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Abstract

While mannosylation targets antigens to mannose receptors on dendritic cells (DC), the resultant immune response is
suboptimal. We hypothesized that the addition of toll-like receptor (TLR) ligands would enhance the DC response to
mannosylated antigens. Cryptococcus neoformans mannoproteins (MP) synergized with CpG-containing oligodeoxynucleo-
tides to stimulate enhanced production of proinflammatory cytokines and chemokines from murine conventional and
plasmacytoid DC. Synergistic stimulation required the interaction of mannose residues on MP with the macrophage
mannose receptor (MR), CD206. Moreover, synergy with MP was observed with other TLR ligands, including tripalmitoylated
lipopeptide (Pam3CSK4), polyinosine-polycytidylic acid (pI:C), and imiquimod. Finally, CpG enhanced MP-specific MHC II-
restricted CD4+ T-cell responses by a mechanism dependent upon DC expression of CD206 and TLR9. These data suggest a
rationale for vaccination strategies that combine mannosylated antigens with TLR ligands and imply that immune responses
to naturally mannosylated antigens on pathogens may be greatly augmented if TLR and MR are cooperatively stimulated.
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Introduction

Pattern recognition receptors (PRRs) recognize evolutionarily

conserved molecular motifs on pathogens. PRRs are employed by

the host immune system to evoke an immediate response to the

invading pathogen through the production of inflammatory

cytokines and chemokines. Because of the efficiency of this

response, PRRs are attractive candidates as adjuvants for vaccines.

PRRs span a broad range of receptors including Toll-like receptors

(TLRs), carbohydrate-binding calcium-dependent type lectin

receptors (CLRs), nucleotide binding oligomerization domain like

receptors and intracellular viral receptors [1].

The 11 human TLRs and 13 mouse TLRs [2] are membrane-

bound receptors which recognize pathogen-associated molecular

patterns (PAMPs). TLRs can be either expressed on the cell

surface (e.g., TLRs 1,2,4) or on endosomal vesicles (TLRs 3, 7-9).

One particular TLR agonist undergoing clinical trials is synthetic

cytosine phosphate guanine (CpG)-containing oligodeoxynucleo-

tides (ODN) [3]. CpG is taken up by cells in a clathrin-dependent

manner and binds to TLR9 which is recruited from the

endoplasmic reticulum to the endosome [4]. This triggers the

cytoplasmic Toll-IL-1R domain of TLR9 to bind to the adapter

molecule, myeloid differentiation marker 88 (MyD88) [5]. MyD88

diverges into two signaling pathways, one mediated by NF-kB

activation and one mediated through interferon regulatory factor

(IRF) 7 activation [6].

CLRs recognize particular carbohydrate residues via their

extracellular carbohydrate recognition domain. CLRs function

both in leukocyte trafficking and antigen recognition [7]. Distinct

cytoplasmic motifs on CLRs mediate signaling and trafficking into

vesicles. For example, the macrophage mannose receptor (MR,

CD206), traffics to early endosomes while the dendritic cell

ICAM3-grabbing non-integrin (DC-SIGN, CD209) traffics to late

endosomes and early lysosomes [8]. MR preferentially recognizes

terminal mannose residues while DC-SIGN recognizes internal

mannose residues [7].

The opportunistic fungal pathogen, Cryptococcus neoformans, is a

major cause of morbidity and mortality in patients with impaired

CD4+ T-cell function, particularly those with AIDS [9]. A family

of antigens, termed mannoproteins (MP), has been identified as the

immunodominant antigens which stimulate T-cell responses to C.

neoformans in patients recovered from cryptococcosis and in

experimentally infected mice [10]. MP have extensive N-and O-

linked mannosylation, which serve as ligands for MR and DC-

SIGN on DCs [10–12]. DCs can internalize, process and present

MP in the context of the MHC II to CD4+ T-cells [13].

While MP are promising vaccine candidates, mice that were

administered MP with Ribi adjuvant system were only partially

protected from subsequent challenge with C. neoformans [14].

Perhaps due to its capacity for Th1 skewing, immune responses

appear to be a bit more vigorous when MP are administered with

complete Freund’s adjuvant [15]. However, because Freund’s
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adjuvant is too toxic for use in routine vaccines, other Th1-

skewing adjuvants are under investigation, including CpG [16].

Indeed, administration of CpG alone has salutary effects in murine

models of cryptococcosis [17–19]. Given the potential of CpG as

an adjuvant in an MP-based vaccine against cryptococcosis, we

studied the responses of murine DCs following stimulation with

MP alone and in combination with CpG. We found that that the

two stimuli acted synergistically to induce proinflammatory

cytokines and chemokines and to promote an MHC II-restricted,

antigen-specific CD4+ T-cell response. Moreover, synergy re-

quired the interaction of mannose residues on MP with MR on

DC.

Results

Murine cDCs were stimulated with MP, CpG, or MP+CpG and

monitored for production of TNF-a. This cytokine plays a critical

role in host defenses against cryptococcosis [20]. MP+CpG 1826, a

B-type ODN which stimulates murine cDCs, synergized to

produce more TNF-a than MP or CpG alone (Figure 1 A). This

effect was more than additive, as MP stimulation alone produced

little TNF-a. Maximum TNF-a was observed when 10 mg/ml MP

was combined with 10 mg/ml CpG. Concentrations of MP higher

than 10 mg/ml, when combined with CpG, did not stimulate

greater cytokine responses (data not shown). Thus, the dose of

10 mg/ml of MP was used in subsequent cytokine studies on cDCs.

The combination of MP+CpG stimulated TNF-a responses

comparable to that seen with 1 mg/ml LPS (Figure 1 B). The

control ODN 2138 (10 mg/ml), which contains GpC motifs in lieu

of CpG motifs, failed to stimulate cytokine release.

MP+CpG synergized to stimulate cDC production of IL-12p70,

as well as enhancing the production of other proinflammatory

cytokines, including IL-6, IL-12p40/p70, and IL-1a (Figure 2).

Furthermore, MP+CpG augmented the production of the

chemokines MIP-1a, KC, MCP-1, and IP-10. However,

MP+CpG also enhanced the production of the immunoregulatory

cytokines IL-10 and IL-13, although only relatively small amounts

of these cytokines were produced. Levels of IL-1b, IL-2, IL-4, IL-

5, IL-17, MIG, VEGF, FGF basic, GM-CSF, and IFN-c were

undetectable following stimulation of cDCs with LPS, MP, CpG,

and MP+CpG (data not shown).

MP consists of a protein core with extensive mannosylation. We

hypothesized that synergy of MP and CpG requires mannosyla-

tion. To test this hypothesis, we determined whether Saccharomyces

cerevisiae mannan, which consists of branched mannose chains,

could be substituted for MP in mediating synergy with CpG. We

found that this was indeed the case; mannan and MP each

synergized with CpG to boost IL-12p70 production by cDCs

(Figure 3 A). To further test the hypothesis, we compared the

synergistic stimulatory capacity of recombinant C. neoformans

MP98, a highly mannosylated MP produced in Pichia pastoris,

with a version that was chemically deglycosylated (DMP98) [21] .

Enhanced TNF-a was seen when the cDCs were stimulated with

MP98+CpG, but not DMP98+CpG (Figure 3 B). Together, these

data strongly suggest that the mannose residues are necessary for

synergy with CpG.

Next, the role of the MR, CD206, was addressed. cDCs from

MR KO mice were stimulated with MP, CpG, and MP+CpG.

There was a significant decrease in the amount of TNF-a
produced in MR KO cDCs stimulated with MP+CpG compared

to WT cDCs stimulated with the same amount of antigens

(Figure 3 C). This suggests a prominent role for the MR in driving

synergy.

TLR9, the ligand for CpG, utilizes MyD88 as its adapter

molecule to signal downstream events. Therefore, as expected,

neither CpG nor MP+CpG elicted any TNF-a from cDCs derived

from MyD88 KO mice (data not shown). To test whether this

synergy was a unique feature of the interaction of MP+CpG, we

next tested cDC cytokine release induced by TLR1/2, TLR3,

TLR4 and TLR7/8 ligands alone or in combination with MP.

Addition of MP resulted in stimulation of significantly greater

TNF-a release with all tested TLR ligands (Figure 4). This

demonstrates that MP+TLR ligand synergy also occurs following

stimulation of TLRs that are located on the cell surface (TLR1/2,

TLR4) and that utilize adapter molecules other than MyD88

(TLR3).

To address whether the observed synergy between MP+CpG

was due to a possible physicochemical interaction between MP

and CpG, WT cDCs were compared for their capacity to take up

Oregon Green-labeled MP and Alexa Fluor 647-labeled CpG

(Figure 5 A). However, uptake of CpG, as determined by flow

Figure 1. MP synergizes with CpG to stimulate cDCs to produce
TNF-a. (A) cDCs were stimulated with CpG ODN 1826 (0, 1, or 10 mg/
ml) and/or MP (0, 1, or 10 mg/ml). Supernatants were collected 24 hours
later and TNF-a concentrations determined by ELISA. Data are
means6SEM of a representative experiment performed in singlicate.
A second experiment yielded similar results. (B) MP+CpG synergize to
produce more TNF-a than MP or CpG alone. Data represent mean-
s6SEM of 6 independent experiments, each performed in singlicate.
p,0.001 comparing MP alone or CpG alone with MP+CpG by one way
ANOVA with Tukey’s multiple comparison test.
doi:10.1371/journal.pone.0002046.g001

Stimulation of DC by MP & CpG
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Figure 2. MP synergizes with CpG to stimulate cDC to produce proinflammatory cytokines, chemokines, and immunoregulatory
cytokines. cDCs were stimulated as in Figure 1. Data are means6SEM of 4 independent experiments. p,0.001 comparing MP alone with MP+CpG
and p,0.05 comparing CpG alone with MP+CpG for IL-6 and IL-12p40/p70. p,0.001 comparing MP alone with MP+CpG and p,0.01 comparing CpG
alone with MP+CpG for KC and MCP-1. p,0.05 comparing MP alone or CpG alone with MP+CpG for MIP-1a. p,0.01 comparing MP alone with
MP+CpG for IP-10. p,0.01 comparing MP alone or CpG alone with MP+CpG for IL-10. p,0.001 comparing MP alone or CpG alone with MP+CpG for
IL-12p70 and IL-13. All statistical comparisons were by one way ANOVA with Tukey’s multiple comparison test.
doi:10.1371/journal.pone.0002046.g002

Stimulation of DC by MP & CpG
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cytometry, was similar in the presence and absence of MP. Thus,

CpG does not appear to be ‘‘carried’’ by MP into the cell.

Nevertheless, by confocal microscopy, although MP and CpG can

be found in distinct compartments, some colocalization of CpG

and MP inside the cell is also evident (Figure 5 B). These data

demonstrating that MP and CpG traffic to similar vesicular

structures suggest a potential mechanism whereby the two stimuli

may synergize to stimulate cytokine production.

The above studies focused on cDCs. As plasmacytoid DCs

(pDCs) express high levels of TLR9 [22], we next examined

whether MP+CpG would synergize to stimulate murine pDC

cytokines. We found that CpG 2336 (1 mg/ml)+MP (1 mg/ml) led

to the production of IL-12p40 at levels significantly greater than

those induced by CpG (1 mg/ml) alone (Figure 6 A). CpG 2336 is

an A-type CpG which stimulates murine pDCs. As pDCs also

produce IFN-a in response to the A-type CpG 2336, we measured

IFN-a by ELISA and found that MP+CpG stimulated significantly

greater amounts of IFN-a from pDCs than CpG alone. (Figure 6

B). Of note, CpG 2336, at 10 mg/ml, induced high amounts of IL-

12p40 and IFN-a but the addition of MP did not lead to further

increases (data not shown). LPS failed to induce cytokine

production, which is consistent with the lack of expression of

TLR4 on pDC [22], and thus demonstrates the high purity of the

pDC population.

Finally, we sought to determine whether stimulation of cDCs

with MP+CpG would result in an enhanced response of antigen-

specific T-cells. For these studies, we utilized the MP-specific T-

cell hybridoma P1D6, which produces IL-2 when stimulated by

DCs presenting a peptide fragment of MP98 in an MHC II-

restricted fashion [12]. In the presence of MP alone, cDCs derived

from WT, MR KO, and TLR9 KO mice stimulated similar levels

of T-cell IL-2 production. However, stimulation of WT cDCs with

MP+CpG resulted in greatly enhanced IL-2 production compared

with stimulation with either agent alone (Figure 7). Synergy was

not observed with either MR or TLR9 KO cDCs.

Discussion

In this study, we demonstrate that MP from C. neoformans and

the TLR9 agonist CpG synergize to stimulate cDCs and pDCs to

produce proinflammatory cytokines and chemokines, many of

which (e.g., IL-12p70) are associated with induction of Th1-type

Figure 3. Mannose residues and the MR are critical for
synergistic stimulation of cDCs with MP and CpG. (A) cDCs were
incubated for 24 hours with 1 mg/ml LPS, Control ODN 2138 (10 mg/ml),
CpG ODN 1826 (10 mg/ml), mannan (1 mg/ml), mannan (1 mg/ml)+CpG
(10 mg/ml), MP (10 mg/ml), or MP (10 mg/ml)+CpG (10 mg/ml). Super-
natants were analyzed by ELISA for IL-12p70. p,0.001 comparing
mannan alone or CpG alone with mannan+CpG. p,0.001 comparing
MP alone or CpG alone with MP+CpG. (B) Same as figure 3a, except
additional stimuli were recombinant MP98 derived from Pichia pastoris
which was either deglycosylated (DMP98, 1 mg/ml) or left fully
mannosylated (MP98, 1 mg/ml). Data are from 3 independent experi-
ments, each performed in singlicate. p,0.001 comparing MP98 alone or
CpG alone with MP98+CpG. (C) cDCs were obtained from WT and MR
KO mice. Cells were incubated for 24 hours with 10 mg/ml MP, 10 mg/
ml CpG, or MP+CpG following which supernatants were analyzed by
ELISA. Results are means6SEM of 3 independent experiments each
performed in singlicate. p,0.001 comparing MP alone or CpG alone
with MP+CpG in WT cDCs. p.0.05 comparing CpG alone with MP+CpG
in MR KO cDCs. All statistical comparisons were by one way ANOVA
with Tukey’s multiple comparison test.
doi:10.1371/journal.pone.0002046.g003

Figure 4. MP synergizes with multiple TLR ligands. cDCs were
incubated for 24 hours with 10 mg/ml MP, 10 mg/ml Pam3CSK4, 10 mg/
ml pI:C, 1 mg/ml LPS, 10 mg/ml imiquimod, and 10 ug/ml CpG.
Supernatants were collected and analyzed for TNF-a by ELISA. Data
represent means6SEM of 4 independent experiments, each of which
was performed in singlicate. p,0.001 comparing any TLR ligand alone
with the TLR ligand plus MP by the two-tailed paired t-test.
doi:10.1371/journal.pone.0002046.g004

Stimulation of DC by MP & CpG
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responses. Moreover, cDCs stimulated with MP+CpG had

enhanced IL-2 production by MP-specific CD4+ T-cells. Thus,

stimulation of the innate immune receptors by mannosylated

ligands and CpG has the potential to enhance and bias adaptive

immune responses.

We have previously demonstrated that the MR on DC

recognizes and internalizes mannose residues on MP [11,13].

Here these findings are extended to demonstrate that synergy of

MP with CpG also is dependent on mannose residues. Synergy

was abolished by deglycosylation of MP98 and could be replicated

if S. cerevisiae mannans were substituted for MP. DCs have multiple

receptors that recognize mannose, including DC-SIGN and the

SIGNR homologs [23]. However, as synergy was not observed

with cDCs from MR KO mice, the MR appears to mediate this

effect. Interestingly, in the absence of a TLR ligand, MP

stimulated similar amounts of IL-2 production from antigen-

specific T-cells co-cultured with either MR KO or WT cDCs.

However, when MP+CpG were added, IL-2 synergy occurred

only with WT cDCs. Taken together, these data imply that while

uptake, processing and presenting of MP can occur independently

of the MR, synergistic stimulation of T cells by MP and CpG

requires the MR.

Not surprisingly, MP plus CpG synergy in cDCs was also

dependent on TLR9 and its adapter protein MyD88, as evidenced

by the loss of synergistic TNF-a secretion when cDCs from TLR9

KO or MyD88 KO mice were utilized. However, the TLR9

agonist CpG is not the sole TLR ligand that can synergize with

MP to produce proinflammatory cytokines and chemokines.

Synergy was also observed with Pam3CSK4 (TLR1/2), pI:C

(TLR3), LPS (TLR4), and imiquimod (TLR7/8). This has

implications for the design of human vaccines because while

human pDCs express TLR9, human cDCs do not [22]. However,

both human cDCs and pDCs express other TLRs, including

TLR7/8.

We did not observe any appreciable induction of cytokines using

MP alone on both cDCs and pDCs. This is in contrast to one

study which utilized MP from a different cryptococcal strain [24].

Thus, an adjuvant was necessary for us to produce a proin-

flammatory milieu. Similarly, we have found that MP does not

stimulate upregulation of CD40, CD86, and MHCII on DC (Dan,

Kelly, Lee, and Levitz; submitted for publication). The addition of

CpG to MP resulted in upregulation of these maturation markers.

However, there was no ‘‘synergy’’ as the level of expression of

CD40, CD86, and MHCII induced by CpG was the same in the

presence or absence of MP (Dan and Levitz, unpublished data).

Other studies have demonstrated cooperative responses be-

tween TLRs and other PRRs in the production of cytokines and

chemokines by DCs [1]. For example, collaborative induction of

inflammatory responses to the fungi Candida albicans and

Pneumocystis carinii has been observed with TLR2 and Dectin-1

Figure 5. MP and CpG are taken up independently but can colocalize in intracellular compartments. (A) MP-OG (10 mg/ml) and 1 mM
CpG ODN 1826-AF647 were incubated with cDCs for 15 minutes and analyzed by flow cytometry. Plots are representative of two independent
experiments. The plot on the left demonstrates no effect of CpG AF647 on cellular uptake of MP-OG. The second plot demonstrates no effect of MP-
OG on cellular uptake of CpG AF647. (B) cDCs were incubated with 10 mg/ml MP-OG (green) and 1 mM CpG ODN 1826-AF647 (red) for 20 minutes
and then analyzed by confocal microscopy. Yellow pseudocolor represents areas of colocalization of MP and CpG within DCs.
doi:10.1371/journal.pone.0002046.g005

Stimulation of DC by MP & CpG
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[25–27]. Similarly, mannans derived from C. albicans stimulate

phagocytes via both TLR4 and MR [28]. Triggering PRRs on

dendritic cells can generate proinflammatory cytokines and

chemokines which recruit and activate other effector cells to the

area of the invading organism. Ideally, this process then results in

killing of the invading organisms by the innate immune response

and/or generation of effective adaptive responses [29]. However,

it is important to note that MP plus CpG stimulated both

proinflammatory and antiinflammatory cytokines, and thus the in

vivo effects of cooperative stimulation of the MR and TLRs

cannot be predicted with certainty.

It is tempting to speculate that the observed synergy of

MP+CpG is dependent upon the triggering of distinct intracellular

signals, which then merge to activate NF-kB and IRFs, as has been

demonstrated following stimulation of Dectin-1 and TLR2 [30].

MR bears a tyrosine-based sorting motif within its cytoplasmic tail

which directs localization of antigen into endosomes [31].

However, whether ligation of MR triggers intracellular signaling

cascades is controversial, particularly as there are no known

intracellular signaling motifs in the MR [31]. Treatment of

macrophages with an anti-MR monoclonal antibody resulted in

production of mainly anti-inflammatory cytokines, including IL-10

[32]. However, Pneumocystis carinii-induced activation of NF-kB in

alveolar macrophages was inhibited by an anti-MR blocking

antibody [33]. The MR functions both in pathogen recognition

and as an endogenous receptor for secreted proteins [34]. Hence,

perhaps it makes teleological sense that stimulation of MRs should

not induce a strong proinflammatory response unless a ‘‘danger

signal’’ such as a TLR ligand is also present to alert the host to a

threatening situation.

The specific intracellular signaling pathways responsible for the

observed synergy of MP+CpG remain undefined. Our preliminary

studies indicate a role for phosphoinositide 3-kinases (PI3K), as in

four independent experiments, the PI3K inhibitors wortmannin

and LY294002 each reduced the synergistic production of TNF-a
in response to CpG and MP (Dan and Levitz, unpublished data).

PI3K have been implicated in signaling events mediated by

multiple TLRs, including TLR2, TLR3, TLR4, and TLR9, so

they could potentially mediate the observed synergy between MP

and other TLR ligands in DCs [35]. Future studies should help

clarify this issue.

It has been suggested that DCs ‘‘sample’’ phagosomal and

endosomal compartments and that those containing TLR ligands

are preferentially processed [36,37]. As our confocal microscopy

studies showed some colocalization of MP and CpG within DC

compartments, this may help explain the increased cytokine

production and antigen-dependent CD4+ T-cell response when

DCs were costimulated. However, further studies will be necessary

to prove this theory, particularly as a significant amount of

internalized MP and CpG localized to distinct compartments.

Interestingly, synergistic stimulation of cytokine responses was seen

Figure 6. MP+CpG synergize to stimulate murine pDCs to
produce IL-12p40 and IFN-a. pDCs were incubated with MP (1 mg/
ml), CpG ODN 2336 (1 mg/ml), or MP (1 mg/ml)+CpG (1 mg/ml).
Supernatants were collected 40 hours later and analyzed by ELISA.
Data are means6SEM of a representative experiment performed in
singlicate. Two other experiments yielded similar results. p,0.001
comparing MP alone with MP+CpG and p,0.01 comparing CpG alone
with MP+CpG for both IL-12p40 and IFN-a by one way ANOVA with
Tukey’s multiple comparison test.
doi:10.1371/journal.pone.0002046.g006

Figure 7. Addition of CpG to MP enhances IL-2 production by
an MP specific T-cell hybridoma (P1D6) via a mechanism
dependent on MR and TLR9. cDCs were generated from WT, MR KO
and TLR9 KO mice and incubated with P1D6 cells in the presence of the
indicated stimuli. MP and CpG were both added at 1 mg/ml. Data are
means6SEM and are representative of 3 independent experiments with
WT and MR KO cDCs and one experiment with TLR9 KO cDCs. p,0.001
comparing MP alone or CpG alone with MP+CpG in WT cDCs by one
way ANOVA with Tukey’s multiple comparison test.
doi:10.1371/journal.pone.0002046.g007

Stimulation of DC by MP & CpG
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regardless of whether MP was combined with ligands for

intracellular or plasma membrane TLRs. However, it remains to

be demonstrated whether TLR ligands other than CpG will

colocalize with MP in DCs.

The demonstration that TLR ligands synergize with MP has

broad implications for the choice of an adjuvant not only for

cryptococcal vaccines, but for other antigens with mannose

moieties. In particular, one recent study highlighted the efficacy

of targeting the MR and utilizing a TLR agonist as an adjuvant for

potential chemotherapy in human cancers [38]. The efficiency of

the immune response could be greater if the mannosylated

antigens and TLR ligands were packaged together so that they are

directed to the same compartment in the cell. A similar strategy

has been suggested for the design of vaccines containing multiple

TLR ligands [36]. It can be predicted though that because the

pattern of response varies depending on the individual PRR that is

stimulated, that different combinations of PAMPs will elicit distinct

responses. While our data lend strong support to the design of

vaccines that combine mannosylated antigens with TLR ligands,

ultimately the utility of such an approach will require in vivo

testing.

Materials and Methods

Reagents
MP was prepared as described [14] from culture supernatants of

C. neoformans acapsular strain Cap 67 (ATCC 52817). The

preparation had an endotoxin content of 0.020 EU/mg, as

detected by the Limulus amebocyte lysate assay (Associates of

Cape Cod, East Falmouth, MA). ODN 1826 (B-type ODN), ODN

2138 (B-type negative control ODN, containing GpC rather than

CpG sequences), and ODN 2336 (A-type ODN) were purchased

from Coley Pharmaceuticals. Mannan was obtained from Sigma

Aldrich. C. neoformans MP98 was expressed recombinantly in P.

pastoris and purified as described [21]. MP98 was deglycosylated

(DMP98) by treatment with trifluoromethanesulfonic acid using a

commercial kit (GlycoProfile IV chemical deglycosylation kit,

Sigma) followed by gel purification, as in previous studies [21].

Deglycosylation was confirmed by loss of periodic acid-Schiff

staining and an increase in mobility on SDS-PAGE. Pam3CYSK4,

polyinosine-polycytidylic acid (pI:C), and imiquimod were ob-

tained from Invivogen. LPS from Escherichia coli O111:B4 (Sigma)

was repurified via a modified phenol re-extraction technique to

yield LPS with only TLR4 agonist activity [39].

Mice
C57BL/6 mice were obtained from Jackson Laboratories. MR

(CD206) KO mice were a gift from M.C. Nussenzweig (The

Rockefeller University). MyD88 KO and TLR9 KO mice were a

gift from S. Akira (Osaka University). All KO mice were

backcrossed to a C57BL/6 background for at least ten

generations. All animal studies were approved by The University

of Massachusetts Medical School’s Institutional Animal Care and

Use Committee.

Bone marrow-derived cDCs
Murine bone marrow-derived cDCs were generated following

the protocol by Lutz et al. [40], with slight modifications. Briefly,

cells obtained from the femurs and tibias of mice were cultured at

26106 cells per 100615 mm Petri dishes in 10 mL of R10 media

containing RPMI 1640 supplemented with 10% FBS (Tissue

Culture Biologicals, Tulare, CA), 100 U/ml penicillin, 100 mg/ml

streptomycin, 2 mM L-glutamine, 50 mM 2-mercaptoethanol.

R10 media were supplemented with 10% supernatant obtained

from the GM-CSF producing J558L cell line at 37u C and 5%

CO2. Media were replenished on days 3, 6, and 8. On day 9, non-

adherent cells were harvested and the cDCs were purified by two

passages over an LS column (Miltenyi Biotec) using CD11c+

magnetic beads. The cDCs were .90% CD11c+ CD11b+ B2202,

as determined by flow cytometry.

Bone marrow-derived pDCs
To generate pDCs, bone marrow-derived DCs were isolated

from femurs and tibias and the RBCs were lysed with RBC lysing

buffer (Sigma). Cells were washed 3 times and resuspended in 12

mLs R10 media supplemented with 20 ng/ml recombinant mouse

fms-related tyrosine kinase 3 ligand (Flt3L) (R&D). Four mL were

added per well of a 6 well plate and the cells were cultured for

7 days without changing the medium. Non-adherent cells were

harvested and sorted for CD11c+, CD11b2, B220+ on FACSAria

cell sorter (BD Biosystems). Mouse pDC purity was $98%.

Cytokine ELISAs
Purified cDCs (26105) were incubated with the indicated

stimulus for 24 hours in R10 medium containing 20 mg/ml

polymyxin B (except for the LPS-stimulated groups) in 48 well

non-tissue cultured treated plates. Cell supernatants were collected

and analyzed by ELISA using IL-12p70 and TNF-a ELISA kits

(eBioscience). Fibroblast growth factor basic, GM-CSF, IFN-c, IL-

1a, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-17, IFN-

c-inducible protein 10, KC, MCP-1, MIG, MIP-1a, TNF-a, and

vascular endothelial growth factor were analyzed on a Bio-Plex

Luminex-100 station at the Baylor Luminex National Institute of

Allergy and Infectious Diseases core facility (Dallas, TX). For

pDCs, cells (56104/well) were incubated with the indicated stimuli

for 40 hours in R10 in 96 well flat bottom plates. Supernatants

were collected and analyzed by ELISA for murine IL-12p40 (BD

Bioscience) and IFN-a (PBL Biomedical Laboratories).

Flow Cytometry and Confocal Microscopy
MP was labeled with Oregon green in sodium bicarbonate

buffer (pH 8.0) following the manufacturer’s protocol (Molecular

Probes). Excess Oregon green was removed using a G10 Sephadex

column (Sigma Aldrich). MP-OG was then dialyzed overnight

against water. Alexa Fluor 647 labeled CpG ODN 1826 was

obtained from Integrated DNA Technologies and dissolved in

DNase-, RNase-free distilled water (Invitrogen). Flow cytometric

data were acquired using an LSR Flow Cytometer from BD

Biosciences and analyzed using WinMDI software (Scripps

Research Institute). Confocal microscopy was performed on a

Leica SP2 AOBS confocal microscope (Leica Microsystems) using

35 mm glass bottom dishes (MatTek).

Stimulation of an MP-specific T cell Hybridoma
CD11c+ purified cDCs (16104/well) derived from WT, MR

KO, and TLR9 KO were co-cultured with the MP-specific T-cell

hybridoma, P1D6 (16105/well) for 24 hours in the presence of no

stimulus, MP, CpG or MP+CpG [12]. Supernatants were

collected and assayed for IL-2 by bioassay using the IL-2-

dependent CTLL-2 cell line.

Statistics
GraphPad Prism Software was used for statistical analyses.

When comparing three or more groups, a one way ANOVA with

a Tukey multiple correction test was performed. For the

experiments in figure 4 comparing TLR agonists in the presence

and absence of MP, a two-tailed paired Student t-test with a

Stimulation of DC by MP & CpG
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Bonferroni correction was performed. Significance was defined as

p,0.05.
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