have nothing to do with the quality of a proposal [1]. As a result,

the variance of the mean ratings as well as the total variance can

also be explained by these covariates.

Over and above that, properties of grant proposals can also

affect the total variance of reviewers’ ratings (heterogeneity with respect

to the variance). For instance, it can be supposed that in the

humanities and social sciences reviewers’ ratings vary more greatly

than in the natural sciences. This may be due to the lack of

uniform evaluation standards [8] or to greatly varying quality of
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proposals. Mallard et al. [9] pointed out, ‘‘noting that evaluators

focus on the intellectual merits of proposals or articles provides

little leverage for analyzing procedural fairness when conflicting

criteria are used to define intellectual merit, as is generally the case

in the social sciences and humanities’’ (p. 577). A greater variance

of ratings in certain scientific disciplines can, but must not

necessarily, be accompanied by a lower ICC. If it is found that the

IRRs in the humanities and social sciences are comparable to the

IRRs in the natural sciences, as Jayasinghe et al. [5] found. The

higher variability of reviewers’ ratings in the humanities and social

sciences is due to the more greatly varying quality of the proposals

in these disciplines. Including further covariates (such as the grant

sum requested, time point of the final approval decision) makes it

possible to determine the specific combination of conditions that

leads to differences in the variability of reviewer’s ratings. In

addition to the heterogeneity of ratings with regard to the mean

and variance proposals can also differ with regard to the ICC itself

(heterogeneity with respect to the ICC). Thus, the ICCs can vary with

regard to various covariates, as Marsh et al. [3] showed.

As this overview of studies on reliability shows, when examining

the IRR of peer reviews using ICCs, it is necessary to include all

three components (mean, variance, ICC) in the statistical analysis

to obtain reliable information about the IRR.

In this study, we will determine the ICCs controlling for the

specific bias factors. This means that the ICCs are calculated on

condition that all proposals have the same values of the included

covariates.

The generalized estimating equations approach (GEE) (espe-

cially the further [10–12] development of the approach by Yan

and Fine [13]) makes it possible to model the heterogeneity of ICC

statistically with a set of covariates while simultaneously consid-

ering the heterogeneity of variances and impacts of bias factors.

However, empirical analysis of the heterogeneity of reviewers’

ratings requires a large database. We decided to conduct an

empirical study of the heterogeneity of ICCs and its multiple

determinants, taking as an example the Austrian Science Fund

(FWF). The data consisted of all proposals of the FWF, generated

by the FWF review procedure between the years 1999 and 2009;

all scientific disciplines were represented in the database. This is an

ideal database for the purpose of this study.

In the following, the FWF will be described in more detail and

the research questions presented. The data on which the analysis

was based will be characterized and the statistical approach

explained. The results are then reported and discussed.

The Austrian Science Fund (FWF)
The FWF is Austria’s central funding organization for basic

research. The body responsible for funding decisions at the FWF is

the board of trustees, made up of 26 elected reporters and 26

alternates [14]. For each grant application, the FWF obtains at

least two international expert reviews. The number of reviewers

depends on the amount of funding requested. The expert review

consists (among other things) of an extensive written comment and

a rating providing an overall numerical assessment of the

application. At the FWF board’s decision meetings, the reporters

present the written reviews and ratings of each grant application.

The FWF does not enforce any quotas or specific budgets for

individual scientific disciplines, and as a result, all applications

from all fields and disciplines compete with one another at the five

decision meetings held each year. In the period under study here

(from 1999 to 2009), the approval rate of proposals was 44.2%

[14].

From 1999 to 2004, the approval rate dropped continuously

from 53.4% in 1999 to 36.2% in 2004; after that, it increased

slightly to 42.9% in 2008 (but dropped again to 32.2% in 2009)

[14]. The year 2004 thus represents a turning point in the

development of the approval rate over time. One reason for this

development is that in the years from 2002 to 2004, the number of

grant applications and the grant sum requested exceeded the

funding budget, so that the approval rate dropped from 49.2% to

36.2%. With a low approval rate, to be approved for a grant a

proposal had to achieve a higher mean reviewers’ rating.

Research Questions
Specifically, our paper addresses the following four research

questions (in parentheses: in terms of GEE):

(1) How reliable are the reviewers’ single ratings of the quality of

the projects (that is, the overall evaluation of the proposed

research by a single reviewer)?

(2) Is the ICC homogeneous across all proposals, or does it vary

with certain characteristics of proposals or reviewers (intraclass

correlation)?

(3) Is the total variability of reviewers’ ratings equal for all

proposals, or does it vary with certain characteristics of

proposals or reviewers (variance)? Do the ICC changes if

variance heterogeneity is considered?

(4) Is there any impact of covariates on reviewers̀ overall ratings

of a proposal (mean)? Do the ICC changes if this impact is

permitted?

Methods

Data and Variables
The data for this study, generated by the usual review procedure

at the FWF, consisted of all proposals (N = 8,358) for individual

research projects called ‘‘Stand-Alone Projects’’ [14] across all

fields of research (6 research areas) from 1999 to 2009, which

contributed to 60% of all FWF grants (‘‘Stand-Alone Projects,’’

‘‘Special Research Programs,’’ ‘‘Awards and Prizes,’’ ‘‘Transna-

tional Funding Activities’’). External reviewers (N = 18,357) (about

2 to 3 reviewers for each proposal on average) rated the proposals

on a scale from 0 to 100 (from poor to excellent) in 23,977 reviews

[14]. Due to missing values in the variables included in the data

analysis, the effective sample (case-wise deletion) consisted of 8,329

proposals with 23,414 reviews. Given that the proportion of

missing values was rather low (below 5%), we did not use any

missing value treatment (e.g., missing value imputation) to

complete the data [15].

The single overall rating of a proposal by each external reviewer

(overall rating) provided for the outcome variable. We included in

the data analyses several covariates as predictors, both on the level

of proposals and on the level of reviews (see Table 1). On the level

of proposals, ‘‘applicant’s gender,’’ ‘‘applicant’s age,’’ ‘‘time point

of the final approval decision’’ by the FWF board of trustees

(before 2004 or after), ‘‘requested grant sum,’’ and the proposal’s

‘‘research areas’’ were considered. Each applicant must assign her

or his proposal to up to four different disciplines chosen from a list

of 22 disciplines, and assign a percentage to each such that the

percentages sum to 100%. The scientific discipline with the highest

proportion is defined by the FWF as the proposal’s primary

discipline, which is again classified by the FWF into one of six

research areas (Table 1). On the level of reviewers, the ‘‘reviewer’s

gender’’ and the ‘‘continent of the reviewer’s address’’ were

included. Altogether, the selected variables were factors that are

typically examined in peer review studies [1].

Heterogeneity of Inter-Rater Reliabilities
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The categorical covariates (e.g., ‘‘applicant’s gender,’’ ‘‘research

areas’’) were effect coded to interpret the parameters in the

regression part of the model as a deviation from the grand mean,

which is estimated by the intercept.

Statistical Analysis
The unconditional ICC (r) as a measure of single IRR, or intra-

proposal correlation, was derived from estimation of variance

components using two-level models [5,16–20], especially a

random-intercept model, with reviews as level-1 and, proposals

as level-2 units (reviews are nested within proposals). The ICC is

given by.

r~
s2

p

s2
pzs2

e

, ð1Þ

where s2
p is the between-proposal variance and s2

e is the within-

proposal variance or residual variance. An ICC of.30 means that

on the average across the whole data, two reviews of the same

proposal are correlated with r= .30. Further possible measure-

ment dependencies due to the fact that the same reviewer assesses

several proposals can be neglected, given the small proportions of

reviewers that assessed more than one proposal in the period

under study.

In addition, standard errors and corresponding confidence

intervals for the parameters are calculated. For the ICC, different

procedures to calculate standard errors or confidence intervals are

discussed (e.g., [20]), such as classical F-test procedures [19],

bootstrap procedures [21], latent variable modeling [22], and

profile-likelihood based methods [23]. We decided to use latent

variable modeling and F-test based procedures; they are well

founded and very common, and the confidence intervals can be

calculated easily using common statistical software packages like

SAS [24].

The ICC was entered into Eq. (1) as a measure of single IRR.

For research funding organizations and their decision making, it is

more important to know how reliable the mean ratings are across

all reviewers of a proposal. Final approval decisions of the

organizations (including approval decisions by the FWF board of

trustees) are strongly based on the mean ratings of a proposal. By

using the Spearman-Brown prophecy formula from classical test

theory ([19], p. 426) the rM, or ICC(1, k) in the notation by Shrout

and Fleiss [19], can easily be derived from the ICC (r) as follows:

rM~
�kkr

1z(�kk{1)r
, ð2Þ

where k is the average number of reviews of a proposal: k = 1/

(N21)(Sk2Sk2/Sk) [26], where k is the number of reviewers for a

Table 1. Summary description of the data from the Austrian Science Fund (Np = 8,329 grant proposals, Nr = 23,414 reviews).

Variables Coding N % Mean SD MIN MAX

Proposal attributes

Research areas

Biosciences 1/0 1628 19.6

Humanities 1/0 1413 17.0

Human medicine 1/0 1621 19.5

Natural sciences 1/0 2450 29.4

Social sciences 1/0 697 8.4

Technical sciences 21/0 520 6.2

Applicant’s gender

Female 1 1473 17.7

Male 21 6856 82.3

Applicant’s age 46.7 9.8 23 87

Time point of the final approval decision

2004 and after 1 4,994 60.0

Before the year 2004 21 3,335 40.0

Requested grant sum (100,000 euros) 2.45 1.16 0.04 8.13

Review attributes

Overall rating 81.8 15.6 0 100

Reviewer’s gender

Female 1 3,068 13.2

Male 21 20,246 86.8

Continent of the reviewer’s address

Europe 1/0 14,291 60.7

North America 1/0 7,575 32.2

Other 21/0 1,664 7.1

Note. Effect coding is used for the categorical variables. For categories coded with 21, no parameter could be estimated, but a parameter bc could be numerically
obtained from the other parameters (bc = 2Sbj = 1…(c21)). SD = the standard deviation, MIN and MAX stand for minimum and maximum.
doi:10.1371/journal.pone.0048509.t001
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single proposal and N is the total number of proposals. For

instance, for a single IRR r= .30 and k = 3 reviewers for each

proposal, the IRR of the mean ratings amounts to rM = .56, which

is quite a bit higher than the single IRR. To calculate rM, we used

the average number of reviews of a grant proposal at FWF. On

average, a proposal submitted to the FWF is reviewed by 2.82

reviewers.

The ICC might vary according to different combinations of

characteristics of reviews or proposals. To model heterogeneous

ICCs second-order generalized estimating equations have been discussed

as a further development of the well-known generalized estimating

equations (GEE) approach [10–12,25]. Whereas multilevel models

estimate both the random part and – conditioned on the random

part – the fixed-effects or mean part of the model, the GEE

approach focuses mainly on the mean part of the multilevel model

(marginal model, population-average model). The random part

and its variance components are considered to be a nuisance

characteristic, to accurately estimate the mean model and its

standard errors.

The GEE approach derives from the generalized linear model,

which incorporates all types of dependent variables (count, binary,

ordinal …) using certain link functions. By the way, the mean

model of GEE with a link function other than identity (i.e.,

continuous normally distributed variable) might deviate from the

fixed-effects part of an ordinary multilevel model. Simple

assumptions of the dependency of measurements (i.e., intra-

proposal correlation) represented by a ‘‘working correlation

matrix’’ make parameter estimations much faster than classical

multilevel models might do [18]. The second-order GEE approach

introduced by Yan and Fine [13] extends the classical GEE

approach [26–28]. Additional to the link function of the mean

model, separate link functions for the variance and for the ICC

were introduced to connect mean, variance, and ICC with

different sets of covariates as predictors [13].

With respect to our data, the proposals provide for the clusters,

and the reviewers̀ ratings of a proposal provide for the level-1 units

nested within the proposals. Due to the huge number of different

reviewers it is not sensible to take into account the reviewer as an

additional factor or level in multilevel modeling.

Let Yij be the single rating j, j = 1,…ni, from proposal i = 1, …

K, the vector mi (ni61) be the expectation of Yij conditioning on

the matrix of p predictors X1i (ni6p). Additionally, the vector wi

(ni61) denotes the vector of variances conditioning on the matrix

of r predictors X2i (ni6r), and ri (ni (ni21)/2) denotes the vector of

intraclass correlations conditioning on the matrix of q predictors

X3i (ni (ni21)/26q). According to this definition, the following link

functions can be defined:

g1(ui)~X1ib

g2(wi)~X2ic

g3(ri)~X3ia

ð3Þ

The identity function (g1) was chosen as link function for the

fixed-effects or mean model (continuous normally distributed

variable), and for the variance the log-function (g2). For the ICC

we used a modified Fisher-z transformation (g3), which guarantees

that the ICC vary within the interval [21, 1]. With identity as link

function for the mean, the vector wi denotes variances. In all other

nonlinear or categorical cases vector wi denotes a vector of scale

parameters (i.e., overdispersion). The inverse link function g3
21 for

the ICC between the overall ratings of two reviewers r and s within

a proposal i is ([13], p. 862)

rirs~cor(Yir,YisDX3i)~
exp(X3i(r,s)a)-1

exp(X3i(r,s)a)z1
, ð4Þ

where X3i(r,s) is the row in X3i, which corresponds to the ICC of

the overall ratings of reviewers Yis and Yir; ‘‘exp’’ denotes the

exponential function ex. A convenient set of estimating equations

can be defined to estimate the model ([13], p. 863). Crespi, Wong,

and Mishra [26] showed that inferences in cluster-randomized

trials can be improved, if heterogeneous ICCs are accurately

modeled.

We used Wald tests (b/standard error for H0: b= 0) to test the

statistical significance of the parameters. To avoid common

problems of statistical testing [29], we report here the recalculated

‘‘effect sizes’’ (e.g., ICC) beside the parameters and standard

errors. In statistical testing it is usual to discuss the statistical power

of a test, that is the probability to reject the null hypothesis, if it is

actually false in the population. Due to the huge sample size, the

statistical power of the test might be high. Therefore, even very

low effects might be detected, if there are some.

Modeling Strategy
The data analysis was conducted in two steps: First, for a

descriptive analysis, the ICC and the corresponding confidence

interval were calculated for both the overall data set and also for

the separate research areas and the separate years of the final

decision by the FWF board of trustees. For comparing the ICCs

across the research areas and years of the final decision, we used

Goldstein-adjusted confidence intervals, which were originally

developed to compare means [30–31]. This adjustment allows

interpretation of non-overlapping intervals as statistically signifi-

cant differences (a= .05) between the research areas or years of the

final decision in the level of ICC.

In the second step, four second-order GEE models were

estimated to determine the influence of various restrictions on the

size of the ICC, whereby restrictive assumptions of the previous

models were successively suspended.

A most restricted base model (Model 0) was fitted that assumes

homogeneity with respect to all three components (mean,

variance, ICC), with three intercepts for each component.

However, if there is a misspecification of the ICC component,

only the mean and variance parameters are robust and consistent

estimators. Thus, the ICC should be interpreted with caution [13].

A second model (model 1) was estimated that takes into account

the heterogeneity of the ICC with a regression model for

correlations (Eq. (3), g3(ai)), whereas all other components as

mean and variance were assumed to be constant or homogeneous

across all proposals (Eq. (3), g1(mi)).

The strong restriction of variance homogeneity across proposals

was suspended in favor of a further model (model 2) that allows, in

addition to model 1, the variances differing according to the set of

covariates mentioned above with possible impacts on the size of

ICC (Eq. (3), g2(ci)). With respect to the definition of ICC in Eq.

(1), if the denominator (total variance) increases and the between-

proposal variance is held constant, the ICC decreases, and vice

versa – if the denominator decreases, the ICC increases.

In the last step, a GEE (model 3) was estimated that not only

allows variance heterogeneity but also allows that the single ratings

are adjusted for a set of covariates, quite comparable to an

Heterogeneity of Inter-Rater Reliabilities
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ordinary regression model (Eq. (3), g1(mi)). Therefore, the estimated

ICCs are nothing but the ICC of the residuals, which are adjusted

for mean differences of a set of covariates (bias factors). For

instance, if scientific disciplines differ in the mean ratings, for

example because of leniency effects, the ICCs are adjusted for this

impact by including the scientific disciplines as covariates in the

mean component of the GEE.

We assume that the results of the first analysis step (descriptive

analysis, see above) do not have to agree completely with the

results of the second step for two reasons: For one, in the first step

the ICCs were calculated for different groups, or parts, of the data

(e.g., research areas); in the second step, however, in the context of

GEE the ICCs were estimated for the whole data with varying

restrictive assumptions. For another, in GEE several covariates

were used in a multiple regression model for mean, variance, and

ICC, whereas the calculation of ICC in the first analysis step

considered only one factor.

Software
The ICCs were calculated using the SAS procedure ‘‘proc

mixed’’ [24]. A self-programmed SAS macro was used to estimate

the F-test based confidence intervals according to Shrout and

Fleiss [19]. The second-order GEE was calculated using the R

package ‘‘geepack’’ [13,28,32].

Results

Inter-rater Reliability
The ICC (single IRR) for the whole data set of 23,414 reviewers

is r= .259 with an F-test based 95%-confidence interval of

[.249,.279] and a latent-variable based confidence interval of

[.243,.275]. Thus, the overall ratings of the same proposal

correlate about.26 on the average across all reviewers, or 26%

of the total variance of overall ratings is explained by proposals.

Whereas the simple ICC r says something about single ratings, the

reliability of the mean ratings averaged across all reviewers of a

proposal rm says more about the reliability of the FWF peer review

procedure (see above). The ICC of mean ratings amounts to

rm = .495 (with 2.82 reviews per proposal) and is quite higher than

the single IRR.

Figure 1 shows the ICC for the whole population, the different

single ICCs with confidence intervals, and the ICCs of the mean

ratings. The ICCs or single-rater reliabilities vary strongly between

the research areas from r= .183 (biosciences) to r= .319

(humanities). Due to non-overlapping confidence intervals, the

ICC of humanities (r= .319) differs statistically significantly from

natural sciences (r= .255), human medicine (r= .229), social

sciences (r= .213), and biosciences (r= .183). The ICC of the

mean ratings is quite a bit higher and varies between.383

(biosciences) and.55 (humanities).

Figure 2 shows the same coefficients broken down by year of the

final decision. In contrast to the field-specific ICCs, the ICCs do

not vary strongly across the years. There are statistically significant

differences (non-overlapping intervals) only between the year 2000

(r= .326) and the years 2004 and 2005 (r= .215, r= .224).

Determinants of ICC, Variance, and Mean
Due to its huge size the results of the GEE analysis are presented

in three tables (Table 2, 3, and 4), one table for each component

(ICC, variance, mean). In model 1 only the regression of the ICC

(i.e. single IRR) on its determinants is considered (Table 2). This

same regression is considered, either if the model is controlled for

the determinants of the variance (model 2, Table 3), or if it is

controlled for both the variance and the mean model (model 3,

Table 4). Statistically significant predictors in the models indicate

heterogeneity of the parameters (ICC, variance). The parameters

(intercept and slope) are transformed into ICCs using the inverse

link function (Eq. (4)) or into variances using the exponential

function (ex). Unfortunately, up to now there is lack of criteria

([12], p. 62f) such as information criteria (like Akaike’s information

criterion) to compare different models, and, therefore, no such

criteria have been implemented as yet in the R procedure

‘‘geepack.’’

The starting model (model 0, Tables 1, 2, 3) shows that the

mean overall rating is 81.59 (b0), the standard deviation of the

ratings is 15.6 (c0 = 5.59), and the mean ICC is.22 (a0 = .45),

which differ slightly from the ICC (r= .26), reported in Figure 1

(which should be interpreted with caution, see section ‘‘modeling

strategy’’). In model 1 (Table 2) the central statistically significant

predictors of the ICCs are the research areas. Whereas the ICCs

for biosciences and natural sciences decrease (.13,.16) in compar-

ison to the mean ICC, the ICCs of humanities and social sciences

increases (.38,.34). Technical sciences and human medicine show

negligible deviations from the average ICC. Further, there is no

empirical evidence for the impact of any other property of a

proposal as, for instance, applicant̀s age or ‘‘applicant̀s gender’’ on

the single ICC.

With Model 2 the restrictive assumption of variance homoge-

neity no longer holds. As Table 3 shows, the variance and standard

deviation, respectively, vary considerably and statistically signifi-

cantly with respect to ‘‘research areas’’ and ‘‘reviewer’s continent’’

and less so with respect to ‘‘time point of the final approval

decision’’ and ‘‘requested grant sum.’’ Whereas the standard

deviation of the overall ratings in natural sciences and biosciences

(13.0, 13.8) fall considerably short of the mean standard deviation

of 15.0, the standard deviation of the social sciences (17.7)

considerably exceeds the mean standard deviation. Reviewers

located in Europe or North America give much more heteroge-

neous ratings (higher variance) than reviewers located in other

regions. With higher requested grant sum (above 100,000 euros)

the variability of the ratings decreases (c8 = 20.08).

However, suspending the restriction of equal variances results in

a shrinking of the ICCs toward the mean ICC of.22. Out of the

research areas only two areas show a statistically significant

deviation from the average IRR (Model 2), humanities with a

positive deviation, and biosciences with a negative deviation from

the average IRR.

The greatest change in the ICC is found for the social sciences

– from.34 (model 1) to.23 (model 2). Together with the higher

than average variance, which is the denominator in the ICC

formula (Eq. 1) (var =s2
e + s2

p), it is found that the drop of the

ICC in the social sciences is due more to the higher error

variance s2
e and less to the systematic variance sp between

proposals that reflects differences in the quality of the proposals.

Therefore, in the social sciences reviewers’ ratings are consider-

ably more heterogeneous than in other research areas, especially

the natural sciences, without this higher variability necessarily

reflecting greater differences in the quality of the proposals.

However, in absolute terms, the quality differences in the

proposals in the social sciences (expressed in variance units) are

almost twice as high as the quality differences in the natural

sciences, for instance. The variance between proposals s2
p is

71.2 for the social sciences and only 35.5 for the natural sciences,

when we use a simple conversion of Eq. 1 to calculate s2
p from

the estimated parameters (s2
p =r*(s2

e + s2
p) = r* variance).

Interestingly, the variability between proposals, s2
p, is the highest

in the humanities (80.6), but with a considerably lower variance

(13.82 = 237.1) than in the social sciences (17.72 = 313.7). For this

Heterogeneity of Inter-Rater Reliabilities
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reason, the single-rater reliability in the humanities is clearly

higher than that in the social sciences.

In addition, controlling for variance determinants reveals that in

comparison to model 1, ‘‘requested grant sum’’ now has a

statistically significant impact on the ICC. If the grant sum

Figure 1. Intraclass correlations, overall and for the separate research areas. Lines are shown as dotted because research area is
categorical, so interpolation between research areas is not intended.
doi:10.1371/journal.pone.0048509.g001

Figure 2. Intraclass correlations, overall and for the separate years of the final decision by the board of trustees of the Austrian
Science Fund.
doi:10.1371/journal.pone.0048509.g002
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requested is 100,000 euros higher than the average grant sum,

then the ICC increases slightly from.22 (intercept) to.25.

In addition to model 2 in model 3 the overall rating was

regressed on a set of covariates (Eq. (3), g1(mi)) comparable to an

ordinary regression or fixed-effects model (Table 4). In sum, there

Table 2. Results I of fitting generalized estimating equations (GEE) models (intraclass correlation parameters) to the data from the
Austrian Science Fund, with standard errors in brackets.

Predictors Par Model 0 Model 1 Model 2 Model 3

No predictors Only predictors for ICC
Predictors for ICC and
variance

Predictors for ICC,
variance, and mean

ICC Estim r Estim r Estim r Estim r

Intercept a0 0.45* (0.02) .22 0.49* (0.03) .24 0.45* (0.03) .22 0.40* (0.03) .20

Biosciences a1 20.22* (0.04) .13 20.15* (0.04) .15 20.13* (0.03) .14

Humanities a2 0.30* (0.09) .38 0.24* (0.06) .34 0.20* (0.06) .29

Human medicine a3 20.05 (0.05) .22 20.06 (0.04) .19 20.07 (0.04) .16

Natural sciences a4 20.17* (0.04) .16 20.04 (0.03) .21 20.05 (0.03) .17

Social sciences a5 0.22* (0.10) .34 0.04 (0.06) .23 0.02 (0.06) .21

Technical Sciences (a6) 20.08 .20 20.03 .21 20.03 .18

Time point (1 = ‘$2004’) a7 20.02 (0.02) .23 20.03 (0.02) .21 20.01 (0.02) .19

Request. grant sum (100,000 euros) a8 0.00 (0.02) .24 0.05* (0.02) .25 0.03 (0.02) .21

Applicant’s gender (1 = women) a9 20.02 (0.03) .23 20.02 (0.02) .21 20.01 (0.03) .19

Applicant’s age/10 a10 0.02 (0.02) .25 0.03 (0.02) .24 0.00 (0.02) .20

Note. Par = parameters, Estim = estimate (Fisher z for ICC), r = ICC for a one-unit change in the predictor variable. Parameter in brackets indicates the category coded
with 21. Np = 8,329 proposals, Nr = 23,414 reviews.
*p,.05 (Wald test).
doi:10.1371/journal.pone.0048509.t002

Table 3. Results II of fitting generalized estimating equations (GEE) models (variance parameters) to the data from the Austrian
Science Fund, with standard errors in brackets.

Predictors Par Model 0 Model 1 Model 2 Model 3

No predictors
Only predictors for
ICC

Predictors for ICC and
variance

Predictors for ICC,
variance, and mean

Variance Estim SD Estim SD Estim SD Estim SD

Intercept c0 5.49* (0.02) 15.6 5.49* (0.02) 15.6 5.41* (0.03) 15.0 5.37* (0.03) 14.6

Biosciences c1 20.17* (0.03) 13.8 20.15* (0.04) 13.6

Humanities c2 0.06 (0.04) 15.4 0.06 (0.05) 15.1

Human medicine c3 0.11* (0.03) 17.2 0.08* (0.03) 15.2

Natural sciences c4 20.28* (0.03) 13.0 20.26* (0.03) 12.8

Social sciences c5 0.34* (0.05) 17.7 0.31* (0.04) 17.1

Technical sciences (c6) 20.05 14.6 20.04 14.4

Time point (1 = ‘$2004’) c7 0.03* (0.02) 15.2 0.04* (0.02) 14.9

Request. grant sum (100,000 euros) c8 20.08* (0.02) 14.4 20.08* (0.02) 14.1

Applicant’s gender (1 = women) c9 20.00 (0.02) 15.0 20.00 (0.02) 14.6

Applicant’s age/10 c11 0.00 (0.02) 15.0 0.01 (0.02) 14.7

Reviewer’s gender (1 = women) c12 20.01 (0.02) 14.9 20.01 (0.02) 14.6

Reviewer’s continent

Europe c13 0.14* (0.02) 16.0 0.15* (0.03) 15.7

North America c14 0.11* (0.02) 15.8 0.12* (0.03) 15.5

Others (c15) 20.25 13.2 20.26 12.9

Note. Par = parameters, Estim = estimate (log for variance), SD = standard deviation estimates for a one unit change in the predictor variable. Parameters in brackets
indicate the category coded with 21. Np = 8,329 proposals, Nr = 23,414 reviews.
*p,.05 (Wald test).
doi:10.1371/journal.pone.0048509.t003
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are many statistically significant predictors with small effect sizes.

The rating levels in humanities (natural sciences) are 4.40 (2.18)

grade points higher (0–100 rating scale) than the overall mean

rating, whereas the ratings in the social sciences (human medicine)

fall on the average 23.39 (22.88) short of the overall mean rating.

The other statistically significant predictors have negligible effects

around and below 1 grade point (‘‘time point of the final approval

decision,’’ ‘‘requested grant sum,’’ ‘‘applicant’s age’’), with one

exception. If the reviewer’s continent was not Europe or North

America but ‘‘other,’’ the corresponding reviews are 1.57 grade

points more favorable than the average of 81.34.

Including predictors in the mean model results in a further

shrinking of both the ICC and the variances of the residuals. The

amount of reduction of variance from model 2 to model 3 (Table 3)

reflects the amount of variance that is explained by the predictors

of the mean model. For the social sciences, for instance, the

variance drops from 13.02 = 313.7 to 12.82 = 292.9– that is,

100*(313.7–292.9)/313.7 = 6.6% of the variance in the social

sciences is explained by the mean model. Overall, 0% to 8% of the

variances of the different factors are explained by the predictors of

the mean model.

Discussion

Taking the peer review process of the FWF as an example, we

focused in this contribution on the IRR of reviewers’ ratings of a

proposal, especially its heterogeneity with respect to certain

covariates (e.g., research areas). In sum, our study yielded the

following findings as answers on the research questions:

1. How reliable are the reviewers’ single ratings of the quality of the projects

(that is, the overall evaluation of the proposed research by a single

reviewer)? In agreement with other peer review studies, we found

for the FWF a low overall IRR of reviewers’ ratings of r= .259

(single-rater) with a F-test based confidence interval of

[.249,.279]. Thus, the overall ratings of two reviewers of the

same proposal correlate about.26 on the average across all

reviewers. The ICC of the mean rating aggregated across all

ratings of a proposal was rm = .495. For external reviewer

ratings of the Australian Research Council’s large grant

program, Jayasinghe et al. [5] found single IRRs of.21 for

the social sciences and humanities and.19 for science.

2. Is the ICC homogeneous across all proposals, or does it vary with certain

characteristics of proposals or reviewers? Across humanities the ICC

(IRR of single rating and of mean rating) was actually higher

than in all other research areas. The ICC of biosciences

deviated statistically significantly negatively from the average

ICC across all disciplines. Other factors, including ‘‘time point

of the final decision,’’ ‘‘applicant’s age,’’ or ‘‘applicant’s

gender’’ can be neglected.

3. Is the total variability of reviewers’ ratings equal for all proposals, or does it

vary with certain characteristics of proposals or reviewers? Do the ICC

changes if variance heterogeneity is considered? The total variance

varied considerably and statistically significantly with respect to

the research areas and to a minor extent with respect to ‘‘time

point of the final decision,’’ ‘‘requested grant sum,’’ and

‘‘continent of reviewer’s address.’’ Suspending the restriction of

equal variances resulted in ICCs shrinking to the mean ICC,

especially the ICCs in the social sciences (from.34 to.23). In the

social sciences (standard deviation = 17.7) the reviewers’ ratings

were considerably more heterogeneous than in the other

research areas, especially in the natural sciences (13.2), without

this higher variability necessarily reflecting greater differences

Table 4. Results III of fitting generalized estimating equations (GEE models) (mean model) to the data from the Austrian Science
Fund.

Predictors Par Model 0 Model 1 Model 2 Model 3

No predictors Only predictors for ICC
Predictors for ICC and
variance

Predictors for ICC,
variance, and mean

Estim SE Estim SE Estim SE Estim SE

Intercept b0 81.59* 0.13 81.60* 0.12 81.45* 0.12 81.34* 0.22

Biosciences b1 0.76* 0.25

Humanities b2 4.40* 0.33

Human medicine b3 22.88* 0.28

Natural sciences b4 2.18* 0.22

Social sciences b5 23.39* 0.44

Technical sciences (b6) 1.07

Time point (1 = ‘$2004’) b7 0.48* 0.12

Request. grant sum (100,000 euros) b8 1.04* 0.12

Applicant’s gender (1 = women) b9 20.37* 0.16

Applicant’s age/10 b10 0.42* 0.13

Reviewer’s gender (1 = women) b11 20.07 0.15

Reviewer’s continent b12

Europe b13 20.84* 0.15

North America b14 20.72* 0.16

Other (b15) 1.57

Note. Estim = estimate, SE = standard error. Parameters in brackets indicate the category coded with 21. Np = 8,329 proposals, Nr = 23,414 reviews.
*p,.05 (Wald test).
doi:10.1371/journal.pone.0048509.t004
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in the quality of the proposals (s2
p). However, in absolute

terms, the quality differences in the proposals in the social

sciences were almost twice as high as the quality differences in

the natural sciences. More divergent evaluation standards in

the social sciences than in the natural sciences might turn into

higher variability of the overall ratings of a proposal [8].

4. Is there any impact of covariates on reviewers’ overall ratings of a proposal?

Do the ICC changes if this impact is permitted? We found statistically

significant influences of several predictors on the reviewers’

overall ratings, but the associated effect sizes were small, except

for the research areas. When predictors were included in the

mean model, the ICCs of the residuals became smaller.

Further, the groups of disciplines differed in the rating level.

The rating levels in the humanities (natural sciences) were 4.40

(2.18) grade points higher (0–100 rating scale) than the overall

mean rating, whereas the ratings of social sciences (human

medicine) fell on the average 23.39 (22.88) short of the overall

mean rating.

Overall, our analyses show that the ICCs vary very greatly for

the FWF peer review procedure; therefore, average values for the

whole population of all grant applications do not provide a very

differentiated picture of the reliability. As this study showed, the

second-order GEE approach [13] used here is very promising for

peer review research due to its property of not only modeling the

ICCs but also concurrently modeling the variability and the mean

of the outcome. The approach makes it possible to reveal

differences between research areas in ICCs and also model

differences in variances. Crespi, Wong, and Mishra [26] also

showed that inferences in cluster-randomized trials can be

improved, if heterogeneous ICCs are accurately modeled.

However, GEE has also its limitations: (1) GEE was developed

mainly to estimate a population-average model for categorical

variables in the case of dependency of measurements based on a

simple ICC matrix or ‘‘working correlation matrix’’ in terms of

GEE, (2) There is a lack of simulation studies showing how the

model behaves under certain sampling conditions (e.g., different

sample sizes, amount of heterogeneity of variances), and (3)

Criteria for model comparison or goodness-of-fit indices, such as

the QIC, which was developed for the ordinary GEE approach,

are still lacking [12,33–35].

Based on this study, the following recommendations can be

made with regard to the peer review procedure at the FWF:

1. For some research areas (e.g., biosciences) with a comparatively

low single ICC of r= .183, consider increasing the number of

reviewers to three or four, since the results of this study showed

that already with three reviewers, the IRR of the mean rating is

quite higher (see Figure 1).

2. Since reviewers in the social sciences make very heterogeneous

ratings, it should be examined whether the variability of the

overall ratings could be reduced by making the rating criteria

more precise or by modifying the selection of reviewers (e.g.,

applicant and reviewers share the same research paradigm),

which would probably result in higher IRR.

3. As the reviewers in the different research areas give very

different ratings to the grant applications, discipline-specific

thresholds for mean ratings should be introduced for approving

grant applications.
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