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Abstract

Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically
involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide
distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2
or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial
cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation,
through the inhibition of PPARa, a regulator of NF-kB. Administration of a novel NOX-specific inhibitor reduced
angiogenesis and tumor growth in vivo in a PPARa dependent manner. In conclusion, vascular NOX1 is a critical mediator of
angiogenesis and an attractive target for anti-angiogenic therapies.
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Introduction

Angiogenesis is a complex process occurring in physiological

situations such as embryogenesis and wound repair, and

contributes to pathological conditions such as diabetes, psoriasis,

arthritis and cancer. Angiogenesis is a critical determinant of

cancer progression. In its absence, tumors are unable to grow

beyond the size of microscopic lesions and persist as dormant, non-

expanding nodules [1,2]. Tumor cells, stromal cells and infiltrating

bone marrow-derived cells can initiate angiogenesis through a

process called angiogenic switch in which secretion of pro-

angiogenic factors is increased and/or production of endogenous

anti-angiogenic factors is reduced [3,4]. Angiogenic vessels are

mostly formed by sprouting of endothelial cells from the existing

vasculature. This process involves degradation of the surrounding

matrix, cell proliferation, migration, differentiation, and tube

formation [5]. Inhibition of angiogenesis has recently been

introduced in the clinics as novel therapeutic option to block

cancer progression [6].

NADPH oxidases are enzymes that produce reactive oxygen

species (ROS). Depending on concentration and sub-cellular

localization, ROS can mediate a variety of cellular functions,

including pathogen killing, cell migration, proliferation and

differentiation (for review [7]). The NADPH oxidase (NOX)

family of proteins consists of seven isoforms (NOX1-5 and DUOX

1-2), which transport electrons across membranes, thereby

reducing oxygen into superoxide. Depending on the isoform,

these catalytic transmembrane proteins form a complex with

p22phox and the cytoplasmic subunits p67phox/NOXO1, p47phox/

NOXA1, p40phox and Rac1/2 [7]. The NOX1 isoform is

expressed in epithelial cells, retinal pericytes, osteoclasts, vascular

smooth muscle and endothelial cells [8–16]. While increased

NOX1 expression has been reported in cases of colon cancer [17],

it has been suggested that this may correlate with inflammation

rather than tumorigenesis [18,19]. However, experimental

overexpression of NOX1 in fibroblasts or carcinoma cells induced

an angiogenic switch mediated by the increased production of

VEGF and MMPs [20]. Moreover NOX1 has been shown to

regulate apoptosis and morphogenesis of sinusoid endothelial cells

in vitro [16].

The nuclear hormone receptors peroxisome proliferator-

activated receptors (PPAR) dimerize with the retinoid X receptor.

Upon activation by lipids, this complex regulates gene transcrip-

tion by binding to peroxisome proliferator-responsive elements.

PPARa, a member of the family, was shown to mediate anti-

inflammatory activity through inhibition of the transcription factor
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NF-kB. In the vascular system, PPARa inhibits NF-kB transacti-

vation either by direct interaction with the p65 subunit or by up-

regulation of I-kB, the NF-kB inhibitory subunit [21,22]. In

different tumor models, activation of PPARa by agonists blocks

tumor growth and angiogenesis by reducing production of

proangiogenic factors such as VEGF or epoxyeicosatrienoic acids

[23–25]. In human endothelial cells, PPARa activators also inhibit

cytokine-induced expression of adhesion molecules and chemo-

kines [26].

In this study, we analyzed the role of NOX1 in human and

mouse angiogenesis and observed an increased expression and

activity of NOX1 during the angiogenic switch. Furthermore,

blood vessel formation in NOX1-deficient mice was dramatically

reduced in response to angiogenic factors and in tumors. NOX1

deficiency also lead to reduced endothelial cell migration and

reduced formation of tube-like structures. We analyzed the

mechanism by which NOX1 regulates angiogenesis and showed

that NOX1 down-regulates expression and activity of the anti-

inflammatory and anti-angiogenic nuclear receptor PPARa.

Results

NOX1-deficient mice show impaired angiogenesis
In order to test whether NOX-dependent ROS production

participates in blood vessel formation, we performed in vivo

Matrigel angiogenesis assays using mice deficient for different

NOX isoforms. Matrigel was preloaded with the angiogenic factor

bFGF and implanted subcutaneously into wild type (WT) or

NOX-deficient mice. Subcutaneous Matrigel plug vascularization

quantified by X-Ray-based computer tomography in animals

deficient for NOX2 or NOX4 had angiogenic responses

indistinguishable from WT mice. By contrast, Matrigel plug

vascularization was reduced by 47% 67.6 and 65% 613.2 in

NOX1 knockout and NOX1/2 double knockout animals

respectively, as compared to WT mice (Figure 1a). This difference

is noticeable on macroscopic images of Matrigel plugs following

excision (Figure 1b). Immunostaining of plugs with the vascular

marker PECAM-1 demonstrated reduced PECAM-1-positive areas

in NOX1-and NOX1/2-deficient mice (56% 62 and 46% 6

3 respectively) compared to WT animals (Figure 1c,d). Remarkably,

plugs in NOX1-and NOX1/2-deficient mice were lacking large

vessels while the number of small vessels significantly increased

(Figure 1e).

From these results, we conclude that NOX1 is essential for

bFGF-induced angiogenesis.

NOX1 expression and activity are up-regulated by
proangiogenic factors

To determine whether the aberrant angiogenesis observed in

NOX1-deficient mice was due to impaired endothelial cell

function; we studied the effect of NOX1 inhibition on mouse

lung endothelial cells (MLEC) [27] (Figure S1), murine thymic

endothelioma (tEnd) cells and primary human umbilical vein-

derived endothelial cells (HUVEC). We first studied the expression

level of NOX1 in these cells under basal conditions and in

response to stimulation with the angiogenic factors VEGF or

bFGF at 20 ng/ml for 3 hours. Quantitative real-time PCR

revealed 2–3 fold up-regulation of NOX1 mRNA expression in all

endothelial cells after angiogenic stimulation (Figure 2a–c).

Expression of NOX4 and NOX2 did not change upon VEGF

or bFGF stimulation (data not shown). While endothelial NOX4

expression level was high, NOX2 was found to be very low.

Next, we analyzed ROS production in murine and human

endothelial cells in response to VEGF and bFGF stimulation. As

expected, these factors increased intracellular ROS levels

(Figure 2g–i), while in NOX1-deficient MLEC, ROS production

in response to VEGF or bFGF stimulation was absent or severely

compromised (Figure 2d,g). This is in contrast to NOX4

deficiency, which did not affect ROS production, induced by

VEGF or bFGF. These data were consistent with observed

deficient ROS production by endothelial cells following NOX1

silencing (Figure 2i and data not shown). Additionally, cells treated

with the pharmacological NOX inhibitor GKT136901 did not

induce ROS after VEGF or bFGF stimulation (Figure 2d–i). The

specific NADPH oxidase inhibitor GKT136901 was identified by

screening more than 130,000 molecules [28]. In a NOX subunit

specific cell-free system [29,30], GKT136901 inhibits NOX1 with

high affinity (Ki = 160610 nM), similar to the irreversible

flavoprotein inhibitor Diphenyliodonium (DPI; Ki = 70610 nM)

(Figure 3a). However, DPI shows the same potency on NOX4

(Ki = 70 nM), NOX2 (Ki = 70 nM) and xanthine oxidase

(Ki = 50 nM). In contrast, GKT136901 is more specific for

NOX1 and NOX4 with a ten-fold lower potency on NOX2 (Ki =

1530690 nM) and almost no affinity for xanthine oxidase

(Ki.100 mM) (Figure 3b and Figure S2). Moreover,

GKT136901 completely inhibits oxidase activity of NOX1 and

NOX4 but has only a partial effect on NOX2 (Figure S2). In order

to demonstrate the specificity of GKT136901 for NOX enzymes,

a pharmacological profiling of 135 different targets was performed

including ROS producing and redox-sensitive enzymes [31].

GKT136901 at 10 mM showed low or no inhibition demonstrat-

ing the high degree of specificity of this compound (Table S1).

Taken together, the results obtained with NOX1 deficient cells

and the inhibitor GKT136901 demonstrate that NOX1 is

responsible for ROS production in endothelial cells stimulated

with the pro-angiogenic factors VEGF or bFGF.

NOX1 mediates endothelial cell migration and sprouting
Angiogenesis requires endothelial cell proliferation, sprouting

and migration [5]. To identify the NOX1-dependent step in

angiogenesis, we performed different in vitro functional assays. Cell

proliferation was not altered in NOX1-deficient MLEC, nor in

NOX1 silenced cells (data not shown). However, cell migration

and tube formation of MLEC from NOX1-deficient animals was

significantly reduced as compared to WT cells (Figure 4a, d). We

also observed an inhibition of endothelial cell migration and tube

formation in MLEC treated with the NOX1 inhibitor

GKT136901 (Figure 4) and NOX-dependent ROS blocking

agents (Figure S3) [32,33]. Furthermore, silencing of NOX1

expression using siRNA in mouse and human endothelial cells

significantly reduced migration (17% 65.7 and 24% 63.8 of

migrating area reduction respectively) and formation of tube-like

structures (28% 64.8 and 34% 614 of reduction in skeleton

length respectively) (Figure 4c, e and f). We did not observe any

inhibition of migration or tube formation with MLEC derived

from NOX4-deficient mice or with cells in which NOX4 was

silenced using siRNA (Figure 4a, c, d and f).

Moreover, using a NOX1 expressing vector we observed that

NOX1 overexpression (thirteen-fold increase) is sufficient to

increase endothelioma cell migration and tube-like structure

formation (Figure S4).

These experiments demonstrate that NOX1 is an important

protein involved in migration and tube-like structure formation of

endothelial cells with no detectable role in cell proliferation.

NOX1 down-regulates PPARa expression
PPARa is a nuclear hormone receptor with anti-inflammatory

functions able to block the angiogenic activity of VEGF

NOX1 a New Angiogenic Factor
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[23,34,35]. We observed that NOX1-deficient MLEC expressed

5-fold higher PPARa compared to WT MLEC (Figure 5a), while

no difference was seen with PPARc expression (data not shown).

This up-regulation of PPARa expression was also observed in

endothelial cell lines silenced for NOX1 (Figure 5a), and was

dependent on PPARa transactivation. Indeed, when NOX1-

silenced cells were incubated with the PPARa antagonist

GW6471, PPARa up regulation was no longer observed (data

not shown). This suggests that the deficiency in migration and tube

formation observed in NOX1-deficient endothelial cells may

depend on up-regulation of PPARa expression and transcriptional

activity.

To test this hypothesis, we treated NOX1-deficient MLEC with

the PPARa antagonist GW6471 and found that the compound

restored cell migration and tube formation compared to untreated

NOX1-deficient cells (Figure 5b–c). Moreover, PPARa-deficient

endothelial cells isolated from PPARa-deficient mice migrated

more than WT endothelial cells. As expected, inhibition of NOX1

using the inhibitor GKT136901 in PPARa-deficient cells did not

affect endothelial cell migration or invasion (data not shown).

Taken together, these results indicate that NOX1 promotes

endothelial cell migration and sprouting by suppressing PPARa
expression and activity.

NOX1 promotes NF-kB activation in response to
angiogenic stimulation by PPARa inhibition

We then set out to further identify the vascular NOX1 signaling

pathways implicated in angiogenesis. Activation of both Akt and

ERK1/2 were observed following 10 minutes of stimulation with

the angiogenic factor bFGF. In NOX1-deficient MLEC, Akt

activation was reduced compared to WT cells, while ERK1/2

activation was unaffected (Figure S5). These results showed that

NOX1 is involved in the activation of the Akt signaling pathway in

response to bFGF. Since NOX1 suppresses PPARa expression,

Figure 1. NOX1 deficient mice exhibit reduced angiogenic capacity. Matrigel was loaded with 500 ng/ml bFGF and implanted
subcutaneously into NOX deficient mice. After one week, iodinated liposomes were injected i.v. and the plugs analyzed by X-ray tomography. (a)
Quantification of matrigel plug vascularization. Graph shows mean of grey density 6 s.e.m. For WT, NOX1 KO and NOX1/2 KO n = 8 and for NOX2 KO
and NOX4 KO n = 6. (b) Photographs of excised plugs, scale bars represent 1 cm. c. Blood vessel density in plugs from the experiment in (a). Graph
shows percentage of PECAM-1 positive area 6 s.e.m. (d). Photographs of PECAM-1 immunostaining, PECAM-1 in green, nuclei in blue, scale bars
represent 20 mm. Images were acquired with a 20x/0.5 numeric aperture lens and analyzed using LSM510 Meta confocal microscope (Carl Zeiss).
e. Vessel size analysis; vessel with lumen under 20 mm are considered as small (black), from 20 to 50 medium (dark grey) and over 50 mm as large
(light grey) 6 s.e.m. Anova p,0.01; * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0014665.g001
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this is also consistent with the literature describing PPARa as

inhibitor of VEGF signaling through blocking of Akt but not

ERK1/2 activation.

Since PPARa is known to inhibit NF-kB activation, we

monitored NF-kB activation in NOX1-deficient MLEC in

response to VEGF or bFGF stimulation (30 minutes). NOX1-

deficient MLEC showed reduced nuclear translocation of the NF-

kB p65 subunit compared to WT cells in response to VEGF or

bFGF as demonstrated by Western blotting on nuclear extracts

and immunofluorescence of endothelial cells (Figure 5d and Figure

S6). Using endothelial cell lines, we then demonstrated that

inhibition of NF-kB translocation depended on PPARa activation.

Indeed, in NOX1-silenced cells PPARa expression was up-

regulated (Figure 5a). When these cells were treated with the

PPARa antagonist GW6471 before angiogenic stimulation,

deficient nuclear translocation of NF-kB was no longer observed

(Figure 5e and Figure S6). Moreover in NOX1 deficient cells,

PPARa and NF-kB target genes were deregulated (Table 1). For

example: Vascular NOX1 deficiency leads to upregulation of the

anti-oxidant genes catalase, gluthatione peroxydase-3 and the anti-

migratory gene VE-Cadherin, while downregulating the proan-

giogenic genes MMP2, MMP9, uPAR, VEGF and bFGF.

Incubation of NOX1 silenced cells with the PPARa antagonist

GW6471 blocked this effect, suggesting that regulation of these

was dependent on PPARa activity (Table 1).

Host NOX1 promotes tumor angiogenesis and tumor
progression

The above findings led us to investigate whether NOX1 may

contribute to tumor progression by promoting tumor vasculariza-

tion. To this end, we implanted tumorigenic B16F0 melanoma

cells or Lewis Lung Carcinoma (LLC1) cells subcutaneously into

WT and NOX1-deficient mice. LLC1 cells expressed high level of

NOX1 in contrast to B16F0 cells. We observed reduced tumor

vascularization in NOX1-deficient animals with B16F0 melanoma

but not with LLC1 tumors (Figure 6a–b).

To assess whether NOX1 may be a valuable target for cancer

therapy, we used the inhibitor GKT136901. This inhibitor did not

interfere with tumor cell proliferation and apoptosis in vitro but it

impinged in their ROS producing activity (Figure S7). One day

after LLC1 injection, tumor bearing mice were treated daily by

oral administration of GKT136901 at 40 mg/kg. After one week

of treatment, the size of tumor in GKT136901-treated mice was

34% 65.8 smaller compared to tumors in vehicle-treated mice

Figure 2. NOX1 expression and activity is up-regulated by angiogenic stimuli. NOX1 expression was measured by quantitative real-time
PCR in mouse primary lung endothelial cells (MLEC, a), HUVEC (b), mouse endothelioma cell line (c) after stimulation with VEGF or b-FGF at 20 ng/ml
for 3 hours. The quantity of NOX1 mRNA was normalized to the quantity of a housekeeping gene, tubulin for mouse cells and b2-microglobulin for
human cells, 6 s.e.m, n = 3. Activity of NOX1 was evaluated by ROS measurement using DHE substrate on MLEC (d,g), HUVEC (e, h) and mouse
endothelioma (f, i). ROS production is up-regulated by VEGF and b-FGF stimulation in a NOX1-dependent manner. g, h, i. Graphs show quantification
of ROS level in endothelial cells stimulated in presence or absence of VEGF or b-FGF. g. MLEC WT (black bar), MLEC WT + GKT136901 (grey bar), MLEC
NOX1KO (white bar). h. HUVEC untreated (black bar) or treated with GKT136901 at 10 mM (grey bar). i. Mouse endothelioma cell line untreated (black
bar), treated with GKT136901 at 10 mM (grey bar), treated with NOX1 siRNA (white bar). Results are expressed in fold increase 6 s.e.m, n = 3. *p,0.05,
***,0.001 using Student’s t-test.
doi:10.1371/journal.pone.0014665.g002

NOX1 a New Angiogenic Factor
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(Figure 6c). This treatment had no toxic effect on mice as

illustrated by the Figure S8. Quantification of tumor vasculature

by PECAM-1 immunostaining showed 59% 69.3 reduction of

vascular area in GKT136901-treated tumors as compared to

vehicle treated animals (Figure 6d). In addition, we performed a

therapeutic assay by treating animals bearing established tumors

(i.e. starting 8 days after tumor implantation) with GKT136901 or

the anti-VEGFR2 antibody DC101, as a positive control. Tumor

volume was measured daily during treatment. Both treatments

delayed tumor progression (35% 65.7 and 35% 69.7 respectively)

and vascularization (36% 616 and 43% 620 respectively)

(Figure 6e, f). From these results, we conclude that NOX1 plays

a critical role in promoting tumor angiogenesis and tumor

progression.

To further analyze the link between NOX1 and PPARa in vivo,

we injected LLC1 or B16F0 tumor cells in either WT or PPARa-

deficient mice and treated these animals with the NOX1 inhibitor

GKT136901. Vascularization of these tumors was analyzed by

PECAM-1 immunostaining. In WT mice, the inhibitor blocked

LLC1 and B16F0 tumor vascularization (100% 624 vs 65% 613

and 100% 615 vs 64% 614), whereas it had no effect in PPARa
deficient mice (100% 617 vs 129% 623 and 100% 626 vs 98% 6

24) (Figure 6g,h).

From these observations, we conclude that NOX1 promotes

tumor angiogenesis by inhibiting the anti-angiogenic factor

PPARa.

Discussion

Reactive oxygen species are important players in cancer biology

[36–38]. At high levels, they induce apoptosis and/or senescence

while at homeostatic levels they influence survival and prolifera-

tion. In tumor endothelial cells, NOX enzymes contribute to

angiogenesis through ROS-dependent mechanisms, and thereby

promote tumor growth. In this study, we show that vascular

NOX1, but not NOX2 or NOX4, is an important regulator of

angiogenesis, through the modulation of endothelial migration and

tube formation. We furthermore identified that NOX1 activity

suppresses the anti-inflammatory nuclear hormone receptor

PPARa as a critical mechanism mediating these effects (Figure 7).

Inhibition of NOX1 decreases endothelial cell migration. A link

between NOX1, ROS and cell migration has been previously

described with non-endothelial cells such as colon carcinoma cell

lines [39]. In addition, Schröder et al. reported that blocking

NOX1 reduced FGF-stimulated migration of smooth muscle cells

through NOX1 dependent ROS activation of JNK, which in turn

phosphorylated paxillin [40]. Modulating smooth muscle cell

migration may not only be restricted to NOX1, as NOX4 showed

similar effects [41]. However, these conflicting data may be due to

the different mode of smooth muscle cell activation by bFGF and

PDGF, respectively. Based on these data, it is clear that NOX1

and derived ROS products impede the migration of vascular

smooth muscle and tumor cells. The role of NOX1 in endothelial

cell migration and angiogenesis was previously neglected probably

due to the fact that in resting endothelial cells NOX1 is expressed

at low levels and is up-regulated only during the angiogenic switch

as we show in this study.

Importantly, we do not find evidence for the involvement of the

other tested NOX isoforms 2 and 4 in bFGF-induced angiogenesis

in vivo. This is in contrast to other reports suggesting an

angiogenic role for these NOX isoforms. Angiopoietin-1, VEGF,

or thrombin-induced neovascularization in vitro and in vivo have

been suggested to be dependent on NOX2 [42–45]. Furthermore,

a recent study showed that inhibitors specific for NOX4 and

NOX2 blocked hemangioma (i.e. endothelial cell-derived tumor)

growth in vivo [33]. Other laboratories found NOX4 responsible

for basal endothelial ROS production and cell proliferation [46].

The function of NOX2 and NOX4 in angiogenesis may depend

on the type of stimulation and operate by a different mechanism

than NOX1, as both enzymes are involved in endothelial cell

Figure 3. Inhibition of NOX1-dependent ROS production by GKT136901. (a) Concentration-response curve of GKT136901 (e) and DPI (x) on
membranes prepared from NOX1 over-expressing cells. Results represent one out of four experiments performed in triplicate. Values are presented as
means 6 s.e.m. (b) Affinities of GKT136901 and DPI on NOX1, NOX2, NOX4 and Xanthine Oxidase. GKT136901 is a NADPH-oxidase specific inhibitor,
with selectivity on NOX1 and NOX4 over NOX2, whereas DPI inhibits all the NADPH oxidases tested with the same potency.
doi:10.1371/journal.pone.0014665.g003

NOX1 a New Angiogenic Factor
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proliferation, while NOX1 mediates endothelial cell migration and

sprouting but not proliferation.

Our results reveal a remarkable specificity of NOX isoforms.

Clearly, endothelial cells express NOX1, NOX2, NOX4, and – at

least in humans - also NOX5. Yet, their functions appear to be

non-redundant. The specificity of NOX isoforms relies on several

elements, including different subcellular localization (NOX4 is

predominantly intracellular, while NOX1 rather localizes to

caveolae [47]), different activation mechanisms (NOX4 appears

constitutively active, while NOX1 and NOX2 are activation-

dependent, [10,48]), and there is also isoform-specific upregulation

of NOX mRNA in response to given stimuli. Most likely three

elements contribute to the unique role of NOX1 in angiogenesis: i)

its localization within caveolae is in proximity of other signaling

molecules, ii) to mediate VEGF signaling, it should be an

activation inducible enzyme, rather than constitutively active such

as NOX4; and iii) as shown in Fig. 2, its mRNA is indeed up-

regulated in response to VEGF, which adds specificity to the

system. Thus, the understanding of which NOX isoforms are

relevant for angiogenesis, provided by our study adds new

understanding of redox biology. However, the precise identifica-

tion of the NOX isoform involved in a given pathophysiological

process will also be the key for the development of specifically

targeted NOX inhibitors [49].

With respect to tumor growth, we observed differences between

NOX1-deficient mice and wildtype mice treated with the NOX

inhibitor. Indeed, while plug- and tumor-induced angiogenesis was

efficiently decreased in the NOX1-deficient mouse and by the

NOX inhibitor, the latter was markedly more efficient in

decreasing tumor growth. The most likely explanation for this

difference is the possibility that NOX enzymes within the tumor

cells are contributing to tumor growth and that the NOX inhibitor

targets these enzymes. Indeed, there is ample evidence in the

literature for a role of NOX enzymes in enhancing growth of

tumor cells [50–53]. Moreover, we found that vascularization was

substantially diminished in B16 tumors lacking endogenous

NOX1 expression, while NOX1-expressing LLC1 tumors were

normally vascularized in NOX1 deficient mice. This apparent

discrepancy is consistent with the literature, showing that

exogenous ROS impacts on endothelial cell proliferation,

migration and tube formation [54–56]. Induction of angiogenesis

may be due to NOX1 expression by LLC1 tumors, producing

high amounts of ROS in the tumor microenvironment and

modulating endothelial cell functions. This amount of ROS seems

to be sufficient to stimulate endothelial cell proliferation and

migration to form new vessels within the tumor. In the

GKT136901-treated mice, the tumor cells cannot stimulate

ROS mediated angiogenesis as the inhibitor also blocks ROS

production by LLC1 tumor cells (Figure S6c). Another obvious

difference between the NOX1-deficient mice and the NOX

inhibitor is the fact that GKT136901 efficiently inhibits NOX4, in

addition to NOX1. This point is particularly pertinent because

previous studies have implicated NOX4 in mechanisms of

angiogenesis. To understand these apparent differences, angiogenic

Figure 4. NOX1 inhibition blocks endothelial cell migration and tube-like structure formation. In vitro migration was analyzed by
wound-healing assay on mouse primary endothelial cells (a), human primary endothelial cells (b) and endothelioma cell lines (c). Tubular structure
formation was measured by 3D culture of mouse primary endothelial cells (d), human primary endothelial cells (e) or endothelioma cell lines (f).
Results are expressed in % of control 6 s.e.m, n = 3. *p,0.05, **p,0.01, ***,0.001 using Student’s t-test. GKT136901 was used at 10 mM.
doi:10.1371/journal.pone.0014665.g004

NOX1 a New Angiogenic Factor
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Figure 5. NOX1 negatively regulates PPARa expression and activity. NOX1 deficiency induces an up-regulation of PPARa expression and
inhibition of pro-angiogenic signaling in endothelial cells. (a). Expression level of PPARa in MLEC and endothelioma cell lines by quantitative real-time
PCR, normalized to the tubulin expression. (b–c) PPARa antagonist, GW6471 compensated NOX1 deficiency in MLEC. (b). Migration of NOX1-deficient
MLEC in presence or absence of PPARa antagonist (10 mM). (c). Tube-like structure formation of NOX1-deficient MLEC in presence or absence of
PPARa antagonist (10 mM). VEGF and b-FGF induced-NFkB nuclear translocation is inhibited in absence of NOX1 and is dependent on PPARa activity.
(d). Western blot analysis of p65 NFkB in nuclear and cytoplasmic fractions of WT and NOX1-deficient cells stimulated 30 min with VEGF and bFGF
(20 ng/ml). (e). Western blot analysis of p65 NFkB in nuclear and cytoplasmic fractions of NOX1-silenced cells treated or not with 10 mM of GW6471
before stimulation with VEGF and bFGF. The graphs show the abundance of nuclear p65 NF-kB relative to cytoplasmic p65 NF-kB 6 s.e.m as
determined by densitometry. n = 3. * p,0.05, ** p,0.01 (Student’s t-test).
doi:10.1371/journal.pone.0014665.g005

Table 1. Expression of genes regulated by NOX1 deficiency.

LMEC NOX1 KO tEnd siRNA NOX1 tEnd siRNA NOX1 + GW 6471

Catalase 1.52±0.29 1.52±0.19 0.92±0.012

GPX3 1.47±0.08 1.49±0.13 0.70±0.01

VE-cadherin 2.29±0.07 1.54±0.28 0.9±0.2

MMP-2 0.43±0.24 0.97±0.10 2.13±0.24

MMP-9 0.29±0.13 0.89±0.13 0.47±0.07

uPAR 0.41±0.12 0.76±0.19 1.34±0.6

VEGF 0.31±0.05 2.04±0.29 0.68±0.04

bFGF 0.71±0.21 0.81±0.13 0.64±0.25

VCAM-1 0.84±0.01 0.76±0.04 0.57±0.18

Level of expression of target genes in NOX1 deficient primary endothelial cells (MLEC), or silenced cells endothelial cell lines compared to control cells, analyzed by
quantitative real-time PCR. Results are expressed in fold increase or decrease 6 s.e.m. n = 3.
doi:10.1371/journal.pone.0014665.t001
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responses should be subdivided in a proximal response of the

hypoxic tissue (HIF1a activation and VEGF production) and a

distal response of the endothelial cells (VEGF-induced neovascu-

larization). Our results (Fig. 1) clearly demonstrate that NOX4 is not

involved in the distal response of endothelial cells. However, our

results do not argue against a role of NOX4 in the proximal

response of hypoxic tissues. Indeed, based on the literature [57,58],

we think that such a role of NOX4 is likely.

Under homeostatic conditions, ROS levels are balanced by

scavenger and antioxidant enzymes. As in certain pathologies this

balance becomes deregulated and much effort has been put into

development of inhibitors of ROS production [59]. Since most

ROS-related diseases are mediated by one NOX isoform only,

novel inhibitors, which are isoform specific, will be invaluable. The

novel GenKyoTex inhibitor, GKT136901, has been developed for

this purpose and appears to be specific for NOX1 and NOX4 with

similar affinities. In vitro, this inhibitor blocked ROS production

induced by proangiogenic factors and inhibited endothelial cell

migration. More importantly, the level of this inhibition was

comparable to that observed in NOX1-deficient cells. With

NOX4-deficient endothelial cells however, we observed no

reduced migration. From these data we conclude that endothelial

cell migration is NOX1 dependent and NOX4 independent.

Furthermore, the potential for GKT136901 to be used as a

NOX1/4 specific inhibitor in prevention of tumor angiogenesis is

also demonstrated.

We observed an increase of PPARa expression when NOX1

was not expressed; suggesting that NOX1 activity constitutively

represses PPARa expression. As previously mentioned, in the

absence of NOX1 expression, endothelial cells were less able to

migrate and to form tubular structures, we showed that this effect

was reversed using an antagonist of PPARa. Moreover, in NOX1-

deficient endothelial cells, NFkB was not activated after VEGF or

bFGF stimulation. This effect was reversed by treatment with a

PPARa antagonist. In addition, anti-oxidants and anti-migratory

genes were up-regulated and pro-angiogenic genes down-regulat-

Figure 6. NOX1 inhibition reduces tumor growth and angiogenesis. B16F0 (a) or LLC1 (b) tumor cells were injected subcutaneously into WT
or NOX1 KO mice. Tumors were allowed to develop for 10 days and the density of tumor vasculature was identified using PECAM-1 staining by
measuring the positive (vascular) and total (tumor) area 6 s.e.m expressed as percentage. n = 8; WT mice injected with LLC1 tumor cells were then
treated with the NOX inhibitor GKT136901 at 40 mg/kg/day by oral administration for 8 days; (c). Graph represents tumor weight in mg 6 s.e.m n = 8
per group. (d). Tumor vessel density in tumors from the experiment in (c). Graph shows tumor vascularization expressed in percentage of PECAM-1
positive area 6 s.e.m.; (e). Changes in tumor volume in mm3 after therapeutic treatment starting 8 days post tumor cell injection with GKT136901
(black arrows) or anti-VEGFR2 (DC101) (pointed arrows). Tumor volume is measured using a caliper and the formula V = 4/3p(L/2*l/2*w/2). n = 8; (f).
Blood vessel density in tumors from the experiment in (e). at day 12. Graph shows tumor vascularization expressed in percentage of PECAM-1 positive
area 6 s.e.m. WT or PPARa KO mice injected with B16F0 (g) or LLC1 (h) were then treated with the NOX inhibitor GKT136901 at 40 mg/kg/day by oral
administration for 8 days. Graph shows tumor vascularization expressed in percentage of PECAM-1 positive area 6 s.e.m. n = 6. * p,0.05, ** p,0.01
(Student’s t-test).
doi:10.1371/journal.pone.0014665.g006
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ed by NOX-1 deficiency. These differences in gene expression

depended on PPARa transactivation and they explain the reduced

migratory phenotype and tube formation of NOX1 deficient

endothelial cells. PPARa activity, which itself controls PPARa
expression, could be directly regulated by the catalytic activity of

NOX1. Indeed, PPARa activity is regulated by several post-

transcriptional modifications such as phosphorylation or SUMOy-

lation [60,61], which may be ROS sensitive [62]. It has been

previously shown that ROS inactivates phosphatases [63,64] and

activates SUMOylation [62,65]. Thus, upregulation of PPARa
expression and activity in NOX1-deficient cells blocks angiogenic

signaling needed for endothelial cell migration, sprouting and

angiogenesis.

Currently, the anti-VEGF antibody bevacizumab (Avastin), and

several small molecular VEGFR tyrosine kinase inhibitors, are

used as anti-angiogenic drugs to treat patients with advanced

cancers [66,67]. Anti-angiogenic therapy targets non-transformed

endothelial cells and results in the reduced delivery of nutrients

and oxygen to tumor cells. However, concomitant chemotherapy

is needed in order to obtain a survival advantage. Emerging

evidence indicates that tumors treated with anti-angiogenic

therapy elicit compensatory reactions by inducing the production

of alternative angiogenic factors. Thus, the question arises as to

whether anti-NOX therapy could potentially be a therapeutic

approach complementary to anti-VEGF treatment. Indeed,

expression of NOX molecules are induced in vascular endothe-

lium and in tumor cells during the angiogenic switch and

inhibition of NOX1 in both the host and the tumor cells using

the potent NOX1 inhibitor GKT136901, results in reduced tumor

angiogenesis and tumor growth. Moreover NOX1 seems to form a

common angiogenic pathway, at least for signaling induced by

VEGF and FGF. As a result, NOX1 inhibition could bypass the

potential compensatory mechanisms activated by anti-VEGF

therapy.

In conclusion, we have identified NOX1 as a novel mediator of

angiogenesis and as a candidate therapeutic target for anti-

angiogenic therapies in cancer.

Materials and Methods

Mice
NOX1, NOX2, NOX1/2, NOX4 deficient mice were inbred

on the C57BL/6J background for more than 6 generations. The

PPARa null animals were originally described in [68]. All animal

procedures were performed in accordance with the Institutional

Ethical Committee of Animal Care in Geneva and Cantonal

Figure 7. Schematic representation of the role of NOX1 in tumor angiogenesis. (a) Tumor cells and tumor-infiltrating leukocytes during
tumor development produce proangiogenic factors such as VEGF and bFGF. These factors activate the preexisting vessels to form neovessels by
sprouting, migration and proliferation. (b) Endothelial cells receive the angiogenic stimulus by fixation of the angiogenic factor to the surface
receptor. This interaction initiates a signaling cascade, which leads to NOX1 activation through Rac1. NOX1 dependent ROS inhibits the nuclear
hormone receptor PPARa by post-translational modification and transcriptional regulation. This inhibition leads to NF-kB activation and transcription
of angiogenic factors such as MMPs, growth factors or promigratory molecules.
doi:10.1371/journal.pone.0014665.g007
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Veterinary Office. The Institutional Ethical Committee of Animal

Care in Geneva and Cantonal Veterinary Office specifically

approved this study through experimentation IDs: 31.1.1005-

3456-0, 1005-3325-1, 1005-3329-2.

Cells and reagents
Endothelial cell line (thymus derived endothelioma [69]) was

cultured in Dulbecco Modified Eagle medium supplemented with

10% FCS, 100 U/ml Penicillin/Streptomycin, 100 U/ml Gluta-

mine. Primary lung endothelial cells were cultured in DMEM/

HAM F-12 medium supplemented with 20% of FCS, 100 U/ml

Penicillin/Streptomycin, 100 U/ml Glutamine, 100 mg/ml Hep-

arin (Sigma-Aldrich), 10 mg/ml Endothelial cell growth supple-

ment (Upstate). MLEC were used from passage 4 to 6. Human

umbilical vein endothelial cells (HUVEC) were isolated in the

laboratory, cultured in Bullet kit (Lonza) and used from passage 4

to 6. Gelatin, Fibronectin, Fibrinogen, and Aprotinin were

obtained from Sigma Aldrich. Growth factor reduced Matrigel

was from Becton Dickinson. Murine and human bFGF, human

and murine VEGF were from Peprotech. Antibodies against

phospho-p42/44 MAPKinase, total MAPKinase, phosphoThr308

Akt and total Akt were purchased from Cell Signaling Technol-

ogy. Antibody against NF-kB p65 was purchased from SantaCruz

Biotechnology and anti-Actin antibody was kindly provided by Dr

Christine Chaponnier. DC101 hydridoma was purchased from

ATCC (Manassas, VA) and DC101 antibody was expressed and

purified at the protein expression facility at EPFL, Lausanne.

In vivo angiogenesis assay
7 to 10 week old females were injected subcutaneously with

400 ml of growth factor reduced Matrigel supplemented with

500 ng/ml of bFGF. One week later, mice were scanned using

Micro-CT (Skyscan-1076). Mice were scanned before and after

retro-orbital injection of 400 ml iodinated liposomes (BR22,

BracoResearch, Plan-les-Ouates) to visualize the vessel density in

the plug as described previously [70,71].

MLEC isolation
Murine lung endothelial cells were isolated as described

previously [27]. Briefly, whole mouse lungs were digested in

collagenase type I 0.1% (Gibco). Digest lung were plated on

gelatin/collagen/fibronectin-coated flask in DMEM/HAM F-12

medium supplemented with 20% of FCS, 100 U/ml Penicillin/

Streptomycin, 100 U/ml Glutamine, 100 mg/ml Heparin (Sigma-

Aldrich), 10 mg/ml Endothelial cell growth supplement (Upstate).

The following day, macrophages were depleted from the culture

by negative selection using a rat anti-mouse FcgRII/III antibody

coupled to anti-rat coated magnetic beads (Dynal). Cells were then

positively selected twice using the endothelial marker, PECAM-1

(Figure S3).

Quantitative RT-PCR
Total RNA from treated cells was extracted using RNeasy

minikit (Qiagen). Total RNA was reverse-transcribed with the

Superscript III first strand RT-PCR kit (Invitrogen). Quantitative

real-time PCR was performed using SybrGreen master mix

(Applied Biosystems) on Step one plus Real-time PCR machine

(Applied Biosystems). Primer sequences are listed in the Materials

and Methods S1.

Detection of superoxide
Endothelial cells were seeded on glass slides and stained with

dihydroethidium (DHE). Images were captured with an inverted

microscope and analyzed with Metafluor imaging software (MDS

Analytical Technologies). Quantification was performed by

measuring the fluorescence intensity of over minimum 50

endothelial cells per slide.

NOX inhibition in cell free assays and pharmacological
profile of GKT136901

Membranes from NOX2 expressing PMN cells or from cells

overexpressing NOX1 or NOX4 were prepared as previously

described [29]. After resuspension in sonication buffer (11%

sucrose, 120 mM NaCl, 1 mM EGTA in PBS, pH 7.4 for NOX4-

expressing cells) or in relax buffer (10 mM Pipes, 3 mM NaCl,

3.5 mM MgCl2, 0.1 M KCl, pH 7.4), cells were broken by

sonication and centrifuged (200 g, 10 min). The supernatant was

loaded onto a 17/40% (w/v) discontinuous sucrose gradient and

centrifuged (150,000 g for 30 min). Membrane fractions were

collected and stored at 280uC. ROS production measurements of

membranes expressing different NOX subunits was determined as

previously described [30] using the Amplex Red method

(Invitrogen). Membranes prepared from non-transfected cells did

not show NADPH-induced ROS production (data not shown).

Gene silencing
For mouse cells, siRNAs were nucleofected using the Amaxa

technology (Lonza). Gene silencing was assessed 48 hours after

nucleofection by quantitative RT-PCR. For HUVEC, shRNA

vectors (SABiosciences) were nucleofected using Amaxa. Gene

silencing was assessed 48 hours after nucleofection by quantitative

RT-PCR.

Wound healing assay
Wound healing assay was performed as described previously

[72]. Briefly, endothelial cells were plated in Matrigel (Becton

Dickinson) precoated 96 wells plates. One day after plating the cell

monolayer was scratched to make a regular wound. Cells were

allowed to migrate overnight. Migration area was then measured

and calculated using the Metamorph program (MDS Analytical

Technologies).

Endothelial cell sprouting assay
Sprouting assay was performed as described previously [72].

Briefly, endothelial cells were plated in 96 well plates at 8,000 cells

per well in a 3D fibrin gel. Above the gel, 10% FCS containing

DMEM was complemented with 200 KIU/ml of Aprotinin

(Sigma). Length of branches was evaluated using the Metamorph

program. Results are expressed in mm of skeleton length/number

of cells.

Nuclear and cytoplasmic extraction
After stimulation, nuclear and cytoplasmic proteins of endothe-

lial cells were extracted according to Tauzin et al. [73]. Briefly,

cells were incubated in TKM buffer (50 mM Tris-HCl pH 7.4,

25 mM KCl, 5 mM MgCl2 and 1 mM EGTA) containing 1%

Triton and protease inhibitor cocktail CLAP [10 mg/ml chymos-

tatin, leupeptin, antipain and pepstatin A (Sigma) for 30 minutes

on ice, sonicated for 2 minutes and centrifuged at 5000 g for 30

minutes. The pellet and the supernatant were separated and

solubilized in sample buffer.

Western blotting
Cells were stimulated for the indicated time and then lysed in TNT

buffer (50 mM Tris, 150 mM NaCl, 0.5% Triton X-100) comple-

mented with protease inhibitor cocktail CLAP and phosphatase
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inhibitor cocktail [25 mM NaF, 20 mM b-Glycerophosphate, 5 mM

HEPES, 2.5 mM EDTA, 0.5 mM Orthovanadate]. Membranes

were blocked in PBS containing 0.5% BSA and hybridized with

different antibodies. Blots were revealed with peroxidase coupled

secondary reagent (Jackson Immunoresearch) followed by ECL and

quantified by densitometry using Image J software.

Tumor growth assay
5. 105 of LLC1 or B16F0 were injected subcutaneously on the

back of mice. Mice were treated with NOX inhibitor,

GKT136901 or vehicle (Carboxymethyl-cellulose, CMC) at

40 mg/kg everyday per os or i.p with anti-VEGFR2 antibody

(DC101) at 0.8 mg every 2 days. When the control tumor reached

approximately 1 cm in length, mice were sacrificed and the tumor

excised, weighed and frozen. Frozen sections of tumors were

stained with anti-PECAM-1 antibody (rat monoclonal, [74]).

Statistical analysis
All statistical analysis was performed using Anova on multiple

variable analyses and Student’s t-test on paired analyses.

*(p = 0,05), **(p = 0,01), ***(p = 0,001).

Supporting Information

Table S1 Inhibitory effect of the inhibitor GKT 136901 on ROS

producing enzymes, redox-sensitive enzymes and others proteins.

Found at: doi:10.1371/journal.pone.0014665.s001 (0.03 MB

DOC)

Figure S1 MLEC isolation from WT and NOX deficient mice.

a. Flow cytometry analysis of endothelial surface molecules on

isolated MLEC. PECAM-1, VE-Cadherin, ICAM-2 and Meca-32

expression level in MLEC. b. PECAM-1 immunofluorescence

staining of WT, NOX1 KO and NOX4 KO MLEC. Nuclei in

blue (DAPI), and PECAM-1 in purple (Cy5). Images were

acquired with a 40x/1.3 numeric aperture lens and analyzed

using LSM510 Meta microscope (Carl Zeiss).

Found at: doi:10.1371/journal.pone.0014665.s002 (6.76 MB TIF)

Figure S2 Inhibition of NOX-dependent ROS production by

GKT136901 and DPI. a. Concentration-response curves of

GKT136901 on NOX1 (x), NOX2 m), NOX4 (e) and Xanthine

Oxidase (XO) (%). b. Concentration-response curve of DPI on

NOX1 (x), NOX2 (m), NOX4 (e) and Xanthine Oxidase (XO) (%)

Results are from one experiment performed in triplicate, represen-

tative of four performed. Values are presented as means 6 s.e.m.

Found at: doi:10.1371/journal.pone.0014665.s003 (2.02 MB TIF)

Figure S3 NOX dependant ROS blocking agents efficiently block

endothelial cell migration and branching capacities. a. Migration of

endothelial cells was analyzed by a wound-healing assay in presence

of different inhibitors that block NADPH dependant ROS

production. b. Tubular structure formation was measured by 3D

culture using the mouse endothelial cell line in presence of different

inhibitors that block NADPH dependant ROS production. Results

are expressed in % of control 6 s.e.m, n = 3.

Found at: doi:10.1371/journal.pone.0014665.s004 (5.89 MB TIF)

Figure S4 NOX1 over-expression enhances endothelial cell

migration and tube-like structure formation. a. In vitro migration

was analyzed by wound-healing assay using endothelioma cell

lines transfected with NOX1 expressing vector. b. Tubular

structure formation was measured by 3D culture of endothelioma

cell lines transfected with NOX1 expressing vector. Results are

expressed in % of control 6 s.e.m. *p, 0.05 using Student’s t-test.

Found at: doi:10.1371/journal.pone.0014665.s005 (5.88 MB TIF)

Figure S5 AKT but ERK 1/2 activation is affected by NOX1

deficiency. NOX1-deficient MLEC does not activate Akt after

bFGF stimulation but present no difference in ERK1/2 activation.

a. Western blot analysis of Akt phosphorylation in WT and NOX1-

deficient MLEC after 10 min stimulation with 20 ng/ml of bFGF.

The graph shows the abundance of phosphorylated Akt relative to

total Akt 6 s.e.m as determined by densitometry. n = 3. b. Western

blot analysis of ERK1/2 phosphorylation in WT and NOX1-

deficient MLEC stimulated for 10 min with 20 ng/ml of bFGF. The

graph shows the abundance of phosphorylated ERK1/2 relative to

total ERK1/2 6 s.e.m as determined by densitometry. n = 3.

Found at: doi:10.1371/journal.pone.0014665.s006 (6.13 MB TIF)

Figure S6 NF-kB nuclear translocation is inhibited in the

absence of NOX1 and dependent on PPARa activation. VEGF or

b-FGF stimulation of endothelial cells induced p65 NF-kB

translocation into the nucleus. This nuclear translocation is not

observed in NOX1-deficient cells but restored by PPARa
antagonist treatment (GW6471). Immunofluorescence, anti-p65

NF-kB of MLEC (a) and endothelioma cell lines (b) stimulated

with VEGF or bFGF in presence or absence of GW6471 (10mM).

NF-kB in green (Alexa 488), nuclei in blue (DAPI). Scale bar

represent 20 mm. Images were acquired with a 40x/1.3 numeric

aperture and analyzed using LSM510 confocal microscope (Carl

Zeiss).

Found at: doi:10.1371/journal.pone.0014665.s007 (7.09 MB TIF)

Figure S7 Effect of GKT 136901 on tumor cells. a. LLC1 and

B16F0 cell proliferation was measured by EdU incorporation and

propidium iodide staining of DNA content, 24h after incubation

with 10 mM of GKT136901. b. LLC1 apoptosis was measured by

AnnexinV/PI staining after 24h of incubation with 10 mM of

GKT136901. c. ROS levels produced by LLC1 are inhibited by

GKT136901. ROS production was quantified by DHE substrate

1h after incubation with 10 mM of the inhibitor. *** p,0.001

(student t-test).

Found at: doi:10.1371/journal.pone.0014665.s008 (6.11 MB TIF)

Figure S8 Non toxic effect GKT 136901 on mice organs. Heart

(a), Kidney (b), Liver (c) and Lung (d) of mice treated orally with

vehicle or with vehicle plus GKT136901 inhibitor at 40 mg/kg per

day during 8 days, stained by Hematoxilin/Eosin. Scale bars

represent 100 mm on the full picture and 20 mm on the zoom.

Images were acquired with a 20x/0.8 numeric aperture and

analyzed using Mirax (Carl Zeiss).

Found at: doi:10.1371/journal.pone.0014665.s009 (8.38 MB TIF)

Materials and Methods S1 Real-time PCR primer sequence

list.

Found at: doi:10.1371/journal.pone.0014665.s010 (0.05 MB

DOC)

Acknowledgments

We would like to thank C. Chaponnier (Centre medical Universitaire,

Geneva) for the gift of the anti-Actin antibody; N. Deblon (Centre medical

Universitaire, Geneva) for advice concerning PPARa; N. Imaizumi (CePO

and University of Lausanne, Lausanne) for her assistance in Matrigel plug

assay; B. Lee (Centre medical Universitaire, Geneva) for his assistance in

the manuscript editing.

Author Contributions

Conceived and designed the experiments: SGU KHK BI. Performed the

experiments: SGU SJ CD SC OB CS FH PP. Analyzed the data: SGU.

Contributed reagents/materials/analysis tools: CD SC OB CS FH PP XM

LM JA CR KHK. Wrote the paper: SGU KHK BI.

NOX1 a New Angiogenic Factor

PLoS ONE | www.plosone.org 11 February 2011 | Volume 6 | Issue 2 | e14665



References

1. Folkman J (2006) Angiogenesis. Annu Rev Med 57: 1–18.

2. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358: 2039–2049.

3. Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human

tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5:

1779–1787.

4. Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, et al. (2006) A

model of human tumor dormancy: an angiogenic switch from the nonangiogenic
phenotype. J Natl Cancer Inst 98: 316–325.

5. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and
lymphangiogenesis. Nat Rev Mol Cell Biol 8: 464–478.

6. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:
967–974.

7. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH
oxidases: physiology and pathophysiology. Physiol Rev 87: 245–313.

8. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, et al. (1999) Cell transformation
by the superoxide-generating oxidase Mox1. Nature 401: 79–82.

9. Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, et al. (2000) A
mammalian H+ channel generated through alternative splicing of the NADPH

oxidase homolog NOH-1. Science 287: 138–142.

10. Banfi B, Clark RA, Steger K, Krause KH (2003) Two novel proteins activate

superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:
3510–3513.

11. Carnesecchi S, Deffert C, Pagano A, Garrido-Urbani S, Metrailler-Ruchonnet I,
et al. (2009) NOX1 Plays a Crucial Role in Hyperoxia-Induced Acute Lung

Injury in Mice. Am J Respir Crit Care Med.

12. Manea A, Raicu M, Simionescu M (2005) Expression of functionally phagocyte-

type NAD(P)H oxidase in pericytes: effect of angiotensin II and high glucose.

Biol Cell 97: 723–734.

13. Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, et al. (2005) A crucial role for

reactive oxygen species in RANKL-induced osteoclast differentiation. Blood
106: 852–859.

14. Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, et al. (2001) Novel gp91(phox)
homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-

induced superoxide formation and redox-sensitive signaling pathways. Circ Res
88: 888–894.

15. Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, et al. (2005) NAD(P)H
oxidases in rat basilar arterial endothelial cells. Stroke 36: 1040–1046.

16. Kobayashi S, Nojima Y, Shibuya M, Maru Y (2004) Nox1 regulates apoptosis
and potentially stimulates branching morphogenesis in sinusoidal endothelial

cells. Exp Cell Res 300: 455–462.

17. Fukuyama M, Rokutan K, Sano T, Miyake H, Shimada M, et al. (2005)

Overexpression of a novel superoxide-producing enzyme, NADPH oxidase 1, in
adenoma and well differentiated adenocarcinoma of the human colon. Cancer

Lett 221: 97–104.

18. Szanto I, Rubbia-Brandt L, Kiss P, Steger K, Banfi B, et al. (2005) Expression of
NOX1, a superoxide-generating NADPH oxidase, in colon cancer and

inflammatory bowel disease. J Pathol 207: 164–176.

19. Laurent E, McCoy JW 3rd, Macina RA, Liu W, Cheng G, et al. (2008) Nox1 is

over-expressed in human colon cancers and correlates with activating mutations
in K-Ras. Int J Cancer 123: 100–107.

20. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, et al. (2002)
Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl

Acad Sci U S A 99: 715–720.

21. Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, et al.

(1999) Peroxisome proliferator-activated receptor alpha negatively regulates the
vascular inflammatory gene response by negative cross-talk with transcription

factors NF-kappaB and AP-1. J Biol Chem 274: 32048–32054.

22. Delerive P, Gervois P, Fruchart JC, Staels B (2000) Induction of IkappaBalpha

expression as a mechanism contributing to the anti-inflammatory activities of

peroxisome proliferator-activated receptor-alpha activators. J Biol Chem 275:
36703–36707.

23. Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnes CM, et al. (2008)
PPARalpha agonist fenofibrate suppresses tumor growth through direct and

indirect angiogenesis inhibition. Proc Natl Acad Sci U S A 105: 985–990.

24. Blann AD, Belgore FM, Constans J, Conri C, Lip GY (2001) Plasma vascular

endothelial growth factor and its receptor Flt-1 in patients with hyperlipidemia
and atherosclerosis and the effects of fluvastatin or fenofibrate. Am J Cardiol 87:

1160–1163.

25. Pozzi A, Ibanez MR, Gatica AE, Yang S, Wei S, et al. (2007) Peroxisomal

proliferator-activated receptor-alpha-dependent inhibition of endothelial cell

proliferation and tumorigenesis. J Biol Chem 282: 17685–17695.

26. Marx N, Sukhova GK, Collins T, Libby P, Plutzky J (1999) PPARalpha

activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression
in human endothelial cells. Circulation 99: 3125–3131.

27. Reynolds LE, Hodivala-Dilke KM (2006) Primary mouse endothelial cell culture
for assays of angiogenesis. Methods Mol Med 120: 503–509.

28. Page P OM, Fioraso-Cartier L, Mottironi B (2008) Pyrazolo pyridine derivatives
as NAPDH oxidase inhibitors. Patent WO 2008/113856 A1. In: Genkyotex, ed.

Switzerland.

29. Palicz A, Foubert TR, Jesaitis AJ, Marodi L, McPhail LC (2001) Phosphatidic

acid and diacylglycerol directly activate NADPH oxidase by interacting with
enzyme components. J Biol Chem 276: 3090–3097.

30. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, et al. (2007) NOX4 activity

is determined by mRNA levels and reveals a unique pattern of ROS generation.
Biochem J 406: 105–114.

31. Cerep Website: www.cerep.fr (Access 2011). In vitro pharmacological profile was
performed at the company Cerep, France.

32. Perry BN, Govindarajan B, Bhandarkar SS, Knaus UG, Valo M, et al. (2006)

Pharmacologic blockade of angiopoietin-2 is efficacious against model
hemangiomas in mice. J Invest Dermatol 126: 2316–2322.

33. Bhandarkar SS, Jaconi M, Fried LE, Bonner MY, Lefkove B, et al. (2009)
Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of

endothelial tumors in mice. J Clin Invest 119: 2359–2365.

34. Goetze S, Eilers F, Bungenstock A, Kintscher U, Stawowy P, et al. (2002) PPAR
activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys

Res Commun 293: 1431–1437.

35. Meissner M, Stein M, Urbich C, Reisinger K, Suske G, et al. (2004) PPARalpha

activators inhibit vascular endothelial growth factor receptor-2 expression by

repressing Sp1-dependent DNA binding and transactivation. Circ Res 94:
324–332.

36. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev
Cancer 3: 276–285.

37. Liou GY, Storz P Reactive oxygen species in cancer. Free Radic Res 44:
479–496.

38. Klaunig JE, Kamendulis LM, Hocevar BA Oxidative stress and oxidative

damage in carcinogenesis. Toxicol Pathol 38: 96–109.

39. Sadok A, Bourgarel-Rey V, Gattacceca F, Penel C, Lehmann M, et al. (2008)

Nox1-dependent superoxide production controls colon adenocarcinoma cell
migration. Biochim Biophys Acta 1783: 23–33.

40. Schroder K, Helmcke I, Palfi K, Krause KH, Busse R, et al. (2007) Nox1

mediates basic fibroblast growth factor-induced migration of vascular smooth
muscle cells. Arterioscler Thromb Vasc Biol 27: 1736–1743.

41. Lyle AN, Deshpande NN, Taniyama Y, Seidel-Rogol B, Pounkova L, et al.
(2009) Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular

smooth muscle cells. Circ Res 105: 249–259.

42. Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, et al. (2002) Novel role of
gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-

induced signaling and angiogenesis. Circ Res 91: 1160–1167.

43. Harfouche R, Malak NA, Brandes RP, Karsan A, Irani K, et al. (2005) Roles of

reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB J 19:

1728–1730.

44. Tojo T, Ushio-Fukai M, Yamaoka-Tojo M, Ikeda S, Patrushev N, et al. (2005)

Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in
response to hindlimb ischemia. Circulation 111: 2347–2355.

45. Diebold I, Djordjevic T, Petry A, Hatzelmann A, Tenor H, et al. (2009)

Phosphodiesterase 2 mediates redox-sensitive endothelial cell proliferation and
angiogenesis by thrombin via Rac1 and NADPH oxidase 2. Circ Res 104:

1169–1177.

46. Petry A, Djordjevic T, Weitnauer M, Kietzmann T, Hess J, et al. (2006) NOX2

and NOX4 mediate proliferative response in endothelial cells. Antioxid Redox
Signal 8: 1473–1484.

47. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK (2004)

Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle
cells. Arterioscler Thromb Vasc Biol 24: 677–683.

48. Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG (2006)
Functional analysis of Nox4 reveals unique characteristics compared to other

NADPH oxidases. Cell Signal 18: 69–82.

49. Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD (2009) Small-
molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic

targets. Antioxid Redox Signal 11: 2535–2552.

50. Shono T, Yokoyama N, Uesaka T, Kuroda J, Takeya R, et al. (2008) Enhanced

expression of NADPH oxidase Nox4 in human gliomas and its roles in cell

proliferation and survival. Int J Cancer 123: 787–792.

51. Maraldi T, Prata C, Caliceti C, Vieceli Dalla Sega F, Zambonin L, et al. VEGF-

induced ROS generation from NAD(P)H oxidases protects human leukemic cells
from apoptosis. Int J Oncol 36: 1581–1589.

52. Block K, Gorin Y, New DD, Eid A, Chelmicki T, et al. The NADPH oxidase

subunit p22phox inhibits the function of the tumor suppressor protein tuberin.
Am J Pathol 176: 2447–2455.

53. Kamata T (2009) Roles of Nox1 and other Nox isoforms in cancer development.
Cancer Sci 100: 1382–1388.

54. Shono T, Ono M, Izumi H, Jimi SI, Matsushima K, et al. (1996) Involvement of

the transcription factor NF-kappaB in tubular morphogenesis of human
microvascular endothelial cells by oxidative stress. Mol Cell Biol 16: 4231–4239.

55. Yasuda M, Ohzeki Y, Shimizu S, Naito S, Ohtsuru A, et al. (1999) Stimulation
of in vitro angiogenesis by hydrogen peroxide and the relation with ETS-1 in

endothelial cells. Life Sci 64: 249–258.

56. Luczak K, Balcerczyk A, Soszynski M, Bartosz G (2004) Low concentration of

oxidant and nitric oxide donors stimulate proliferation of human endothelial

cells in vitro. Cell Biol Int 28: 483–486.

57. Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, et al. (2007) Reactive

oxygen species regulate angiogenesis and tumor growth through vascular
endothelial growth factor. Cancer Res 67: 10823–10830.

NOX1 a New Angiogenic Factor

PLoS ONE | www.plosone.org 12 February 2011 | Volume 6 | Issue 2 | e14665



58. Diebold I, Petry A, Hess J, Gorlach A The NADPH Oxidase Subunit NOX4 Is

a New Target Gene of the Hypoxia-inducible Factor-1. Mol Biol Cell.
59. Lambeth JD, Krause KH, Clark RA (2008) NOX enzymes as novel targets for

drug development. Semin Immunopathol 30: 339–363.

60. Burns KA, Vanden Heuvel JP (2007) Modulation of PPAR activity via
phosphorylation. Biochim Biophys Acta 1771: 952–960.

61. Leuenberger N, Pradervand S, Wahli W (2009) Sumoylated PPARalpha
mediates sex-specific gene repression and protects the liver from estrogen-

induced toxicity in mice. J Clin Invest 119: 3138–3148.

62. Luciani A, Villella VR, Vasaturo A, Giardino I, Raia V, et al. (2009)
SUMOylation of tissue transglutaminase as link between oxidative stress and

inflammation. J Immunol 183: 2775–2784.
63. Clerkin JS, Naughton R, Quiney C, Cotter TG (2008) Mechanisms of ROS

modulated cell survival during carcinogenesis. Cancer Lett 266: 30–36.
64. Liu RM, Choi J, Wu JH, Gaston-Pravia KA, Lewis KM, et al. Oxidative

modification of nuclear mitogen activated protein kinase phosphatase 1 is

involved in transforming growth factor beta1-induced expression of plasminogen
activator inhibitor 1 in fibroblasts. J Biol Chem.

65. Kang SI, Choi HW, Kim IY (2008) Redox-mediated modification of PLZF by
SUMO-1 and ubiquitin. Biochem Biophys Res Commun 369: 1209–1214.

66. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy.

Nat Rev Cancer 8: 592–603.
67. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, et al. (2009)

Antiangiogenic therapy elicits malignant progression of tumors to increased local
invasion and distant metastasis. Cancer Cell 15: 220–231.

68. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, et al. (1995) Targeted disruption

of the alpha isoform of the peroxisome proliferator-activated receptor gene in

mice results in abolishment of the pleiotropic effects of peroxisome proliferators.

Mol Cell Biol 15: 3012–3022.

69. Aurrand-Lions M, Johnson-Leger C, Pepper MS, Imhof BA (2004) Haeman-

giomas are formed by cells expressing high levels of alphavbeta3 integrin and

lacking acetylated LDL uptake. J Pathol 203: 700–709.

70. Montet X, Figueiredo JL, Alencar H, Ntziachristos V, Mahmood U, et al. (2007)

Tomographic fluorescence imaging of tumor vascular volume in mice.

Radiology 242: 751–758.

71. Montet X, Pastor CM, Vallee JP, Becker CD, Geissbuhler A, et al. (2007)

Improved visualization of vessels and hepatic tumors by micro-computed

tomography (CT) using iodinated liposomes. Invest Radiol 42: 652–658.

72. Miljkovic-Licina M, Hammel P, Garrido-Urbani S, Bradfield PF, Szepetowski P,

et al. (2009) Sushi repeat protein X-linked 2, a novel mediator of angiogenesis.

FASEB J.

73. Tauzin S, Ding H, Khatib K, Ahmad I, Burdevet D, et al. (2008) Oncogenic

association of the Cbp/PAG adaptor protein with the Lyn tyrosine kinase in

human B-NHL rafts. Blood 111: 2310–2320.

74. Aurrand-Lions M, Duncan L, Ballestrem C, Imhof BA (2001) JAM-2, a novel

immunoglobulin superfamily molecule, expressed by endothelial and lymphatic

cells. J Biol Chem 276: 2733–2741.

NOX1 a New Angiogenic Factor

PLoS ONE | www.plosone.org 13 February 2011 | Volume 6 | Issue 2 | e14665


