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Abstract

Previous studies have demonstrated that the c-aminobutyric acid type B (GABAB) receptor plays an essential role in
modulating neurotransmitter release and regulating the activity of ion channels and adenyl cyclase. However, whether the
naturally occurring polymorphisms in the two GABAB receptor subunit genes interact with each other to alter susceptibility
to nicotine dependence (ND) remains largely unknown. In this study, we genotyped 5 and 33 single nucleotide
polymorphisms (SNPs) for GABAB receptor subunit 1 and 2 genes (GABBR1, GABBR2), respectively, in a sample of 2037
individuals from 602 nuclear families of African- American (AA) or European-American (EA) origin. We conducted association
analyses to determine (1) the association of each subunit gene with ND at both the individual SNP and haplotype levels and
(2) the collective effect(s) of SNPs in both GABAB subunits on the development of ND. Several individual SNPs and
haplotypes in GABBR2 were significantly associated with ND in both ethnic samples. Two haplotypes in AAs and one
haplotype in EAs showed a protective effect against ND, whilst two other haplotypes in AAs and three haplotypes in EAs
showed a risk effect for developing ND. Interestingly, these significant haplotypes were confined to two regions of GABBR2
in the AA and EA samples. Additionally, we found two minor haplotypes in GABBR1 to be positively associated with
Heaviness of Smoking Index (HSI) in the EA sample. Finally, we demonstrated the presence of epistasis between GABBR1 and
GABBR2 for developing ND. The variants of GABBR1 and GABBR2 are significantly associated with ND, and the involvement of
GABBR1 is most likely through its interaction with GABBR2, whereas GABBR2 polymorphisms directly alter susceptibility to
ND. Future studies are needed with more dense SNP coverage of GABBR1 and GABBR2 to verify the epistatic effects of the
two subunit genes.
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Introduction

Tobacco smoking is a serious public health concern worldwide,

as nearly a third of adults smoke tobacco or related products [1].

Nicotine is the main psychoactive substance in cigarettes that

functions as a reward and maintains its continued use, ultimately

leading to dependence [1]. Meta-analysis of twin and family

studies reveals genetic susceptibility to nicotine dependence (ND),

with an average heritability of 0.56 [2]. ND also is influenced by

environmental factors, as well as by interaction between genetic

and environmental factors [2,3].

Substantial efforts have been geared toward identifying genes

that predispose individuals to become nicotine dependent.

Genome-wide linkage scans of various smoking phenotypes have

revealed several regions that likely harbor susceptibility loci for

ND [4,5], particularly on chromosomes 9, 10, 11, and 17 [4]. Of

these reproducibly identified regions, that on chromosome 9 is of

particular interest [6,7,8,9,10]. The first gene identified from this

linkage region was GABBR2 (G-protein coupled receptor 51), for

which several SNPs were found to be significantly associated with

ND in the Mid-South Tobacco Family (MSTF) cohort [11]. Since

that initial report, continued recruitment has yielded approxi-

mately a two-fold increase in the sample size of this cohort [10,12].

GABA is the main inhibitory neurotransmitter in the central

nervous system, whose actions are mediated by both ionotropic

GABAA receptors and metabotropic GABAB receptors. GABAB

receptors are seven transmembrane G-protein-coupled proteins

that are pharmacologically functional only as a heterodimer

consisting of both GABAB1 and GABAB2 subunits [13]. GABA

neurons are part of the mesolimbic dopamine system, critically

important in mediating the reinforcing properties of drugs of

abuse. GABAB receptors, in particular, are responsible for

dampening the reinforcing effects of dopamine resulting from

natural reward. Additionally, the GABA system is diffusely

expressed in the brain; therefore, areas other than the mesolimbic

system may be partly responsible for these effects. Evidence exists
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from both animal and human studies supporting the value of

GABAB receptor agonists in the treatment of drug abuse.

Specifically, in preclinical studies, baclofen, a GABAB agonist,

has been successful in promoting abstinence and decreasing the

use of several drugs of abuse, including nicotine [14]. Baclofen also

has been effective in reducing cigarette smoking [15] and has been

reported to alter the sensory properties of cigarettes, reducing their

desirability [15].

A recent animal study examined the effect of nicotine on

GABBR2 expression in various brain regions in a rodent model

[16]. After chronic nicotine administration, GABBR2 mRNA was

significantly regulated in several brain regions generally associated

with addiction, thus providing further evidence that the GABA

system is involved in addictive processes. In the mammalian brain,

GABA is a major inhibitory neurotransmitter whose modulatory

actions are mediated through two types of receptors: the

ionotropic GABAA and the metabotropic GABAB [13]. GABAA

receptors form ion channels, whereas GABAB receptors activate

second-messenger systems thorough G-protein binding and

activation. GABAB receptors have two subunits, GABAB1 and

GABAB2, which must form a heterodimer to be pharmacologically

active [17]. Thus, the genes that encode these receptor subunits

were of particular interest in the current study.

On the basis of previous human and animal studies suggesting

that GABBR2 is involved in the etiology of ND, the current study

examined 33 SNPs in GABBR2 in a larger cohort of the MSTF

sample. Because the GABAB2 subunit protein does not bind with

the neurotransmitter GABA, it must form a heterodimer with the

GABA-binding GABAB1 subunit [13]; thus, we also examined the

association of five SNPs in GABBR1 with ND.

We found that several SNPs and haplotypes of GABBR2 were

significantly associated with ND in both European-American (EA)

and African-American (AA) samples. Although we found no

evidence for significant associations of GABBR1 with ND in either

ethnic sample, we detected a significant gene-gene interactive

(epistatic) effect between the two subunits by using a newly

developed pedigree-based generalized multifactor dimensionality

reduction (PGMDR) approach.

Materials and Methods

Ethics Statement
Informed written consent was obtained in advance from all

participants. The study was approved by the Institutional Review

Boards of University of Virginia and University of Mississippi

Medical Center and was in accordance with the principles of the

Helsinki Declaration II.

Study Participants
The AA and EA participants were recruited from the US Mid-

South States during 1999–2004 [10,12,18]. Detailed information

on the clinical characteristics of the samples is given in Table 1 and

in previous publications from this group [10,12,18,19]. Proband

smokers were required to be at least 21 years old, to have smoked

for at least the last five years, and to have consumed at least 20

cigarettes per day for the preceding 12 months. After a smoker

proband was identified, we attempted to recruit the biological

parents and all full siblings. A total of 2037 participants were

included in the current study, with 1366 individuals from 402 AA

families and 671 individuals from 200 EA families. The average

family size (6 standard deviation; SD) was 3.1460.75 for AAs and

3.1760.69 for EAs. The average age was 39.4614.4 years for AAs

and 40.5615.5 years for EAs. The ND of probands and other

smoker participants was assessed with the three measures

commonly used in the tobacco research field: Smoking Quantity

(SQ; number of cigarettes smoked per day), the Heaviness of

Smoking Index (HSI; 0–6 scale), and the Fagerström Test for

Nicotine Dependence score (FTND; 0–10 scale) as a continuous

variable. Given the overlap in the content of the three ND

measures, there exist fairly robust correlations among them

(r = 0.88–0.94) in both the AA and EA samples.

SNP Selection and Genotyping
A venous blood specimen was obtained from each participant,

and genomic DNA was extracted using a Qiagen Maxi kit (Qiagen

Inc, Valencia, CA). Five and thirty-three SNPs were selected from

the NCBI database (http://www.ncbi.nlm.nih.gov/projects/

SNP/; build 128) for the long isoform of GABBR1 and GABBR2,

respectively. The SNPs selected in GABBR2 were intended to

provide more uniform coverage with less redundancy of those

SNPs genotyped in our previous study [11]. Of the 33 SNPs in

GABBR2, only two were genotyped for the second time (i.e.,

rs2304389 and rs3750344). The SNPs for both genes were chosen

on the basis of minor allele frequency ($0.10) and to obtain

uniform physical coverage of the gene.

The SNPs for GABBR1 were genotyped using a TaqMan assay

in a 384-well microplate format, including four no-template

negative controls and four positive controls for each homozygous

genotype (12 total samples) (Applied Biosystems Inc., Foster City,

CA) as described previously [11,18]. Allelic discrimination was

performed on an ABI Prism 7900HT Sequence Detection System

(Applied Biosystems Inc., Foster City, CA). The GABBR2 SNPs

were genotyped using the Illumina BeadChip system at the Center

for Inherited Disease Research (CIDR) at Johns Hopkins

University.

Individual SNP and Haplotype Analysis
First, we used Haploview (v. 4.0) [20] to identify any

inconsistent Mendalian inheritance or other genotyping errors,

revealing about a 0.04% error rate for GABBR1 and 0.02% for

GABBR2. These samples were excluded from further data analysis.

Haploview (v. 4.0) was then used to assess linkage disequilibrium

(LD) and haplotype blocks for all SNPs included in this study.

Associations between individual SNPs and three ND measures

were determined using the Pedigree-Based Association Test

Table 1. Clinical characteristics of the African-American,
European-American, and pooled samples.

Characteristic
African-
Americans

European-
Americans Pooled

No. of nuclear families 402 200 602

Avg. members/family 3.1460.75 3.1760.69 3.1560.73

No. of subjects 1,366 671 2,037

Female (%) 66.1 69.5 67.2

Age (years) 39.4614.4 40.5615.5 39.7614.8

No. of smokers 1,053 515 1,568

Age of smoking onset 17.364.7 15.564.4 16.764.7

Years smoked 20.4612.5 23.2613.5 21.3612.9

Smoking quantity/day 19.4613.3 19.5613.4 19.5613.3

HSI 3.761.4 3.961.4 3.861.4

FTND score 6.2662.15 6.3362.22 6.2962.17

doi:10.1371/journal.pone.0007055.t001

GABBR1, GABBR2 and Smoking
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(PBAT; v. 3.5) [21]. Family-Based Association Test (FBAT; v.

1.7.3) software was used to determine associations between

haplotypes and ND measures [22]. Haplotypes were determined

using a sliding-window approach, where three consecutive SNPs

were evaluated at once to determine the presence of any significant

three-SNP combinations. Three genetic models (i.e., additive,

dominant, and recessive) were tested for individual SNPs and

haplotypes with sex and age as covariates; ethnicity was an

additional covariate in the pooled sample, as all of these factors

affect ND [2]. Results statistically significant at the 0.05 level for

individual SNPs were determined by using a corrected P value of

0.002 for GABBR2 and a corrected P value of 0.008 for GABBR1

[23]. P values also were corrected for multiple testing of major

haplotypes (frequency $0.05), which differed by SNP combination

and sample grouping. We did not correct for three ND measure or

genetic models because of the concern that they are highly related.

Interaction Analysis of GABBR1 and GABBR2
Gene-by-gene interactions between SNPs in GABBR1 and

GABBR2 were analyzed using a newly developed PGMDR [24].

Selection of SNPs for interaction analysis for both genes was based

on their physical location: SNPs located in exons that encode each

functional domain of a subunit protein or SNPs within intronic

regions bordered by exons encoding the transmembrane or

cytoplasmic domain of each subunit. From GABBR2, we included

the following SNPs: rs585819, rs669095, rs6478676, and

rs13286336 on either side of exon 13, which encodes a

transmembrane protein domain; rs2304389 and rs10985765 in

exons 16 and 18, which encode two cytoplasmic protein domains,

and rs785648 and rs10818739 in introns 16 and 18. From

GABBR1, we included the following SNPs: rs29230 and rs29267 in

exon 16 that encodes a transmembrane domain and intron 16,

respectively, and rs2267633 in the 39-UTR and rs2267635 in

intron 6, which is bordered by exons that encode the extracellular

domain.

As with the previous association analyses, age and sex were

included as covariates for the EA and AA samples. Age, sex, and

ethnicity were included as covariates in the pooled sample. Gene-

by-gene interactions were examined for all two- to seven-locus

models. The top-ranked interaction model was chosen for a given

order of interaction, and its P value of prediction accuracy (PA)

was evaluated by a permutation test based on 1000 shuffles of the

adjusted phenotypic values. Because all P values reported here

were based on permutation tests of each interaction model, no

correction for multiple models is needed. For detailed information

on the PGMDR approach, please refer to the paper by Lou et al.

[24].

Results

Individual SNP Associations with ND for GABBR1 and
GABBR2

Table 2 shows allele frequencies (calculated by directly counting

the number of each progenitor allele) and P values for those SNPs

that showed significant associations with ND measures in at least

one sample before correction for multiple testing. In addition to

the seven GABBR2 SNPs identified in our previous report [11], 11

unique SNPs were significantly positively associated with ND in

the pooled sample (EA + AA; Table 2). However, the association

of individual SNPs varied as a function of ethnicity. That is, each

SNP identified as significant in the pooled sample was attributable

to either the AA or the EA sample, and there were no SNPs with

significant associations shared by the two ethnic groups.

Specifically, SNPs rs10120452, rs12337255, rs2900512, and

rs4743221 were associated with measures of ND in the AA

sample, whereas SNPs rs2779543, rs6478676, and rs7865648 were

associated with ND measures in the EA sample. Almost all SNPs

were marginally associated with ND measures except for

rs7865648 (P = 0.0009), which remained significantly associated

with SQ in the EA sample after correction for multiple testing

(Table 2). For GABBR1, analysis revealed no significant association

with ND for any individual SNP in the three samples (data not

shown); rs29230 exhibited a trend with FTND in the pooled

sample (p = 0.08).

Using the block definition proposed by Gabriel et al. [25], we

revealed eight blocks for GABBR2 in the pooled sample (Figure 1).

However, when LDs were assessed separately for each ethnic

group, there were slight differences in LD blocks at the 59 end of

Table 2. Allele frequencies and P values for association of individual GABBR2 SNPs with three measures of ND in pooled sample
and for each ethnic group*{.

dbSNP ID (allele) Pooled sample AA sample EA sample

MAF SQ HSI FTND MAF SQ HSI FTND MAF SQ HSI FTND

rs1930135 (C/T) 0.43 0.09a 0.06a 0.04a 0.48 0.24a 0.15a 0.07a 0.30 0.11a 0.12r 0.23r

rs2779543 (G/A) 0.33 0.04r 0.03d,r 0.02a 0.38 0.12r 0.12r 0.06a 0.21 0.04d 0.02d 0.03d

rs10120452 (G/A) 0.26 0.008a 0.02a 0.01a 0.30 0.03a 0.05a 0.03a 0.17 0.07a 0.07a 0.07a

rs11788000 (T/C) 0.41 0.06a 0.06a 0.04a 0.44 0.18r 0.21r 0.08r 0.34 0.06a 0.05a 0.10a

rs12337255 (T/C) 0.16 0.07d 0.07d 0.04d 0.14 0.05d 0.03d 0.03d 0.23 0.46r 0.64r 0.73d,r

rs2900512 (C/T) 0.26 0.03d,r 0.01d,r 0.006d,r 0.28 0.06d 0.02d 0.01d,r 0.21 0.32d 0.26d 0.29d

rs7044793 (G/T) 0.36 0.03a 0.03d 0.03d,r 0.36 0.07a 0.09r 0.12r 0.37 0.24r 0.12a 0.10a

rs13295101 (T/C) 0.36 0.04a,d,r 0.03d,r 0.03d,r 0.36 0.08a 0.08r 0.11r 0.37 0.28r 0.16r 0.13r

rs4743221 (A/C) 0.28 0.06r 0.08r 0.02d,r 0.30 0.06r 0.04r 0.007d,r 0.23 0.81d 0.59r 0.56r

rs6478676 (G/A) 0.35 0.02d,r 0.03r 0.03r 0.32 0.22d 0.56d 0.40r 0.43 0.008d,r 0.006d,r 0.006d,r

rs7865648 (C/T) 0.34 0.006d 0.05r 0.04r 0.23 0.60r 0.89a 0.82d 0.37 0.0009r 0.01d,r 0.005r

*Corrected P value at the 0.05 significance level is 0.002.
{Values significant before correction are shown in bold. Values that survive correction are shown in bold italics.
a = additive model, d = dominant model, r = recessive model.
doi:10.1371/journal.pone.0007055.t002

GABBR1, GABBR2 and Smoking
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the gene. For example, we found four blocks at the 59 end for AAs

(Figure 2), and three blocks in the same region for EAs (Figure 3).

Specifically, a 34-kb block in EAs containing SNPs rs157927-

rs10512258-rs337526-rs337552 existed as two smaller blocks in

AAs (rs157927-rs10512258-rs337526, 24 kb, and rs337552-

rs509747, 11 kb).

Two blocks were identified in the pooled sample for GABBR1

(Figure 4A); however, when parsed into different ethnic groups,

the block structure became different in the two samples. The AA

sample had two blocks spanning the whole gene, with the first 4-kb

block containing rs2267633-rs29267 and a 17-kb block containing

rs29230-rs2267635-rs17184416 (Figure 4B). Conversely, the EA

sample had one 21-kb block consisting of SNPs rs2267633-

rs29267-rs29230-rs2267635 located at the 39 end of GABBR1

(Figure 4C).

Haplotype Associations with ND
Haplotype-based association analyses revealed several major

haplotypes that were significantly associated with ND for all

sample groups. After correction for multiple testing, there were 14

significant major haplotypes in GABBR2 in the pooled population

(Table 3), four in the AA population (Table 4), and five in the EA

population (Table 4). All the 14 haplotypes in the pooled sample

were located within intronic areas among exons that encode the

extracellular, transmembrane, and cytoplasmic domains, with

most of them residing among extracellular domain encoding exons

1–9. When the two ethnic groups were analyzed separately, the

haplotypes significantly associated with ND phenotypes differed

greatly in the AA and EA populations (Table 4). In AAs, all four

haplotypes that were significantly associated with FTND and one

or two heaviness of smoking measures (HSI and SQ) resided in the

intronic areas among extracellular domain-encoding exons

(Table 4A and Figure 5A). Conversely, in EAs, four of the five

significantly associated haplotypes were located in and around

cytoplasmic and transmembrane domain coding exons 16–19 and

10–15, respectively (Tables 4B, 4C and Figures 5B, 5C). Only one

haplotype located in the intronic areas among extracellular

domain encoding exons was significantly associated with SQ, but

not with FTND. Interestingly, the same three-SNP combination

(i.e., rs3750344-rs6478761-rs2900512) constituted a haplotype in

AAs with a differing allele combination, which was significantly

associated with FTND and also HSI: The A-A-T haplotype

(frequency 24.3%) was negatively associated with HSI (Z = 22.88,

P = 0.004) and FTND (Z = 23.20, P = 0.001) in AAs, whereas a G-

C-C haplotype (frequency 7.4%) was positively associated with SQ

(Z = 2.68, P = 0.007) in EAs. Thus, our results clearly indicate that

the significant haplotypes are ethnicity-specific, and the SNP loci

of these haplotypes are located in very different parts of the gene in

Figure 1. Linkage disequilibrium (LD) map of 33 SNPs within GABBR2 in pooled sample. Dark red denotes high LD (D9 = 1 and LOD .2).
Lower LD values are represented in shades of pink (0.21,D9,1 and LOD .2). White represents low LD and low LOD (LOD ,2). Numbers indicate the
D9 statistic for two consecutive SNPs. LD blocks were defined using Haploview [25].
doi:10.1371/journal.pone.0007055.g001

GABBR1, GABBR2 and Smoking
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EAs and AAs. Another interesting phenomenon is that the

direction of the effects of haplotypes was similar in the AA and EA

populations if we did not consider the significance of haplotype

effects, suggesting that even if the magnitude of their effects is a bit

different in the various backgrounds, the allelic basis of ND in both

groups is similar. In addition to the differences in haplotype

locations in the gene, the directions of haplotype effects on FTND

and heaviness of smoking (SQ and HSI) also differed in the two

ethnic groups. As shown in Table 4, in AAs, the haplotypes

significant under the recessive model were negatively associated

with FTND, SQ, and HSI, whilst the two significant haplotypes

under the dominant model were positively associated with FTND.

Interestingly, these directions were reversed in EAs; all the

significant haplotypes under the recessive model were positively

associated with FTND, SQ, and HSI, and the dominant haplotype

was negatively associated with SQ.

Haplotype analyses of GABBR1 revealed no major haplotypes

associated significantly with ND (data not shown). There were,

however, two minor haplotypes in the EA population (frequency

,5%) that were positively associated with HSI after correction for

multiple testing: rs2267635-rs29230-rs29267 (C-C-T; frequency

3.6%; Z = 2.7, P = 0.007) and rs29230-rs29267-rs2267633 (C-T-A;

frequency 3.8%; Z = 2.7, P = 0.007) (Table 5), both consisting of

SNP rs29230, a synonymous SNP in exon 16 encoding a

transmembrane domain protein. Although the SNPs selected for

this gene were targeted at the GABBR1 long isoform, these four

SNPs also exist in the short isoforms of GABBR1.

Interaction Analysis of GABBR1 and GABBR2
On the basis of the knowledge obtained from biochemical and

pharmacological studies of the GABAB receptor, we investigated the

epistatic effect of SNPs from the transmembrane and cytoplasmic

domains of each GABAB subunit protein because interactions

among these domains have biological significance (Figure S1). That

is, these regions of the receptor proteins are involved in coupling of

the subunits for trafficking to the membrane and for pharmacolog-

ical activity. Our gene-by-gene interaction analysis revealed

significant epistatic effects between GABBR1 and GABBR2

(Table 6) on ND in the pooled and EA samples and also interactions

among SNPs within GABBR2 in all three samples (Table S1).

Three significant interactions were detected between SNPs in

GABBR1 and GABBR2. The same three-SNP combination was

detected for HSI and FTND (rs29230-rs7865648-rs585819;

P = 0.001 and 0.005, respectively), and the addition of a fourth SNP

to this combination was detected for FTND (rs29230-rs7865648-

rs669095-rs585819; P = 0.05). This four-SNP combination was

Figure 2. Linkage disequilibrium (LD) map of 33 SNPs within GABBR2 in African American, sample. Dark red denotes high LD (D9 = 1 and
LOD .2). Lower LD values are represented in shades of pink (0.21,D9,1 and LOD .2). White represents low LD and low LOD (LOD ,2). Numbers
indicate the D9 statistic for two consecutive SNPs. LD blocks were defined using Haploview [25].
doi:10.1371/journal.pone.0007055.g002

GABBR1, GABBR2 and Smoking
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contributed by the EA population for FTND (P = 0.02), whereas the

other interactions were detected only in the pooled sample.

The majority of significant SNP interactions were seen within

GABBR2 for the pooled, EA, and AA samples (Table S1). Five

significant two- to four-SNP interactions were detected in the

pooled sample for SQ (rs10985765-rs7865648, P,0.001;

rs10985765-rs7865648-rs6478676, P = 0.003; and rs10818739-

rs7865648-rs6478676-rs585819, P = 0.004) and HSI (rs10985765-

rs13286336-rs669095-rs585819, P = 0.05; and rs10985765-

rs7865648-rs6478676-rs669095, P = 0.03). In the AA population,

one four-SNP combination, rs10985765-rs13286336-rs699095-

rs585819, was significantly associated with all three ND measures

(P = 0.01–0.02). All other significant two- to four-SNP interactions

were identified in the EA sample: SQ and FTND: rs7865648-

rs585819, P,0.001; rs10985765-rs7865648-rs6478676-rs669095,

P = 0.003; and 0.01; SQ alone: rs10818739-rs7865648-rs669095,

P,0.001 and HSI: rs10818739-rs585819, P = 0.003; rs10818739-

rs6478676-rs585819, P,0.001; and rs10818739-rs7865648-

rs6478676-rs585819, P = 0.03 (Table S1).

Discussion

The pharmacologically active GABAB receptors are formed by

heterodimerization of GABAB1 and GABAB2 subunit proteins

encoded by GABBR1 and GABBR2 genes, respectively. The

current study examined the association of GABBR1 and GABBR2

polymorphisms with ND individually and according to their

interactive effects in European-American and African-American

individuals.

First, our findings revealed a significant association of heaviness of

smoking with SNP rs7865648 in EAs and significant associations of

ND with 14 major haplotypes in GABBR2 in the pooled sample,

after correction for multiple testing. When SNP data were analyzed

within each ethnic group, we found two protective and two risk

haplotypes unique to the AA sample and one protective and four

risk haplotypes unique to the EA sample. It was striking that these

unique loci were distributed in different regions of the gene in the

two races. Only one common SNP combination was significant in

the two ethnic samples but with a differing allelic haplotype in each

population, EAs possessing a risk haplotype (G-C-C) and AAs

having a protective haplotype (A-A-T). The five polymorphisms in

GABBR1 studied here showed no significant associations with any of

the ND measures; the smallest P value for association of rs29230

with FTND was 0.08 in the pooled sample. Haplotype analyses

revealed two minor haplotypes that were significantly associated

with HSI but not with FTND in the EA sample.

Second, in consideration of the fact that functional GABAB

receptors consist of both GABAB1 and GABAB2 subunits, we

Figure 3. Linkage disequilibrium (LD) map of 33 SNPs within GABBR2 in European American sample. Dark red denotes high LD (D9 = 1
and LOD .2). Lower LD values are represented in shades of pink (0.21,D9,1 and LOD .2). White represents low LD and low LOD (LOD ,2).
Numbers indicate the D9 statistic for two consecutive SNPs. LD blocks were defined using Haploview [25].
doi:10.1371/journal.pone.0007055.g003

GABBR1, GABBR2 and Smoking
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conducted gene-gene interaction analysis of these two subunit

genes in affecting ND. Analyses using our newly developed

PGMDR method [24] demonstrated a significant interaction

between GABBR2 and GABBR1 polymorphisms, confirming

previous findings of pharmacological studies that showed GABAB

receptors function as heterodimers of GABAB1 and GABAB2

subunits. Together, our results provide first evidence for direct

association of ND with GABBR2 polymorphisms and an indirect

less significant association with GABBR1 polymorphisms.

Our current study has several unique strengths compared with

previous studies from our group and others that implicated loci on

chromosome 9, including the GABBR2 gene, in altering suscep-

tibility to ND [4,16]. On the basis of our early linkage findings, in

a previous study, we genotyped SNPs in GABBR2 and found that

seven of the 12 SNPs initially identified were significantly

associated with ND [11]. In consideration of the relatively scanty

coverage of GABBR2 and the small sample size in our earlier study,

we conducted the current study with the goal of extending our

previous results. In the previous study, 12 SNPs were genotyped in

about half of the participants of the current MSTF sample. Also,

we chose SNPs that provided complete coverage of the gene,

without consideration of previously genotyped SNPs. Thus, the

current study extends the previous findings by: (a) comprehensively

covering the gene by genotyping 33 SNPs for GABBR2, (b)

Figure 4. Linkage disequilibrium map of six SNPs within GABBR1 in pooled, African-American, and European-American samples.
Dark red denotes high linkage disequilibrium (LD) (D9 = 1 and LOD .2). Lower LD values are represented in shades of pink (0.21,D9,1 and LOD .2).
White represents low LD and low LOD (LOD ,2). Numbers indicate the D9 statistic for two consecutive SNPs. LD blocks were defined using Haploview
[25].
doi:10.1371/journal.pone.0007055.g004
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increasing our sample size by ,760 participants, (c) including an

association analysis of GABBR1 with ND, and (d) examining the

interaction between GABBR1 and GABBR2.

The GABAB1 and GABAB2 subunits dimerize by coiling of C-

terminal domains of the two proteins following which the

subunits are transported to the plasma membrane, where the

receptor becomes pharmacologically active [26,27]. Further

evidence suggests the involvement of transmembrane domains in

the formation of heterodimers when the C-terminal domain is

truncated [28]. This is particularly interesting, considering that,

in EAs, haplotypes significantly associated with ND reside in the

introns among the transmembrane and cytoplasmic-domain-

encoding exons of GABBR2. Conversely, all haplotypes impli-

cated in ND of AAs reside in the introns among exons encoding

the binding domain of the GABBR2 subunit protein. The

function of the binding domain of GABAB2 is unclear, however,

as only GABAB1 is responsible for ligand binding in the

heterodimer configuration [29]. Therefore, haplotypes that

affect different portions of the GABAB heterodimer may have

functionally different consequences. For example, EAs may

possess GABAB2 subunits that are unable to dimerize with the

GABAB1 subunit, which consequently cannot traffic to the

membrane, resulting in fewer functional receptors. Conversely,

the affected GABAB2 binding domain has not been fully chara-

cterized, so it is difficult to speculate on the consequences of these

polymorphisms.

Although we found significant associations for GABBR2, but not

for GABBR1, with ND, significant interactions between these two

subunit genes were evident as reported here. Significant interac-

tions were detected between a synonymous SNP in the

transmembrane domain of GABBR1 and SNPs located in the

intronic regions among exons encoding transmembrane and

cytoplasmic domains of GABBR2. These statistical gene-by-gene

interactions are biologically relevant, as the subunits interact to

form a complete and functional receptor. Thus, the statistical

interaction most likely represents the functional properties of these

two subunits. Furthermore, we found that the majority of

significant interactions exist within the GABBR2 gene, suggesting

a stronger association of ND with GABBR2 polymorphisms

compared to associations of ND with both GABBR1 polymor-

phisms and GABBR1-by-GABBR2 interactive effects. However, it

should also be noted that the GABBR2 SNPs included in the

interaction models are located in the intronic regions among exons

encoding transmembrane and cytoplasmic domains of the

GABAB2 subunit. Therefore, these polymorphisms do not affect

the amino acid sequence of the transmembrane and cytoplasmic

subunits unless there is a strong linkage disequilibrium with

a causative variant in an exon; nevertheless, it is possible they affect

the structure of mature GABAB2 mRNA through alternate

splicing, resulting in altered GABAB2 protein subunits. Although

such a molecular mechanism is yet to be elaborated, the pre-

sence of six alternatively spliced mRNA variants for GABAB2

(http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/) streng-

thens the significance of functional SNPs in GABBR2 intronic

regions.

In sum, this study not only confirms our earlier finding that

GABBR2 is associated with ND but also demonstrates that an

interaction of GABBR1 and GABBR2 alters susceptibility to ND.

Our findings also indicated that GABBR2 represents a major

contributor to this phenomenon, and its biological and statistical

interaction with GABBR1 implies that the latter is indirectly

involved in ND. Furthermore, our results showed that the

Table 3. Haplotype frequencies, and Z- and P- values for association of three-SNP combinations in GABBR2 with three measures of
ND in the pooled sample*.

SNP Combination Haplotype % (# Families) Z value (P)

SQ HSI FTND

(A) Extracellular Domain:

rs1571927-rs1930135-rs2779543 A-T-A 28.8 (82) 22.40 (0.017)r 22.78 (0.006)r 22.77 (0.006)r

rs1930135-rs2779543-rs10120452 C-G-G 56.7(321.4) 2.16 (0.031)a 2.32 (0.020)a 2.52 (0.012)a

T-A-A 24.3 (56) 22.67 (0.023)r 22.60 (0.009)r 22.50 (0.012)r

rs2779543-rs10120452-rs11788000 G-G-T 57.7 (234.4) 2.27 (0.023)d 2.53 (0.011)d 2.77 (0.006)d

A-A-C 22.8 (267.4) 22.69 (0.007)a 22.63 (0.009)a 22.62 (0.009)a

rs10120452-rs11788000-rs2779536 G-T-A 59.1 (213.5) 2.26 (0.024)d 2.58 (0.010)d 2.84 (0.005)d

A-C-A 22.9 (264.2) 22.95 (0.003)a 22.68 (0.007)a 22.67 (0.008)a

rs3750344-rs6478761-rs2900512 A-A-T 22.9 (53) 22.38 (0.017)r 22.96 (0.003)r 23.18 (0.002)r

rs6478761-rs2900512-rs2808523 A-C-C 28.2 (220.3) 1.98 (0.047)d 2.38 (0.017)d 2.62 (0.009)d

A-T-C 18.6 (39) 23.26 (0.001)r 23.20 (0.001)r 23.17 (0.002)r

rs7044793-rs13295101-rs2779552 T-C-G 21 (246.4) 2.65 (0.008)a 2.09 (0.037)a 1.99 (0.047)a

rs1889983-rs4743221-rs7020345 A-A-A 58.3 (218) 2.29 (0.021)d 2.37 (0.018)d 2.87 (0.004)d

(B) Transmembrane Domain:

rs58519-rs669095-rs6478676 A-A-G 16.5 (21) 2.96 (0.003)r 2.48 (0.013)r 2.49 (0.013)r

(C) Cytoplasmic Domain:

rs2304389-rs7865648-rs10985765 C-T-T 33 (84) 2.65 (0.008)r 1.94 (0.053)r 1.90 (0.058)r

rs7865648-rs10985765-rs10818739 T-T-A 32.7 (83) 2.88 (0.004)r 2.16 (0.031)r 2.17 (0.030)r

*Values shown in bold are significant after correction for multiple testing of major haplotypes (i.e., haplotypes with a frequency .5%). Corrected P values differ by
population and haplotype. Models are the same as in Table 2.
doi:10.1371/journal.pone.0007055.t003
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genetically determined vulnerability to ND is different in subjects

of European and African ancestry. These findings are further

supported by studies that demonstrated the regulation of receptor

expression after nicotine exposure in animal models, as well as the

impact on addictive behaviors in both animals and humans of the

GABAB agonist balcofen.

Table 5. Haplotype frequencies, and Z- and P-values for association of three-SNP combinations in GABBR1 with three measures of
ND in EA population*{.

SNP Combination Haplotype % (# Families) Z-value (P)

SQ HSI FTND

rs2267635-rs29230- rs29267 C-T-T 8.3 (55) 21.30 (0.192)r 22.02 (0.044)r 22.07 (0.039)r

C-C-T 3.6 (22) 2.31 (0.020)a,d 2.72 (0.007)a,d 2.40 (0.017)a,d

rs29230- rs29267- rs2267633 T-T-A 8.4 (55) 21.30 (0.193)r 22.02 (0.044)r 22.07 (0.039)r

C-T-A 3.8 (22) 2.31 (0.021)a,d 2.72 (0.007)a,d 2.40 (0.017)a

*Values shown in bold are significant after correction for multiple testing of major haplotypes (i.e., haplotypes with a frequency .5%). Corrected P values differ by
population and haplotype. Models are the same as in Table 2.
{Note that significant haplotypes are minor haplotypes (i.e.,,5%).
doi:10.1371/journal.pone.0007055.t005

Figure 5. Physical location of detected significant major haplotypes on three functional domains of GABBR2. Vertical lines indicate
exons; horizontal lines indicate introns in GABBR2. Arrows signify the physical location of SNPs within each protein domain. The configuration of the
GABAB2 subunit protein is shown, containing numbers that correspond to the exons represented by vertical hash marks. Exons 1–9 are in the binding
domain, exons 10–15 are in the transmembrane domains, and exons 16–19 are in the cytoplasmic domain of the receptor protein. Significant
haplotypes are indicated for each sample group, including the Z score followed by P value and frequency in parentheses.
doi:10.1371/journal.pone.0007055.g005
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