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Abstract

Background: Following damage to the intestinal epithelium, restoration of epithelial barrier integrity is triggered by a
robust proliferative response. In other tissues, focal adhesion kinase (FAK) regulates many of the cellular processes that are
critical for epithelial homeostasis and restitution, including cell migration, proliferation and survival. However, few studies to
date have determined how FAK contributes to mucosal wound healing in vivo.

Methodology and Principal Findings: To examine the role of FAK in intestinal epithelial homeostasis and during injury, we
generated intestinal epithelium (IE)-specific conditional FAK knockout mice. Colitis was induced with dextran-sulfate-
sodium (DSS) and intestinal tissues were analyzed by immunohistochemistry and immunoblotting. While intestinal
development occurred normally in mice lacking FAK, FAK-deficient animals were profoundly susceptible to colitis. The loss
of epithelial FAK resulted in elevated p53 expression and an increased sensitivity to apoptosis, coincident with a failure to
upregulate epithelial cell proliferation. FAK has been reported to function as a mechanosensor, inducing cyclin D1
expression and promoting cell cycle progression under conditions in which tissue/matrix stiffness is increased. Collagen
deposition, a hallmark of inflammatory injury resulting in increased tissue rigidity, was observed in control and FAK
knockout mice during colitis. Despite this fibrotic response, the colonic epithelium in FAK-deficient mice exhibited
significantly reduced cyclin D1 expression, suggesting that proliferation is uncoupled from fibrosis in the absence of FAK. In
support of this hypothesis, proliferation of Caco-2 cells increased proportionally with matrix stiffness in vitro only under
conditions of normal FAK expression; FAK depleted cells exhibited reduced proliferation concomitant with attenuated cyclin
D1 expression.

Conclusions: In the colon, FAK functions as a regulator of epithelial cell survival and proliferation under conditions of
mucosal injury and a mechanosensor of tissue compliance, inducing repair-driven proliferation in the colonic epithelium
through upregulation of cyclin D1.
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Introduction

The intestinal epithelium serves as a selective permeability

barrier, separating the intestinal lumen and its contents from

underlying tissues [1]. Breach of this mucosal barrier puts the host

at risk for infection and inflammation, thus requiring a rapid and

efficient response to injury. The restoration of tissue integrity

involves the coordinated interaction of various cell types,

deposition of extracellular matrix (ECM), release of soluble growth

factors, and upregulation of epithelial cell proliferation [1], [2].

Adhesion-mediated signaling between cells and the ECM plays

a critical role in maintaining tissue homeostasis as well as in the

response to tissue damage [1]. Focal adhesion kinase (FAK) is a

non-receptor tyrosine kinase that is involved in adhesion signaling

in multiple cell types, including those of epithelial derivation.

Through its kinase activity, FAK provides robust, anti-apoptotic

signals involving the PI3K/Akt and MAPK pathways [3].

Expression of dominant-negative FAK mutants in intestinal

epithelial cell lines leads to increased apoptosis due to the loss of

adhesion-mediated survival signals [4], [5]. Conversely, FAK over-

expression has been shown to suppress apoptosis by activating the

nuclear factor kappa B (NF-kB) pathway [6]. FAK also promotes

cell survival by binding to, and inducing the degradation of, the

tumor suppressor protein p53. The induction of cellular stress

through DNA damage, hypoxia and/or onocogene activation

induces p53-mediated transcription of genes involved in cell death

and cell cycle arrest, while at the same time inhibiting the

transcription of cell survival genes [7], [8]. Under these conditions,
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FAK promotes cell survival by entering the cell nucleus and

causing the degradation of p53 [9].

In addition to its role mediating cell survival, FAK has also been

shown to regulate cellular proliferation. In one mechanism, FAK

autophosphorylation at tyrosine 397 creates a binding site for Src

family kinases, which in turn promotes Src-dependent tyrosine

phosphorylation of FAK at other sites [10]. The adaptor molecule

Grb2 binds to phosphorylated tyrosine 925, initiating the Ras/

MEK/ERK signaling cascade and activation of Ets-like transcrip-

tion factors that promote cyclin D1 expression and progression

through the cell cycle [10], [11]. Independent of ERK activation,

FAK regulates a second transcription factor, Krupple-like factor 8

(KLF8), which binds to and upregulates the cyclin D1 promoter

[12]. Finally, FAK can function as a mechanosensor of tissue

rigidity, promoting proliferation in response to decreased tissue

compliance via the upregulation of cyclin D1 [13].

In this study, we investigated the role of FAK in intestinal

development and colonic injury using an intestinal epithelial (IE)-

conditional FAK knockout mouse model in which FAK is deleted

from both the small and large intestine. Loss of FAK in these mice

had no significant effect on intestinal development or function

under homeostatic conditions. However, colonic epithelial repair

was significantly impaired in the absence of FAK following

inflammatory injury induced by acute dextran sulfate sodium

(DSS) treatment. Mice lacking FAK exhibited earlier onset and

increased severity of disease relative to control animals, charac-

terized by more extensive edema, ulceration and disruption of

crypt architecture. Upon removal of DSS, control mice exhibited

rapid epithelial restitution and a coincident increase in epithelial

cell proliferation. Conversely, DSS treatment resulted in the

accumulation of p53 in FAK-deficient epithelial cells and

increased evidence of apoptosis as measured by activation of

caspase-3. In addition, proliferation was significantly impaired in

the FAK-deficient mice and this correlated with a reduction in

cyclin D1 levels, coincident with a failure to repair the epithelium.

Collagen deposition is a hallmark of inflammatory injury, and

has been reported to induce tissue stiffening (fibrosis) in

inflammatory bowel disease [14], [15]. As discussed above, FAK

functions as a mechanosensor of matrix rigidity and has been

shown to promote cell proliferation in response to increased tissue

stiffness by inducing cyclin D1 expression [13]. While collagen

deposition was observed in the colon following DSS treatment in

both WT and FAK-deficient animals, epithelial cyclin D1

expression was elevated only in control mice. A similar loss of

sensitivity to matrix stiffness and reduced cyclin D1 levels were

observed in Caco-2 intestinal epithelial cells depleted of FAK by

RNA interference. These findings suggest that FAK functions

in vivo both as a regulator of adhesion-mediated survival and

Figure 1. Characterization of intestinal epithelial-specific conditional FAK knockout mice. (A) PCR of DNA isolated from homogenized
tissues obtained from WT and FAKDIEC mice. The FAKf allele is 1.6 kb, the recombined locus 327 bp. (B) Whole mount X-Gal staining of tissues
extracted from WT and FAKDIEC mice. (C) Immunoblot analysis of whole organ homogenates isolated from WT and FAKDIEC mice. The vertical line
indicates non-contiguous lanes generated from a single exposure. (D) Immunoblot analysis of FAK and Pyk2 expressed in primary colonic epithelial
cells. The vertical line indicates non-contiguous lanes generated from a single exposure. (E) Ileum and colon sections were immunostained for FAK.
Bars represent 50 mm.
doi:10.1371/journal.pone.0023123.g001
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proliferation, as well as a mechanotransducer of tissue compliance

required to drive cell cycle progression in response to inflamma-

tory injury.

Results

FAK is dispensable for normal intestinal development
Mice harboring loxP-targeted FAK alleles (FAKf/f) [16] and a

LacZf-STOP-f reporter allele at the ROSA26 locus [17] were

crossed with mice expressing Cre recombinase under the control

of the intestinal epithelial-specific villin promoter [18] (Fig. S1) to

generate mice in which FAK is deleted from the entire intestinal

epithelium (designated FAKDIEC). Deletion of the FAKf allele in

the ileum, cecum, and colon of FAKDIEC animals was confirmed

by PCR (Fig. 1A). The specificity of FAK deletion was examined

by ß-galactosidase staining originating from excision of the stop

codon in the ROSA26 LacZ locus (Fig. 1B). While the ileum and

colon of FAKDIEC mice stained positively for ß-galactosidase, the

corresponding tissues from control (phenotypically wild type,

hereafter designated WT) mice were negative. ß-galactosidase

staining was negative in the kidneys and lungs of both genotypes.

Protein analysis from whole organ tissue homogenates showed

greatly reduced levels of FAK in the ileum, cecum, and colon of

FAKDIEC mice compared to WT littermates (Fig. 1C). In contrast,

FAK expression was normal in the lungs of FAKDIEC mice.

Primary colon epithelial cells isolated from FAKDIEC mice

contained nearly undetectable levels of FAK, whereas the related

kinase Pyk2 was expressed equivalently in both WT and FAKDIEC

cells (Fig. 1D). These data were corroborated by immunohisto-

chemistry (IHC); epithelial cells throughout the villi and crypts

(including the base) of WT ileums and colons expressed FAK at

steady state, while tissues derived from FAKDIEC mice were

negative (Figs. 1E and S2). This is in contrast to a recent report by

Ashton et al. showing weak FAK expression under homeostatic

conditions in the murine small intestine [19]. Consistent with our

findings, however, these authors found that homeostasis in the

small intestine was largely unaffected by loss of FAK, with normal

villus architecture and normal numbers of both proliferating and

apoptotic cells [19].

Villin is first expressed in the hindgut mesoderm at day 9 of

development, and is upregulated at days 14–15 coincident with the

development of intestinal villi [18]. Thus, FAK excision in villin-

Cre mice is predicted to begin at embryonic day 9 and be

complete by birth, making this an excellent model with which to

study the role of FAK in intestinal development and homeostasis.

Moreover, because villin is expressed in both the small and large

intestinal epithelium, the villin-Cre model allows analysis of the

entire intestinal epithelium from the proximal duodenum to the

distal colon. FAKDIEC mice were born in the expected Mendelian

ratios, developed normally, and maintained body weights (Fig.

S3A). Villus architecture was normal in all regions of the intestine

(Figs. 1E and S3B) and expression/localization of E-cadherin and

ß-catenin, major components of epithelial adherens junctions [20],

were unchanged in the absence of FAK (Figs. S3C and D).

FAKDIEC mice are more susceptible to DSS-induced colitis
To determine if the loss of FAK affects epithelial wound repair

in the colon, we utilized an inflammatory injury model in which

colitis is induced using dextran sodium sulfate (DSS) [21], [22].

Animals were given 2.5% DSS in their drinking water for 5 days,

followed by a 3–14 day recovery period. As shown in Fig. 2A, WT

mice began to lose weight at day 6 with a peak at day 9 (,10% of

body weight), after which they began to recover. In contrast,

FAKDIEC mice exhibited much more severe weight loss (25–30%),

resulting in the need for all animals to be sacrificed by day 8. Peak

levels of diarrhea and visible fecal blood were observed on day 7 in

both genotypes, however the symptoms of colitis (blood in stool,

loose stool consistency) were greatly aggravated in FAKDIEC mice

and correlated with a 3.5-fold higher level of disease activity

compared to control animals (Fig. 2B).

Damage to the colonic epithelium induced by DSS treatment is

generally repaired during the recovery period [23]. At day 3 of

DSS treatment, minimal changes were observed in the epithelium

of both mouse genotypes (Fig. 3A, panels b, g). Tissues from WT

controls remained largely intact at day 5 (panels c and iii), with

patchy ulceration and edema appearing by day 8 (3 days after DSS

removal; panels d and iv). Despite evidence of damage, epithelial

regeneration adjacent to ulcerated areas was apparent in these

mice (Fig. 3B, panel a, arrow shows epithelial cells overlaying the

adjacent wound bed). By day 19, restoration of normal colonic

epithelial architecture was observed in WT mice coincident with

the re-emergence of crypt structures (Fig. 3A, panels e and v;

Fig. 3B, panel b, arrow shows a site of re-epithelialization). In

contrast to WT mice, significant tissue damage was evident in

FAKDIEC mice by day 5, characterized by pronounced edema,

mucosal ulceration and loss of normal crypt structure (Fig. 3A,

panels h and viii). By day 8, profound changes in FAKDIEC colons

were evident; the majority of the colonic epithelium was denuded

and there was little evidence of epithelial regeneration (panels i,

and high magnification panel ix). These more severe pathological

Figure 2. FAKDIEC mice are more sensitive to DSS treatment. 8–
12 week-old mice were fed 2.5% DSS for 5 days and allowed to recover
for up to 14 days. The mean percent change in body weight (A) and
disease activity index (B) are shown for 16 WT and 14 FAKDIEC mice (days
0–5), 9 WT and 11 FAKDIEC mice (days 6–8), and 5 WT mice (days 9–19).
Asterisks indicate values that are significantly different from WT mice at
the same time point (P,0.05).
doi:10.1371/journal.pone.0023123.g002
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responses correlated with shorter colon lengths, another indication

of significant intestinal inflammation (Fig. S4). As discussed above,

the FAKDIEC mice did not survive past day 8 due to the severity of

clinical symptoms.

To determine whether the morphological changes observed in

response to DSS treatment coincided with increased FAK

expression and/or autophosphorylation, colon sections from

untreated and DSS-treated WT mice were immunostained for

FAK (Fig. 3C). FAK expression remained essentially unchanged

after 5 days of DSS treatment and on day 8 of the recovery period

(Fig. 3C). These results were corroborated (through day 5) by

immunoblotting for total FAK expression in primary colon

epithelial cells (Fig. 3D, middle panel). Interestingly, FAK activity

as measured by autophosphorylation at tyrosine 397 (FAKpY397),

was undetected in untreated animals, increased slightly by day 3

and achieved robust activation levels by day 5 of DSS treatment in

control animals (Fig. 3D, upper panel). These results differ from

previous studies in the small intestine, where radiation-induced

injury was reported to induce a dramatic upregulation of FAK

expression [19]. Here we find that, while the level of FAK protein

remained unchanged, its activity was enhanced in response to

mucosal injury in the colon.

FAK expression is required for enhanced proliferation
following intestinal injury

It has recently been reported that mucosal regeneration

following injury depends initially on contraction of the surface

epithelium around the wounded area, followed by increased

Figure 3. FAKDIEC mice exhibit severe signs of epithelial erosion and edema in response to DSS treatment. (A) Representative H&E-
stained colon sections from untreated and DSS-treated mice sampled at the indicated time points. Low magnification images (46) are presented in
panels a–i. Bars represent 200 mm. Higher magnification (206) sections (white boxes) are depicted in panels i–ix. Bars represent 50 mm. (B) Regions
indicated by black boxes in panels iv and v were enlarged to show detail. Arrows indicate epithelial cells overlaying ulcerated tissues. Bar represents
50 mm. (C) Colon sections from untreated or DSS-treated WT mice were immunostained for FAK at the indicated time points. Bars represent 500 mm
in the low magnification (46; panels a–c.) and 100 mm in the higher magnification (206; panels i–iii) images. (D) Immunoblot analysis of the
designated proteins expressed in primary colon epithelial cells isolated from untreated (lanes 1 and 2) or DSS-treated (lanes 3–6) WT and FAKDIEC

mice. Immunoblots are representative of 2 independent experiments containing pooled lysates from 3 animals per genotype and time point.
doi:10.1371/journal.pone.0023123.g003
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epithelial cell proliferation [2]. Since FAK is known to regulate

proliferation in numerous cell types [11], [24], we stained colon

sections from untreated and DSS-treated mice to visualize the

proliferation marker ki67. In untreated WT and FAKDIEC mice,

ki67-positive cells were restricted to the lower half of each crypt,

comprising ,18–20% of total crypt epithelial cells (Fig. 4A, panels

a, i, f, and vi and Fig. 4B). A similar distribution of proliferating

cells was observed through day 3 of DSS treatment, prior to signs

of overt intestinal injury (panels b, ii, g, and vii). In WT animals

the percentage of proliferating cells per crypt increased to 32% at

day 5 and to nearly 70% at day 8 post-DSS (panels c, iii, d and iv),

coincident with the epithelial regeneration seen by histological

analysis (see Fig. 3A, panels d and iv). After two weeks of recovery,

the percentage of ki67-positive cells per crypt in WT animals

gradually decreased (Fig. 4B). In contrast, the proliferative

response to DSS-induced injury was markedly attenuated in

FAKDIEC mice. The percentage of ki67-positive cells per crypt fell

to 10% in these mice after 5 days of DSS treatment, and the few

proliferating cells that were visible were confined to the lowest

portion of each remaining crypt, adjacent to the basement

membrane (Fig. 4A panels h and viii). By day 8, crypt structures

were largely absent in these mice (Fig. S5); however, in those rare

instances where crypts were discernable (Fig. 4A, panels i and ix),

the percentage of ki67-positive cells was significantly lower than

that observed in WT mice at the same time point (Fig. 4B).

FAK-deficient epithelial cells express reduced levels of
cyclin D1

Cyclin D1 is an important regulator of cyclin-dependent kinases

and its expression promotes progression through the cell cycle

[25], [26]. FAK has been shown to modulate cyclin D1 levels in

fibroblasts, vascular smooth muscle cells, and mammary epithelial

cells [11], [13]. Moreover, FAK has been shown to be required for

upregulation of cyclin D1 coincident with the increased cell

proliferation that occurs during injury-induced ECM remodeling

[13]. To determine whether the loss of epithelial FAK modulates

cyclin D1 levels, lysates isolated from colonocytes of untreated and

day 5 DSS-treated animals were analyzed by immunoblot. Cyclin

D1 expression was somewhat elevated in samples from untreated

FAKDIEC mice compared to WT controls (Fig. 4C, lanes 1 and 2).

Following DSS treatment, cyclin D1 was seen to increase in WT

colonocytes, while it underwent a significant decrease in the

FAKDIEC cells (lanes 3 and 4). This may account for the impaired

proliferation seen in FAK-deficient intestinal epithelial cells after 5

days of DSS treatment.

FAK protects intestinal epithelial cells from p53-mediated
apoptosis during colitis

In addition to its role in adhesion-mediated cell proliferation,

FAK also promotes cell survival by maintaining low levels of the

tumor suppressor p53. Stress signaling can activate and stabilize

p53, leading to transcription of cyclin dependent kinase inhibitors,

such as p21/cip1 and p27/kip1, and the induction of apoptosis

[27], [28]. FAK can counteract such signaling by translocating to

the cell nucleus, where it provides a scaffold that stabilizes

complexes between p53 and the E3 ubiquitin ligase Mdm2,

thereby causing p53 degradation [9]. Immunoblotting of epithelial

cell lysates revealed that under homeostatic conditions, p53 was

maintained at low levels in both WT and FAK-deficient mice

(Fig. 5A, upper panels, lanes 1, 2). During DSS-induced injury,

p53 levels increased 3.5-fold in colonocytes from WT animals and

more than 10-fold in cells isolated from FAKDIEC mice (lanes 3

and 4). Together these findings indicate that maintenance of low-

level p53 expression at steady state does not require FAK, but that

FAK acts to restrain epithelial p53 expression under conditions of

inflammatory injury.

Since elevated p53 levels can also promote cell death, we

investigated changes in cleaved-caspase 3 expression. Caspase 3 is

an executioner caspase that, when cleaved and activated, can

regulate mitochondrial events in the apoptotic pathway [29].

Similar to p53 expression, cleaved-caspase 3 levels were low in

both WT and FAKDIEC mice under steady-state conditions.

(Fig. 5A, middle panels, lanes 1, 2). However, in response to DSS

treatment, active caspase 3 levels increased 5.5-fold in FAK-

deficient animals compared to 1.8-fold in WT mice (lanes 3, 4).

Next, TUNEL-staining was performed to determine if the elevated

levels of apoptotic markers observed in FAKDIEC animals

correlated with increased cell death (Fig. 5B). TUNEL-positive

cells were localized to sites of tissue damage and therefore were

highly prevalent in the colons of FAK-deficient mice, which

exhibited greater tissue destruction in response to DSS treatment

(Fig. 3A).

Finally, FAK can provide survival signals by activation of

downstream signaling molecules including the mitogen-activated

protein kinases (MAPK) extracellular signal-regulated kinase 1

(ERK1) and ERK2 [7]. Immunoblotting of cell lysates revealed

that, as expected, ERK1/2 phosphorylation was low under

homeostatic conditions, and was robustly activated after the

induction of colitis. (Fig. 5A, lower panels). However, no difference

in ERK1/2 phosphorylation was observed between WT and

FAKDIEC mice (lanes 3, 4). Taken together, these results show that

the loss of FAK from intestinal epithelial cells results in increased

p53 expression and increased sensitivity to cell death in response to

DSS treatment. However, this process is uncoupled from pro-

survival and/or proliferation signals generated via the ERK1/2

signaling pathway.

Collagen deposition following mucosal injury is
associated with FAK-dependent cellular proliferation in
WT mice

Collagen deposition in the submucosa and mucosa is a hallmark

of inflammatory bowel diseases, where it contributes to fibrosis

[23], [30]. Increased ECM protein deposition and matrix

crosslinking result in greater tissue stiffness [30], [31]. Interesting-

ly, recent findings have suggested that tissue stiffness stimulates

proliferation in a variety of cell types through a FAK-cyclin D1

dependent pathway [13]. Based on these data, we hypothesized

that the differences in colon epithelial cell proliferation observed

between WT and FAKDIEC mice after DSS treatment could either

be due to diminished collagen deposition in the absence of FAK

and/or a failure of FAK2/2 epithelial cells to respond to

proliferative cues from the ECM.

Collagen deposition was found to be elevated in colonic tissues

from both WT and FAKDIEC mice at days 5 and 8 following DSS

treatment (Fig. 6A, see blue staining), indicating that both

genotypes were capable of generating a fibrotic response to

DSS-mediated colonic injury. In fact, it appears that higher levels

of collagen may be deposited in FAK-deficient colons compared to

WT animals following DSS treatment and this may be a

consequence of the more extensive tissue damage evident in these

mice. Despite elevated collagen, FAKDIEC mice exhibited a

significantly attenuated proliferative response to mucosal injury.

To investigate whether FAK directly regulates the proliferative

response of intestinal epithelial cells to tissue rigidity, Caco-2

intestinal epithelial cells were depleted of endogenous FAK by

siRNA, then plated for 2 days on collagen-coated polyacrylamide

substrates of rigidities ranging from 300 Pa (similar to the rigidity

FAK Regulates Mucosal Wound Repair In Vivo

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23123



of lung tissue) to 4800 Pa (similar to the rigidity of muscle cells)

[31]. FAK expression in siRNA-treated cells was reduced by

approximately 60% while Pyk2 levels remained unaffected

(Fig. 6B). Plating efficiency and adhesion of cells to the different

substrates was identical between siControl and siFAK treated cells

(data not shown). After 48 hours, the number of control cells

present on the low rigidity substrate (300 Pa) increased slightly

from the initial plating density (,1.3 fold; Fig. 6C). Control cells

plated on the higher rigidity substrate (4800 Pa) showed a larger

net gain (2-fold), indicative of greater survival/proliferation rates

on the more rigid substrate. In contrast, FAK-depleted cells

showed no significant net increase during this 48-hour period on

either of the matrix rigidities tested. These data demonstrate that

FAK regulates the proliferative response to matrix rigidity in these

intestinal epithelial cells.

Since the loss of FAK from intestinal epithelial cells in vivo

resulted in less proliferation coincident with reduced cyclin D1

expression after DSS treatment (Fig. 4), we next tested whether

FAK depletion in Caco-2 cells affected cyclin D1 levels when

plated onto substrates of high and low rigidity. Cyclin D1 was not

detected in either siControl- or siFAK-treated cells plated on the

low rigidity substrate (Fig. 6D, middle panel, lanes 1, 2), further

supporting our findings that Caco-2 cells fail to proliferate on soft

matrix even in the presence of FAK. Cyclin D1 was present in

siControl-treated cells cultured on the higher rigidity substrate

(4800 Pa; lane 3); however, we were unable to detect an increase

in FAK autophosphorylation under these conditions (data not

shown). In comparison, cyclin D1 levels were significantly lower in

the siFAK-treated cells (lane 4 and Fig. 6E), consistent with a

failure of these cells to proliferate under these conditions. Finally,

Figure 4. FAK controls proliferation in response to DSS treatment. (A) Colon sections from untreated and DSS-treated WT and FAKDIEC mice
were immunostained for ki67 at the indicated time points. Bars represent 200 mm in low magnification (46; panels a–i) and 50 mm in higher
magnification (206; panels i–ix) images. (B) Percent ki67 positive cells per colonic crypt in WT and FAKDIEC mice. Data shown are the means from 2
mice for each genotype and 40 total crypts at day 0, and 3 mice of each genotype and approximately 35–60 crypts for all other time points. Asterisks
denote values that are significantly different from the mean for WT mice at day 0. ‘ indicates values that are significantly different from the mean for
FAKDIEC mice at day 0. # indicates values that are significantly different from the mean for WT mice at each time point. P,0.05. (D) Immunoblot
analysis of the designated proteins expressed in primary colon epithelial cells isolated from untreated (lanes 1 and 2) or Day 5 DSS-treated (lanes 3
and 4) WT and FAKDIEC mice. Total cyclin D1 levels were quantified by densitometry, normalized to the amount of tubulin present in each sample, and
expressed relative to the basal level in untreated WT mice (see numbers beneath the immunoblot). Immunoblots are representative of 2 independent
experiments containing pooled lysates from 3 animals per genotype and time point.
doi:10.1371/journal.pone.0023123.g004
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immunoblotting of siControl and siFAK-treated lysates revealed

that ERK1/2 phosphorylation was lower in cells plated onto soft

matrix, and was robustly activated after plating onto the high

rigidity substrate (Fig. 6F). Similar to our in vivo findings after DSS

treatment (Fig. 5A), no difference in ERK1/2 phosphorylation

was observed between control-treated or FAK-depleted cells

(lanes 3, 4).

Discussion

FAK is not required for normal intestinal development
and homeostasis

FAK has an established role in many cellular processes involved

in intestinal homeostasis, including cell proliferation, survival, and

migration [32]. Despite these functions, our studies show that

deletion of FAK in the intestinal epithelial cell lineage early during

development has no significant consequence on the architecture of

the small or large intestine under homeostatic conditions. A similar

result was reported when FAK was acutely deleted from small

intestinal crypts in adult animals; epithelial cell proliferation,

migration, differentiation, and survival all appeared normal within

this tissue under homeostatic conditions [19]. FAK is thought to

regulate these diverse cellular functions largely through its role in

adhesion signaling downstream of integrins, including ß1, ß3 and

ß5 integrin receptors [33], [34], [35]. Thus it is interesting that

conditional loss of FAK does not phenocopy loss of ß1 integrin

expression in intestinal crypts [36]. Using the same villin-Cre

transgenic model as we employed here, intestinal crypts lacking ß1

integrin exhibited hyperplasia and underwent aberrant enterocyte

differentiation in the absence of any environmental insult [36],

resulting in postnatal death between days 7 and 14 due to

malnutrition. One possible explanation for these differences is

functional redundancy between FAK and its only other family

member Pyk2, which we found is also expressed in the intestinal

epithelium (Fig. 1D). Pyk2 has been shown to control p53 levels,

cell cycle progression, and proliferation in ovarian carcinoma cells

that express both FAK and Pyk2, and in FAK2/2 mouse embryo

fibroblasts that undergo upregulation of Pyk2 due to loss of FAK

[37]. Members of the Src family of kinases (SFKs) also perform

multiple functions in the adhesion-mediated control of prolifera-

tion, adhesion, spreading and migration [3], [34], [38]. Indeed,

SFKs have been shown previously to suppress apoptotic signaling

in both human and rodent enterocyte cell lines [4], [39], [40],

[41]. Based on these data, we suggest that the absence of any clear

phenotype exhibited by the FAKDIEC mice during development

and under homeostatic conditions may be due to proliferation and

survival signals emanating from Pyk2 and/or other transducers of

integrin signaling.

FAK promotes cell survival and regulates the proliferative
response to intestinal epithelial injury

While the loss of FAK had no apparent effect on small or large

intestinal architecture or function under homeostatic conditions, it

had a profound outcome on the response to epithelial injury.

Indeed, our data indicate that FAK serves an essential role in

colonic epithelial regeneration by contributing to epithelial cell

survival and proliferation under conditions of mucosal injury. In

response to cellular stress, accumulation of the tumor suppressor

protein p53 stimulates the transcription of a number genes

promoting growth arrest and/or cell death. We found that FAK

activity increased in the colonic epithelium of WT mice following

DSS treatment and, while p53 levels also rose, they did not do so

to the same extent as in FAKDIEC mice. Similarly, while

colonocytes from WT animals exhibited a slight increase in

activated-caspase 3 during colitis, this level rose dramatically in

FAK-deficient mice and was coincident with increased numbers of

TUNEL-positive cells. These data suggest that canonical FAK

signal transduction pathways are activated following DSS-induced

damage, which then promote cell survival by preventing an

increase in expression of p53 and other pro-apoptotic molecules.

These results are consistent with findings by Lim et al. [9], which

show FAK facilitates cell survival through enhanced p53

degradation under conditions of cellular stress. However, our

observations differ somewhat from those reported by Ashton et al.,

who showed that FAK expression (but not activity) was elevated in

the small intestine in response to gamma irradiation [19]. These

authors also reported that p53 expression remained unchanged in

response to DNA damage in FAK-deficient enterocytes [19].

These differences may reflect distinctions between injury models

Figure 5. p53 accumulates in the colons of FAK-deficient mice
during colitis. (A) p53, cleaved-caspase 3 and ERK1/2 present in
primary colon epithelial cells isolated from untreated (lanes 1 and 2) or
Day 5 DSS-treated (lanes 3 and 4) WT and FAKDIEC mice were detected
by immunoblot. Total p53, cleaved-caspase 3 and phospho-ERK1/2
levels were normalized to the amount of total tubulin (for p53 and
cleaved-caspase 3) or total ERK1/2 present in each sample and
expressed relative to the basal level in untreated WT mice (see
numbers under each immunoblot). Immunoblots are representative of
2 independent experiments containing pooled lysates from 3 animals
per genotype and time point. (B) Representative images of TUNEL-
stained colon tissues from WT and FAKDIEC mice after Day 5 DSS
treatment.
doi:10.1371/journal.pone.0023123.g005
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or fundamental differences in the outcome of FAK-dependent

signaling between the small intestine and the colon.

In addition to higher than normal levels of p53, the reduced

epithelial proliferation observed in FAK-deficient mice also

coincided with significantly diminished cyclin D1 expression

following inflammatory injury (Fig. 4). Several reports link FAK

expression to the induction of cyclin D1 in cultured cells [11], [12].

Indeed, FAK promotes cyclin D1 transcription by stimulating the

expression of two transcription factors, an Ets-like transcription

factor and Kruppel-like factor 8 [11], [12]. Conversely, cyclin D1

mRNA expression is suppressed by expression of either FAKY397F

or FAK-related non kinase (FRNK, the non-catalytic carboxy

terminal domain of FAK) [13]. Interestingly, we found that ERK

activation in response to DSS treatment was independent of FAK.

Figure 6. Increased tissue rigidity leads to FAK-dependent cell proliferation. (A) Colon sections from untreated and DSS-treated WT and
FAKDIEC mice were stained with Masson’s trichrome stain. Collagen appears blue, muscle stains dark red, cytoplasm stains pink and nuclei appear dark
brown. Bars represent 50 mm. (B) Caco-2 cells transfected with siControl or siRNA targeting FAK (siFAK) were lysed 72 hours post-siRNA transfection
and immunoblotted for total FAK and Pyk2. (C) 24 hours post-transfection, cells were inoculated (6 wells per conditions) onto a soft-plate96,
incubated for 48 hours, and quantified using the CyQuant NF proliferation assay. Data are representative of 2 independent experiments. (D) Caco-2
cells were transfected with siControl or siFAK for 24 hours before plating onto polyacrylamide gels with rigidities of 150 Pa or 4800 Pa, and cultured
for a further 48 hours. Cells were then lysed and immunoblotted for FAK, cyclin D1 and tubulin. (E) Cyclin D1 levels were normalized to the amount of
total tubulin and expressed relative to the amount of cyclin D1 in siControl-treated cells Data are representative of 3 independent experiments.
Asterisks denote values that are significantly different from siControl-treated cells (P,0.05). (F) Caco-2 cells were transfected and plated as described
in part D. Cells were then lysed and immunoblotted for phopho- and total ERK1/2. Phospho-ERK1/2 levels were normalized to total ERK1/2 and
expressed relative to the amount of phospho-ERK1/2 in siControl-treated cells plated onto the 150 Pa substrate (see numbers under the
immunoblot).
doi:10.1371/journal.pone.0023123.g006

FAK Regulates Mucosal Wound Repair In Vivo

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e23123



Similarly, ERK phosphorylation occurred in FAK-depleted Caco-

2 cells plated onto higher rigidity substrate. It has been reported

previously that physical forces such as cyclic deformation induce

Caco-2 cell proliferation in a FAK-ERK dependent manner [42].

However, our observations are consistent with findings by Klein et

al. indicating that the regulation of mitogenesis and cyclin D1

expression by extracellular matrix stiffness requires FAK rather

than ERK1/2. These results highlight the complex nature of the

cellular response to colonic injury and the fact that the

requirement for FAK during this process appears to be both cell

type- and context-specific.

FAK functions as a mechanosensor to control intestinal
epithelial proliferation

A hallmark of inflammatory injury is the deposition of collagen

matrix within the inflamed tissue [15], [23], [30], [43], [44].

Elevated collagen expression in the mucosa and submucosa of

DSS-treated animals induces fibrotic thickening and contributes to

increased rigidity within colonic tissues [23]. We found that

collagen deposition following DSS treatment in WT animals

coincided temporally with a marked increase in colonic epithelial

cell proliferation and elevated FAK activity. In addition to

increased stiffening, it is also possible that FAK activation occurs

in direct response to elevated levels of collagen and other ECM

components, such as fibronectin. Arterial stiffening due to vascular

injury promotes a similar proliferative response to damage [13],

and greater collagen matrix density in the mammary epithelium

increases tissue rigidity and promotes cellular proliferation and

tumorigenesis in a FAK-dependent manner [45]. These data are

consistent with our findings, in that FAKDIEC mice showed

decreased cyclin D1 expression and an attenuated proliferative

response to inflammatory injury despite robust collagen deposition

in the injured colon.

Findings by Klein et al. suggest that cells respond to increasing

extracellular stiffness by regulating the degree to which FAK stably

associates with activated integrins independent of its kinase activity

[13]. This is highlighted by the fact that cells expressing

constitutively active FAK are unable to progress through the cell

cycle on low stiffness matrices [13], and is supported by our data

showing that, in the absence of damage and subsequent tissue

stiffening, FAK is not required to maintain homeostasis in the

colon (see model, Fig. 7A). During colitis, however, we hypothesize

that pathological changes in matrix elasticity within the colon

promote formation of FAK-integrin complexes, cyclin D1

upregulation and progression through the cell cycle (Fig. 7B).

Within this context, FAK also becomes activated and mediates cell

survival by maintaining low levels of pro-apoptotic molecules like

p53 and activated-caspase 3. In the absence of FAK, loss of

adhesion signaling leads to a reduction in cyclin D1 levels,

inhibited proliferation and an accumulation in p53 expression.

This is further supported by our in vitro data, which showed

impaired proliferation of FAK-depleted Caco-2 colonic epithelial

cells on more rigid substrates coincident with reduced levels of

cyclin D1.

The pressure to maintain the integrity of the epithelial barrier is

paramount to host survival. Re-epithelialization is therefore an

essential component of the healing process following gastrointes-

tinal damage associated with inflammatory bowel diseases. Under

conditions of stress, such as that induced by prolonged exposure to

inflammatory mediators, we suggest that FAK tips the balance in

favor of cell survival while coordinately promoting an appropriate

proliferative response required to regenerate damaged mucosal

surfaces. The current study also supports a potential mechanism

implicating FAK as a regulator of intestinal epithelial cell

proliferation through the mechanotransduction of signals emanat-

ing from the tissue matrix. By establishing the mechanisms

through which epithelial repair is regulated, it may be possible to

develop better treatment options for inflammatory bowel diseases.

Materials and Methods

Ethics statement
The animal studies were carried out in strict accordance with

the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the University of Virginia Animals Care

and Use Committee (Protocol Number 3158). All efforts were

made to keep pain and suffering to a minimum.

Intestinal-specific conditional FAK knockout mice
Mice were generated as described in supplemental materials to

produce Villinwt/CreFAKf/fROSA26LacZf-STOP-f/f-STOP-f (designat-

ed FAKDIEC) and Villinwt/wtFAKf/fROSA26LacZf-STOP-f/f-STOP-f

(designated WT) littermate controls. All mice are in a pure C57BL/

6 background. Animal experiments were approved by the

institutional animal care and use committee of UVA.

Genotyping of mice and analysis of Cre-mediated
recombination (see Methods S1)

Antibodies and reagents
Immunoblot and immunohistochemical analyses were per-

formed using the following antibodies: polyclonal phospho-

FAKpY397 (BD Transduction Laboratories, San Jose, CA),

polyclonal anti-ERK1/2, polyclonal phospho-ERK1/2 and

monoclonal cleaved-cleaved caspase 3 were all from Cell Signaling

(Danvers, MA), polyclonal anti-FAK C-20, monoclonal anti-p53

and monoclonal anti-FAK A-17 were all from Santa Cruz

Biotechnology, Inc, (Santa Cruz, CA). Monoclonal anti-ki67 clone

TEC-3 (DakoCytomation, Denmark), monoclonal anti-E-cadherin

(BD Transduction Laboratories), monoclonal anti-ß-catenin

(Epitomics, Burlingame CA), monoclonal anti-Pyk2 (BD Trans-

duction Laboratories), polyclonal anti-cyclin D1 (Abcam, Cam-

bridge, MA) and monoclonal anti-gamma-tubulin (Sigma-Aldrich,

St. Louis, MO) were all purchased from the suppliers indicated.

siRNA transfection
20 mM siRNA oligonucleotides [46] targeting human FAK

(Dharmacon, Lafayette, CO) and non-targeting controls (siCon-

trol, Ambion, Austin, TX) were transfected using Lipofectamine

RNAi max (Invitrogen, Carlsbad, CA) according to manufactur-

er’s specifications.

ß-galactosidase staining
Organs were rinsed in cold phosphate-buffered saline (PBS),

fixed in 0.1 M sodium phosphate, 20 mM Tris pH 7.3, 5 mM

EGTA, 2 mM magnesium chloride, 0.25% glutaraldehyde, 1%

formaldehyde for 30 minutes, and stained overnight at 4uC in

0.1 M sodium phosphate, 20 mM Tris pH 7.3, 2 mM magnesium

chloride, 5 mM potassium ferrocyanate, 5 mM potassium ferri-

cyanate, 0.1% deoxycholate, 0.2% NP40, 1 mg/mL 5-bromo-4-

chloro-3-indolyl-ß-D-galactopyranoside (X-Gal). Organs were

then washed in PBS, dehydrated in methanol, and placed in 2:1

benzylbenzoate:benzyl alcohol for 48 hours prior to visualization.

DSS treatment
8–12 week old mice were given 2.5% dextran sulfate sodium

(DSS; MP Biomedicals, LLC, Solon, OH) in their drinking water
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for 5 days and allowed to recover for up to 14 days. Disease

activity index (DAI) was calculated based on change in body

weight, presence of blood in the stool, and stool consistency, as

previously described [47]. The scores were determined as follows:

change in weight (0:,1%, 1: 1–5%, 2: 6–10%, 3: 11–15%, 4:

.15%), stool consistency (0: normal, 2: loose stools, 4: diarrhea),

and stool blood (0: negative, 2: positive, 4: gross bleeding). The

total score was then divided by 3. Following observation, colons

were excised, measured, and processed for analysis at the indicated

time points.

Immunostaining
Intestinal tissues were flushed with PBS and fixed overnight in

Bouin’s fixative (Ricca Chemical Company, Arlington, TX), 10%

formalin or snap-frozen in O.C.T. (Sakura Finetek U.S.A., Inc.,

Torrance, CA). Tissues were subsequently stained for H&E,

immunohistochemistry, or immunofluorescence (see Methods S2).

For the detection of apoptotic cells, TUNEL staining was

performed as per the manufacturer’s instructions (Roche,

Indianapolis, IN).

Protein isolation from intestinal epithelial cells
The ileum and colon were opened longitudinally, washed

extensively with Hank’s Buffered Salt Solution (HBSS), cut into 3–

5 mm pieces, and incubated on an orbital shaker in HBSS, 5%

FBS, 2 mM EDTA at 37uC for 20 minutes. The supernatants

were collected, filtered through a 100 mm filter, and spun at 4uC
for 10 minutes at 1800 rpm. Pellets were washed, lysed, and

analyzed by immunoblotting [48], [49]. For some experiments,

colon sections were flushed with ice-cold PBS containing protease

(1 mM PMSF, 0.15 U/ml aprotinin and 1 mg/ml each of

leupeptin, pepstatin and antipain) and phosphatase inhibitors

(1 mM EDTA, 1 mM NaF, 20 mM Na4P207 and 2 mM

Na3VO4). Colons were opened longitudinally and scraped to

isolate mucosal protein. Scrapped cells were placed in cold cell

extraction buffer (10 mM Tris, 100 mM NaCl, 1 mM EGTA, 1%

Triton X-100, 10% glycerol, 0.1% SDS, 0.5% deoxycholate

supplemented with protease and phosphatase inhibitors at the

concentrations listed above). Mucosal scrapings were briefly

homogenized with a Tissue Master 240 (Omni International,

Kennesaw, GA) on ice before centrifugation at 4uC for 10 minutes

at 13,000 rpm to remove cell membranes and debris. Lysates were

then analyzed by immunoblotting. To quantify changes in protein

expression levels densitometry was performed. Band intensities

were quantified using ImageJ (National Institutes of Health).

Soft-plate96 proliferation assays and polyacrylamide
substrates

Multiwell ‘‘soft-plates’’ were inoculated for cell growth assays on

substrates of increasing rigidity as described in Tilghman et al. [50]

(see Methods S3). Flexible polyacrylamide substrates were

generated on glass coverslips and adapted for cell culture using

Figure 7. Increased tissue rigidity drives cell cycle progression in a FAK-cyclin D1-dependent manner. (A) Under homeostatic or
physiological conditions, where tissue compliance is relatively high, FAK and integrin receptors are minimally associated and cyclin D1/proliferation
are kept to basal levels. p53 levels are also maintained at low levels. (B) Induction of colitis leads to the deposition of collagen and other ECM
components. The resultant increased tissue rigidity promotes FAK-integrin complexes, which in turn induces FAK phosphorylation and promotes cell
survival. FAK auto-phosphorylation can result in Akt activation and subsequent phosphorylation of Mdm2. FAK translocation to the nucleus also
allows FAK to function as a scaffold, stabilizing p53-Mdm2 complexes. Both of these FAK signaling pathways enhance cell survival by keeping p53
levels low. Finally, FAK contributes to the induction of cyclin D1 expression by upregulating transcription factors such as krupple-like factor 8 (KLF-8).
In the absence of FAK, the failure to increase cyclin D1 levels significantly attenuates proliferation and impairs the healing response.
doi:10.1371/journal.pone.0023123.g007
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the method of Pelham and Wang and as described in Tighman et

al.

Statistical methods
A two-sample t-test, assuming unequal variance, was used to

determine statistical significance between conditions.

Supporting Information

Figure S1 Cre-mediated recombination in FAKDIEC

mice. Schematic diagram of the FAKf and ROSA26LacZf-STOP-f

loci following Villin-driven Cre-mediated recombination. The

second kinase domain exon of FAK (black box) is flanked by loxP

sites (black triangles). A stop codon on the ROSA26 locus is also

flanked by loxP sites (black triangles). Primers (short arrows) and

PCR products (thin lines) are shown for each allele.

(TIF)

Figure S2 Efficient FAK deletion occurs at the base of
intestinal crypts in FAKDIEC mice. Ileum and colon sections

from WT and FAKDIEC mice were immunostained for FAK.

Panels represent an enlarged region from crypts of ileum (a, b) and

colon (c, d). Images show positive FAK staining in the base of

crypts from WT animals that is absent in crypts from FAKDIEC

animals. Bar represents 50 mm.

(TIF)

Figure S3 IEC-specific conditional FAK knockout mice
maintain normal weight patterns and gut architecture
compared to controls. (A) Average body weight in grams of 8–

10 week-old WT and FAKDIEC mice. Data presented are the

average of 12 WT and 11 FAKDIEC mice. (B) H&E stained ileum

and colon sections isolated from 8–10 week-old WT and FAKDIEC

mice. (C) Immunoblot analysis of E-cadherin and ß-catenin

protein present in primary colonocytes isolated from WT and

FAKDIEC mice. The vertical line separator is indicative of non-

contiguous lanes on the gel. However, immunoblots shown for

each antibody were generated from a single exposure. (D) Colon

sections from WT and FAKDIEC mice were stained for E-cadherin

(green staining) and examined by immunofluorescence. Bars

represent 10 mm (panels a, b). Panels c and d represent enlarged

regions from panel a and b respectively. Arrows depict regions of

membrane-associated E-cadherin staining.

(TIF)

Figure S4 DSS-induced colonic shortening is aggravated
in FAKDIEC mice. Colon length measured in centimeters from

untreated and DSS-treated WT and FAKDIEC mice. Asterisks

indicate values that are significantly different from untreated WT

mice (Day 0). ‘ indicate values that are significantly different from

WT mice at the same time point. In both cases, p,0.05.

(TIF)

Figure S5 Colons of FAKDIEC mice generally lack crypt
structure at day 8 post-DSS treatment. Low magnification

images of ki67-stained DSS-treated colon sections from WT (panel

a) and FAKDIEC (panel b) animals (day 8). Bars represents 200 mm.

Panels c and d show high magnification images of panels a and b,

respectively. Bars represents 50 mm.

(TIF)

Methods S1 Genotyping of mice and analysis of Cre-
mediated recombination. Animals were genotyped using tail

DNA and subjected to PCR analysis. The following primers were

used for PCR of the FAK locus: P1 (59-GAGAATC-

CAGCTTTGGCTGTTG-39) and GenoRV (59-GAATGCTA-

CAGGAACCAAATAAC-39). This primer set generates 290-bp

(WT) and 400-bp (FAKf) products. To determine the status of the

villin locus, the following primers were used: MR1878 (59-

GTGTGGGACAGAGAACAAACC-39) and MR1879 (59-

ACATCTTCAGGTTCTGCGGG-39). These primers generate

an 1100-bp (Villin-Cre) product. For PCR of the ROSA26 allele,

the following primers were used: ROSA1 (59- AAAGTCGCTCT-

GAGTTGTTAT-39), ROSA2: (59-GCGAAGAGTTTGTCCT-

CAACC-39) and ROSA3: (59- GGAGCGGGAGAAATGGA-

TATG-39). ROSA1 and ROSA3 primer sets generate a 600-bp

product containing the WT allele, while ROSA1 and ROSA2

primer sets generate a 300-bp product containing the ROSA26-

LacZf-STOP-f allele. To check for Cre-mediated recombination in

intestinal tissues, DNA was isolated from homogenates of intestinal

tissues (ileum, cecum, colon) and subjected to PCR. The following

primers were used: LoxP (59GACCTTCAACTTCT-

CATTTCTCCC-39) and GenoRV (see above). These primers

amplified products consisting of a FAKf/f (1.6 kb), and a Cre-

mediated recombined fragment (327 bp). PCR fragments were

separated on 1.5% agarose gels.

(DOCX)

Methods S2 Preparation of tissue sections and immu-
nohistochemical staining. Ileum and colon tissues were

flushed with PBS to remove fecal material. Tissues were then

fixed overnight in Bouin’s fixative (Ricca Chemical Company,

Arlington, TX), 10% formalin or snap-frozen in O.C.T. (optimal

cutting temperature, Sakura Finetek U.S.A., Inc., Torrance, CA).

Following fixation, tissues were washed in 70% ethanol. Segments

were then embedded in paraffin directly or cut and mounted in

agar-10% formalin prior to being embedded in paraffin. Five-

micron paraffin sections were cut and mounted onto slides. For

immunohistochemical (IHC) staining, slides were deparaffinized in

a series of xylene and ethanol baths. Slides were treated in 0.3%

hydrogen peroxide to block endogenous peroxidase activity.

Antigen retrieval was performed by microwaving slides for

20 minutes in 10 mM sodium citrate buffer (pH 6.0). IHC

staining was performed utilizing a biotin blocking kit and

Vectastain ELITE ABC kit as per manufacturer recommendations

(Vector Laboratories, Burlingame, CA). Slides were incubated

with primary antibodies in PBS containing Vector blocking agent.

Biotinylated secondary anti-rat, anti-rabbit, or anti-mouse anti-

bodies (Vector Labs) were added and incubated for 10 minutes at

room temperature. Sections were then incubated with Nova Red

or 3,3-Diaminobenzidine (DAB) substrate (Vector Labs) followed

by a hematoxylin counterstain. For analysis of tissue architecture,

hematoxylin and eosin (H & E) staining was performed. To

visualize connective tissue, Masson’s trichrome staining was

performed. For immunofluorescence, five-micron frozen sections

were cut and mounted onto slides. Sections were blocked and

stained in 10% goat serum at room temperature. Sections were

incubated with primary antibodies for 1 hour followed by a

30 minute incubation with anti-mouse fluorescein isothyocyanate

(FITC)-conjugated secondary antibodies (Jackson ImmunoRe-

search, West Grove, PA). Cells were imaged with a Nikon Eclipse

E800 microscope connected to a charged-coupled device (CCD)

camera. Imaging was performed using Openlab software (Perkin

Elmer, Waltham, MA, USA). IHC- and H & E-stained sections

were examined with an Olympus BX51 microscope and images

were acquired with an Olympus DP70 digital camera controlled

by Image Pro PlusTM software (EPIX, Inc, Buffalo Grove, IL).

(DOCX)

Methods S3 Soft-plate96 proliferation assays. To assay

cell growth on substrates of increasing rigidity, we employed the

use of a multiwell ‘‘soft-plate’’ as described in Tilghman et al. [49].
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Soft-plate96 assay plates were seeded with siControl or siFAK-

treated cells in sextuplet wells 24 hours post-siRNA transfection at

a density of 5000 cells per well, and the cells were allowed to

proliferate for a further 48 hours. Cell proliferation was measured

using the CyQuant NF cell proliferation assay kit (Invitrogen,

Carlsbad, CA). Standard curves were generated for each

experiment by performing serial dilutions of the cells in an empty

row of wells and allowing them to adhere for four to six hours

prior to quantification with CyQuant.

(DOCX)
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