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Abstract

The majority of new drug approvals for cancer are based on existing therapeutic targets. One approach to the identification
of novel targets is to perform high-throughput RNA interference (RNAi) cellular viability screens. We describe a novel
approach combining RNAi screening in multiple cell lines with gene expression and genomic profiling to identify novel
cancer targets. We performed parallel RNAi screens in multiple cancer cell lines to identify genes that are essential for
viability in some cell lines but not others, suggesting that these genes constitute key drivers of cellular survival in specific
cancer cells. This approach was verified by the identification of PIK3CA, silencing of which was selectively lethal to the MCF7
cell line, which harbours an activating oncogenic PIK3CA mutation. We combined our functional RNAi approach with gene
expression and genomic analysis, allowing the identification of several novel kinases, including WEE1, that are essential for
viability only in cell lines that have an elevated level of expression of this kinase. Furthermore, we identified a subset of
breast tumours that highly express WEE1 suggesting that WEE1 could be a novel therapeutic target in breast cancer. In
conclusion, this strategy represents a novel and effective strategy for the identification of functionally important therapeutic
targets in cancer.
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Introduction

Central to the design of novel therapeutic strategies for cancer is

the identification of genes that are critical to the survival of tumour

cells but which are largely redundant in normal cells [1].

Correlating molecular changes with tumourigenesis has provided

one route to the identification of potential drug targets and

provides the rationale behind efforts to characterise genetic

variation and gene expression in tumours. However, the

correlative nature of these data means that it is frequently not

possible to determine whether the observations are causative or

merely an effect of the disease state [2].

RNA interference (RNAi) is a naturally occurring mechanism

that regulates gene expression at the post-transcriptional level. In

mammalian cells, short-interfering RNAs (siRNAs) mediate the

degradation of complementary messenger RNA (mRNA) tran-

scripts in a sequence-dependent fashion [3]. This sequence-

specificity of RNAi can be utilised experimentally to silence specific

genes by the transfection of siRNAs into mammalian cells. This

technology has been expanded into RNAi libraries encompassing

reagents that target a wide range of transcripts, allowing the role of

multiple genes in a cellular process to be assessed in an unbiased

fashion [4,5]. RNAi screens have been used to identify genes

important for cancer cell phenotypes, including cell viability [6,7].

We demonstrate that RNAi screens can be used to identify

genes that are differentially required for viability of cancer cell

lines and, as proof of this principle, identify the known oncogene

PIK3CA as essential for viability in MCF7 cells with an activating

PIK3CA mutation. We show that combining functional RNAi

analysis with gene expression and genomic analysis provides a new

strategy for the identification of key drivers of specific cancer cells,

which are potential novel drug targets.

Results

Parallel RNAi screens to identify kinases essential for cell
viability

To functionally identify important genes expressed in cancer

cells, we used an RNAi screening approach. Using a diverse range

of human cancer cell lines and a short interfering RNA (siRNA)

library targeting 779 kinases, we performed five parallel viability

screens using MCF7 (ER positive, luminal breast cancer), CAL51

(ER negative, microsatellite unstable breast cancer), A549 (lung

cancer), NCI-H226 (lung cancer) and HeLa (cervical cancer) cell

lines (Figure 1a and Table S1). We chose to target kinases as these

proteins are relatively amenable to pharmacological inhibition and

have been shown to be important drivers of many different

cancers. In brief, cells were plated in 96 well plates and transfected
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with siRNA from the library. Here we used a SMARTpool library,

where each well of the 96 well-plate contained a pool of four

different siRNAs (a SMARTpool) targeting one gene. After seven

days continuous culture, cell viability in each well was estimated by

use of a luminescent assay measuring cellular ATP levels. In order

to compare loss of viability effects in different cell lines, we

normalised cell viability data from each cell line to the median of

all effects in that cell line, representing each SMARTpool effect as

Figure 1. Cell viability screens with a kinase siRNA library. a. Scatter plots of Z scores from cell viability screens carried out in parallel in MCF7,
CAL51, HeLa, A549 and NCI-H226 cancer cell lines. Black diamonds – individual siRNA SMARTpools targeting 779 kinase genes per cell line. Z
scores#23 represent significant loss of viability effects. b. Distribution plots of Z scores from the parallel siRNA screens. Z scores#23 represent
significant loss of viability effects. c. Kinases can be classified on the basis of the effect of silencing on cell viability across all five cancer cell lines.
siRNAs that had no significant effect on cell viability in any of the cell lines studied likely target nonessential kinases (or the siRNA was not functional).
siRNAs that cause significant loss of cell viability in all of the cell lines studied likely target kinases that are essential for viability in most tumour types
or those that are essential for the viability of both normal and tumour cells. siRNAs that only cause significant lethality in some but not all cell lines
likely target kinases that may not be critical for the viability of all cells but represent tumour-specific effects. d. Parallel RNAi screens identify a known
oncogene, PIK3CA. Cell viability effects of PIK3CA targeting are shown in five cell lines. MCF7 cells were selectively sensitive to targeting of PIK3CA as
demonstrated by a Z score of #23. siRNAs that cause significant lethality in some but not all cell lines are likely to target kinases that are not critical
for the viability of all cells but represent tumour-specific effects. In some instances this may be explained by the occurrence of an activated oncogene
as is the case with MCF7 cells, which harbour an activating PIK3CA mutation.
doi:10.1371/journal.pone.0005120.g001
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a Z score [8] where Z = 0 represented no effect on viability and Z

scores less than 23 represented significant loss of viability effects.

The results from the five cell viability screens approximated

normal distributions, allowing comparison of the individual siRNA

effects across cell lines (Figure 1b).

We reasoned that siRNAs causing significant loss of cell viability

(Z#23) in all of the cell lines assayed likely represented kinases

that are essential for viability in most tumour types or more likely

essential for the viability of both normal and tumour cells.

Similarly, siRNAs that had no significant effect on viability in any

of the cell lines were either not functional or targeted non-essential

kinases. Finally, we hypothesised that siRNAs that only caused

significant lethality in some but not all cell lines, identified kinases

that represent tumour-specific effects potentially identifying new

therapeutic targets (Figure 1c). To determine the nature of the

effect, siRNAs were classified by comparing Z scores between cell

lines (Table 1).

Identification of PIK3CA provides proof of principle for
the approach

Our initial analysis indicated that PIK3CA silencing was likely to

represent a cell line specific effect. Silencing of PIK3CA was

selectively lethal to MCF7 cells (Z score of 23.80) but not HeLa,

CAL51, A549 nor H226 (Figure 1d and Table 1). MCF7 cells are

Table 1. Results of parallel siRNA screens.

GENE AC. NO. MCF7 Z SCORE HeLa Z SCORE CAL51 Z SCORE A549 Z SCORE H226 Z SCORE Pearson r P

ADCK2 NM_052853 23.06 0.74 0.34 20.59 21.99 20.93 0.02

AURKB NM_004217 21.42 23.65 23.47 21.33 20.93 20.56 0.32

BUB1B NM_001211 23.03 24.33 21.60 21.96 21.78 0.06 0.93

CALM3 NM_005184 21.01 22.71 21.88 21.23 23.54 0.2 0.74

CDC2L2 NM_024011 21.92 24.05 24.36 24.56 23.62 0.5 0.39

CDK9 NM_001261 0.91 21.80 21.35 23.76 20.18 20.46 0.44

CHKA NM_001277 20.27 20.38 20.59 22.00 23.08 20.18 0.77

CIT NM_007174 20.93 24.09 21.21 21.24 23.54 0.5 0.39

CNKSR1 NM_006314 23.36 24.19 23.01 24.78 23.92 0.65 0.23

COPB2 NM_004766 23.96 25.34 23.81 28.26 28.44 0.1 0.87

CSNK1G1 NM_022048 21.06 22.81 24.12 21.98 21.06 0.04 0.94

DGKE NM_003647 20.42 0.30 22.50 21.40 24.05 0.34 0.58

EXOSC10 NM_002685 22.06 22.18 23.10 21.04 22.09 20.71 0.18

FGFR3 NM_000142 20.60 20.39 20.28 23.43 20.40 0.64 0.25

GALK1 NM_000154 21.13 21.50 23.88 20.92 21.03 0.18 0.77

GALK2 NM_002044 20.73 20.38 20.86 23.30 20.40 0.21 0.73

GUCY2D NM_000180 21.46 20.61 26.05 22.10 20.76 20.36 0.55

GUK1 NM_000858 21.33 24.94 24.04 22.34 0.41 0.26 0.68

LMTK3 XM_055866 22.24 22.73 23.60 22.19 20.07 0.01 0.99

MASTL NM_032844 20.35 24.93 0.24 21.15 21.00 0.13 0.84

MYLK2 NM_033118 22.40 21.14 20.55 23.15 21.56 0.35 0.57

NAGK NM_017567 21.25 21.26 20.50 24.53 23.08 20.97 0.01

NME3 NM_002513 20.71 21.71 23.20 21.07 20.19 0.83 0.08

PANK4 NM_018216 21.27 23.24 21.89 22.79 22.41 20.02 0.98

PFKFB1 NM_002625 20.95 22.41 24.13 20.67 20.75 0.8 0.1

PIK3C2A NM_002645 22.99 21.13 23.30 20.69 21.99 20.53 0.36

PIK3CA NM_006218 23.80 0.54 20.22 20.73 20.60 20.94 0.02

PKN3 NM_013355 20.28 20.98 24.95 0.11 20.13 20.7 0.19

PLK1 NM_005030 25.23 25.72 28.03 25.83 24.18 20.57 0.32

PMVK NM_006556 20.84 20.59 20.49 23.74 22.28 0.72 0.17

PRKAG3 NM_017431 22.04 23.11 24.43 23.27 20.09 0.2 0.74

RPS6KA2 NM_021135 23.14 22.66 21.90 23.74 22.89 0.95 0.01

SYK NM_003177 21.77 22.09 21.05 24.06 20.40 0.16 0.8

TLR6 NM_006068 20.71 20.77 20.04 23.46 20.19 20.97 0

TTK NM_003318 22.01 23.66 25.51 22.06 22.22 20.45 0.44

WEE1 NM_003390 21.00 25.18 24.61 0.08 20.08 20.88 0.05

siRNAs causing loss of viability (where Z#23) are shown for five cell lines. Z scores of #23 are shown in bold. Pearson correlation coefficient for correlation with gene
expression, with P value.
doi:10.1371/journal.pone.0005120.t001
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known to harbour an activating PIK3CA mutation (E545K) on

which these cells are dependent for survival [9,10]. Furthermore,

amplifications and gain-of-function mutations of PIK3CA have

been associated with ovarian cancer [11], cervical cancer [12] and

breast cancer [10]. The dependence of MCF7 cells upon a PIK3CA

activating mutation, may be an oncogene addiction effect which

may be exploited therapeutically [13]. In cases of gene addiction,

tumour cells become physiologically dependent upon the contin-

ued function of activated or overexpressed oncogenes which are

therefore obvious candidate therapeutic targets. For example, the

efficacy of imatinib (Gleevec) in the treatment of leukaemias

bearing the BCR-ABL fusion [14] provides one clinical example of

oncogene addiction and how it may be exploited therapeutically.

The identification of PIK3CA validated our approach to identify

kinases that are essential for tumour cell survival.

Correlation of cell viability with gene expression
Although cell-specific gene effects identified in the RNAi screen

may be because of activating mutations, such as in PIK3CA, it is

likely that others could arise because of the acquisition of an

increased level of gene expression. To investigate this, we

performed genome-wide gene expression profiling on the cell line

panel using human-6 v2 Illumina BeadChips [15] and compared

this to the RNAi screen data (Table S2). Expression profiling was

performed in triplicate and kinases with significant differences in

gene expression between cell lines identified by analysis of

variance. For genes where at least one siRNA significantly

decreased cell viability (Table1), we examined the correlation

between cellular viability following siRNA transfection and gene

expression. This analysis identified four genes where cellular

viability inversely correlated with gene expression; ADCK2, NAGK,

TLR6 and WEE1 (Figure 2 and Table 1). Each of these

correlations suggested that elevated expression of the gene in

question may be essential for tumour survival and may therefore

represent a novel therapeutic target.

The Toll-like receptor 6, (TLR6) is known to activate nuclear

factor kappa-B signalling, a candidate therapeutic target in cancer

[16], and activation of the TLR pathway has recently been

suggested to have a role in tumourigenesis [17]. The function of

ADCK2 (aarF domain containing kinase 2) is less well established.

NAGK (N-acetylglucosamine kinase) converts endogenous N-

acetylglucosamine (GlcNAc), a major component of complex

carbohydrates, from lysosomal degradation or nutritional sources

into GlcNAc 6-phosphate, as part of a catalytic salvage pathway.

The function of WEE1 is discussed below.

Correlation of gene expression with genomic analysis
We examined whether the relatively elevated expression of the

four genes identified in our RNAi screen could be explained by

changes in gene copy number (i.e. copy number gains and/ or

gene amplification). Gene copy number was examined using

microarray-based comparative genomic hybridisation (aCGH)

analysis and overlayed on RNAi and gene expression data

(Figure 3, Figure S1 and Table S3). This combined analysis

revealed that for some cell lines, elevated expression of ADCK2,

NAGK or WEE1 was associated with an increase in gene copy

number, potentially identifying a cause of elevated expression.

MCF7 cells were highly sensitive to ADCK2 siRNA and this was

mirrored by upregulation of the transcript and increase in gene

copy number at ADCK2. Similarly, an increase in gene copy

number was consistent with elevated expression and siRNA

sensitivity for NAGK in A549 cells. Finally, the sensitivity of HeLa

cells to WEE1 siRNA was consistent with upregulation of this gene

and genomic gain (Figure 3 and Figure S1).

Further characterisation of WEE1
WEE1 has a well-defined role in cell cycle checkpoint control,

with WEE1 activity limiting the pro-mitotic effects of CDC2 (aka

CDK1) [18]. Accordingly, loss of WEE1 kinase activity and its

destruction is a requirement for entry into mitosis [19], suggesting

that WEE1 activity may actually limit tumour cell growth. Given

that our RNAi data suggested that WEE1 is, in some contexts,

critical for the viability of cancer cells that overexpress it, we

investigated the role of this kinase further. We first confirmed that

WEE1 protein was overexpressed in HeLa and CAL51 cells

supporting our RNA analysis (Figure 4a). To confirm the

correlation of sensitivity to siRNA and WEE1 expression, WEE1

was silenced by an independent pool of siRNAs designed to reduce

off-target effects (Wee1 ONTARGETplus). CAL51 and HeLa cell

lines were significantly more sensitive to silencing of WEE1 than

cell lines that do not overexpress WEE1 (Figure 4b and Figure S2).

Small molecules have been developed to inhibit WEE1 on the

basis that inhibition of this kinase may lead to abrogation of the

G2/M checkpoint. Many cancer cells exhibit a defective G1

checkpoint resulting in a dependence on the G2/M checkpoint

during cell replication and, as such, inhibition of the G2/M

checkpoint may be lethal in this context [20]. We used a small

molecule WEE1 inhibitor (PHCD [21]) to confirm the selective

sensitivity of CAL51 and HeLa cell lines to WEE1 inhibition

(Figure 4c). We also examined additional cell lines for WEE1

expression and sensitivity to WEE1 targeting, with prostate

carcinoma cell lines PC3 and DU145, and the non-tumourigenic

breast epithelial cell line MCF10A. None of these cell lines

expressed high levels of WEE1 (Figure 4a), and, as expected, none

was sensitive to WEE1 targeting (Figure 4b and 4c).

Taken together, our results provide evidence to suggest that

cell lines displaying higher levels of WEE1 expression are

sensitive to WEE1 inhibition. To investigate the mechanism of

sensitivity in these cell lines, we examined levels of apoptosis

following WEE1 inhibition. Chemical inhibition of WEE1 caused

apoptosis only in cell lines with higher levels of WEE1 expression

(Figure 4d), an observation also confirmed by the use of WEE1

siRNA (Figure 4e).

Clinical significance of WEE1
Our data suggest that WEE1 overexpression may be essential

for tumour cell viability. Therefore, we interrogated the expression

of WEE1 in publicly available datasets that detail the expression

profiles of human breast tumour cell lines and tumours [22,23].

This analysis demonstrated that WEE1 expression correlates with

WEE1 gene copy number (Spearman p = 0.039) and shows a trend

(t test p = 0.06, Mann-Whitney Test p = 0.07) for higher expression

in cell lines with a luminal phenotype (data not shown). On the

basis of these data, we examined WEE1 expression by immuno-

histochemistry (IHC). Expression of WEE1 assessed by IHC on

formalin-fixed, paraffin-embedded cell line pellets correlated with

expression measured by western blotting, providing evidence of

specificity of the WEE1 antibody (Figure 5a). We then examined a

well-annotated series of breast tumours [24,25] and found that

35% exhibited levels of WEE1 expression similar to those of

CAL51 cells, which are sensitive to WEE1 inhibition (Figure 5b).

Furthermore, high levels of WEE1 expression were preferentially

found in breast cancers with a luminal phenotype, as defined by

Nielsen et al. [26], consistent with the analysis of breast cancer cell

lines. In the context of our previous data implicating WEE1 as a

cancer target, these immunohistochemical data suggest that the

use of WEE1 inhibitors may be appropriate in a significant subset

of breast cancer patients.

Cancer Targets
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Discussion

The majority of new drug approvals for cancer treatment are

based on existing targets. Rather than reflecting an absence of

targets, this is perhaps indicative of the cost and time involved in

identifying novel therapeutic approaches. Parallel RNAi screening

may allow a simple, high-throughput, approach to the functional

identification of targets, and others have also used parallel RNAi

screening to identify potential drivers of tumourigenesis and

candidate targets [27]. Our identification of PIK3CA, a known

Figure 2. Correlation between siRNA loss of viability and gene expression. a–d. Z scores from the siRNA screens, Z scores#23 are
highlighted with a red dotted box. e–h. Normalised expression levels calculated from Illumina expression profiling. High expression correlated with
sensitivity to siRNA, highlighted with a red dotted box. Error bars represent the standard error of the mean (SEM). The significance of differences in
genes expression between cell lines was assessed by one-way ANOVA and p value displayed for each cell lines. i–l. comparison of Z values with
normalised expression levels. The dashed line represents the Z = 23 threshold for significant loss of viability effects (p,0.0015). For the four genes
shown, an elevated level of expression is consistent with loss of viability after siRNA transfection. See Table 1 for Pearson correlation of Z vs
expression.
doi:10.1371/journal.pone.0005120.g002
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oncogene and therapeutic target, using parallel RNAi screens

provides strong circumstantial evidence for this approach.

Furthermore, improvements in RNAi technology may make

parallel RNAi screening a much simpler and cost-effective process

[28,29]. Parallel RNAi screens, when combined with companion

approaches, such as expression profiling, genomic profiling and

high throughput histopathological and immunohistochemical

analysis have the potential to identify potential targets that are

worthy of further investigation. In the case of WEE1, a

combination of RNAi screening, transcript profiling, genomic

profiling and histological analysis has led to the identification of a

patient subset (luminal breast cancer), where inhibition of this

kinase could be explored as a potential therapeutic strategy.

Incorporating this approach into the conventional drug target

identification process has the potential to streamline the

development of new therapies.

Figure 3. Correlation between gene copy number and gene expression. Scatter plots illustrating the relationship between gene copy
number and gene expression. Vertical dashed lines represent the threshold for copy number gains (aws ratios.0.12).
doi:10.1371/journal.pone.0005120.g003
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Materials and Methods

Cell lines, compounds, plasmids and siRNA
MCF7, CAL51, HeLa, A549, NCI-H226, PC3, DU145 and

MCF10A cells were obtained from ATCC (USA) and maintained

according to the supplier’s instructions. WEE1 inhibitor (681637)

was obtained from Calbiochem (UK). MCF7 and HeLa cells were

transfected with SMARTpool siRNAs using Dharmafect 3

transfection reagent; A549 and NCI-H226 cells were transfected

with SMARTpool siRNAs using Dharmafect 1 transfection

Figure 5. WEE1 is overexpressed in a subset of tumours. a. WEE1 immunohistochemical staining in formalin-fixed, paraffin-embedded breast
cancer cell lines and invasive breast cancers. Note the low levels of WEE1 expression in H226 cells and a basal-like breast cancer and the high levels of
WEE1 expression in CAL51 cells and luminal and HER2 breast cancers. (Harris Haematoxylin/DAB staining; original magnification6200). b. High levels
of WEE1 expression are preferentially expressed in luminal breast cancers. Cases were scored according to the Allred scoring system [36] as described
in the materials and methods. For each tumour type the percentage of tumours with high WEE1 expression is shown. High WEE1 expression showed
a statistically significant direct correlation with expression of oestrogen and progesterone receptors and cyclin D1, and a significant inverse
correlation with tumour size, histological grade and expression of epidermal growth factor receptor (EGFR), cytokeratin (Ck) 14, Ck 5/6, Ck 17, MIB-1
labelling index and caveolins 1 and 2. No correlations between WEE1 immunohistochemical expression and presence of lympho-vascular invasion,
lymph node metastasis, HER2 expression or gene amplification, p53 expression, and CCND1 and MYC gene amplification was found [24,37] (data not
shown). All cases were classified into luminal, HER2 and basal-like groups according to the immunohistochemical panel described by Nielsen et al.
[26].
doi:10.1371/journal.pone.0005120.g005

Figure 4. WEE1 expression correlates with sensitivity to WEE1 inhibition. a. Western blot analysis of lysates prepared from HeLa, CAL51,
MCF7, A549, NCI-H226, PC3, DU145 and MCF10A cells. An antibody recognising WEE1 was used with b-tubulin as a loading control. WEE1 expression
is significantly increased in HeLa and CAL51 cells compared to MCF7, A549, NCI-H226, PC3, DU145 and MCF10A cells. b. Left panel: Cell viability assay
in cells transfected with WEE1 ONTARGETplus SMARTpool, or ONTARGETplus siControl. WEE1 silencing was selectively lethal to WEE1 overexpressing
HeLa and CAL51 cells. Error bars represent the SEM from triplicate transfections. Right panel: Western blot analysis of lysates prepared from CAL51
cells transfected with WEE1 ONTARGETplus SMARTpool or ONTARGETplus siControl. An antibody recognising WEE1 was used with b-tubulin as a
loading control. WEE1 ONTARGETplus SMARTpool significantly reduced WEE1 protein expression compared to siControl transfected cells. c. Cell
viability assay in cells treated with WEE1 inhibitor. WEE1 inhibition was selectively lethal to WEE1 overexpressing HeLa and CAL51 cells. Error bars
represent the SEM from triplicate cell treatments. d. Left hand panel: Western blot analysis of lysates prepared from cells treated with 5 mM WEE1
inhibitor for 0, 6, 24 and 48 hours. An antibody recognising PARP was used with b-tubulin as a loading control. After 24 hours WEE1 inhibition
induced PARP cleavage (Clvd PARP) in WEE1 overexpressing HeLa and CAL51 cells but did not induce PARP cleavage in MCF7 and NCI-H226 cells
which express WEE1 at normal levels. Right hand panel: Caspase 3,7 activity in cells treated with 5 mM WEE1 inhibitor for 24 hours. WEE1 inhibition
induced caspase 3,7 activation in WEE1 overexpressing HeLa and CAL51 cells but did not induce caspase 3,7 activation in MCF7 and NCI-H226 cells
which express WEE1 at normal levels. Error bars represent the SEM from triplicate cell treatments. e. Left hand panel: Western blot analysis of lysates
prepared from cells transfected with WEE1 ONTARGETplus SMARTpool or ONTARGETplus siControl. An antibody recognising PARP was used with b-
tubulin as a loading control. Silencing of WEE1 induced PARP cleavage in WEE1 overexpressing HeLa and CAL51 cells but did not induce PARP
cleavage in MCF7 and NCI-H226 cells which express WEE1 at normal levels. Right hand panel: Caspase 3,7 activity in cells transfected with WEE1
ONTARGETplus SMARTpool or ONTARGETplus siControl. Silencing of WEE1 induced caspase 3,7 activation in WEE1 overexpressing HeLa and CAL51
cells but did not induce caspase 3,7 activation in MCF7 and NCI-H226 cells which express WEE1 at normal levels. Error bars represent the SEM from
triplicate transfections.
doi:10.1371/journal.pone.0005120.g004
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reagent according to manufacturer’s instructions (Dharmacon).

CAL51 cells were transfected with SMARTpool siRNAs using

Oligofectamine transfection reagent according to manufacturer’s

instructions (Invitrogen). DU145 cells were transfected with

SMARTpool siRNAs using Lipofectamine 2000 transfection

reagent according to manufacturer’s instructions (Invitrogen).

The kinase siRNA library (siARRAY – targeting 779 known and

putative human protein kinase genes) was obtained in ten 96 well

plates from Dharmacon (USA). Each well in this library contained

a SMARTpool of four distinct siRNA species targeting different

sequences of the target transcript. Each plate was supplemented

with siCONTROL (ten wells, Dharmacon (USA)). The WEE1

ONTARGETplus SMARTpool and ONTARGETplus siControl

were obtained from Dharmacon (USA).

Antibodies
Antibodies targeting the following epitopes were used: WEE1

(4936, Cell Signaling, UK), PARP (9542, Cell Signaling, UK) and

b-tubulin (T4026, Sigma, UK). All secondary antibodies used for

western blot analysis were HRP conjugated.

siRNA screen method
Cells plated in 96 well plates were transfected 24 hours later

with siRNA (final concentration 100 nM), as per manufacturer’s

instructions. Each siRNA plate was supplemented with 10 wells of

siControl. Twenty four hours following transfection, cells were

trypsinised and divided into three identical replica plates. Media

was replenished after 48 hours and 96 hours, and cell viability was

assessed after seven days using CellTiter Glo Luminescent Cell

Viability Assay (Promega, USA) as per manufacturer’s instruc-

tions. Data from each cell line was processed as follows: the

luminescence reading for each well on a plate was log2

transformed and expressed relative to the median luminescence

value of all wells on the same plate (plate centering). This data was

then normalised according to the median of the entire screen data,

using the median absolute deviation (MAD) to estimate the true

variation within each screen [30]. This normalisation represented

the effect of each SMARTpool in each cell line as a Z score [30]

and allowed the effects of each SMARTpool on viability to be

compared across the cell line panel. A Z score#23 was taken as

the significance threshold for reduced cell viability, representing

three MADs from the median and approximating to three

standard deviations.

Transcript profiling
RNA was extracted from cell lines with Trizol and phenol/

chloroform extraction followed by isopropanol precipitation. For

reach cell line, triplicate extractions and profiles were performed.

Biotin-labeled cRNA was produced by means of a linear

amplification kit (IL1791; Ambion, Austin, TX, http://www.

ambion.com) using 250 ng of quality-checked total RNA as input.

Chip hybridisations, washing, Cy3-streptavidin (Amersham Bio-

sciences) staining, and scanning were performed on an Illumina

BeadStation 500 (San Diego, http://www.illumina.com) platform

using reagents and following protocols supplied by the manufac-

turer. cRNA samples were hybridised on Illumina human-6 v2

BeadChips, covering approximately 47,000 RefSeq transcripts.

The random distribution of large populations of oligonucleotide-

coated beads across the available positions within the human-6 v2

chip enables, on average, 30 intensity measurements per RefSeq,

yielding quantitative assessments of gene expression [15]. All basic

expression data analysis was carried out using the manufacturer’s

software BeadStudio 3.1. Illumina expression profiles were

performed in triplicate, the raw data were then variance-stabilizing

transformed and robust spline normalised using the lumi package

in the Bioconductor software [31,32]. Expression values for each

sample were median scaled and the mean expression value was

established over the three replicates. Genes with significant

difference in expression between cell lines were identified by

one-way analysis of variance (ANOVA). This transcript profiling

data is now publicly available (ArrayExpress accession: E-TABM-

610).

Correlation of siRNA Z score with gene expression
The correlation between siRNA Z score and normalised gene

expression was examined for genes where siRNA caused

significant loss of viability (Z,23). Z score was compared to

normalised gene expression using Pearson correlation coefficient.

A gene was taken as being significantly correlated if the Pearson

correlation coefficient was significantly different to the null

hypothesis, the correlation was inverse, and the variation in gene

expression between cells lines were significantly different as

assessed by one-way ANOVA.

Array CGH analysis method
Genomic DNA was extracted from cell lines using the QIAamp

DNA Blood Mini Kit (51104, Qiagen), according to manufactur-

er’s instructions. Microarray-based CGH analysis was performed

on an in-house 32K tiling path BAC array platform as previously

described [33,34]. For copy number correlations, the average of

adaptive weight smoothed (AWS) ratios of BACs containing the

gene of interest were used for copy number correlations, and copy

number assigned as previously described [35]. Briefly, AWS

smoothed log2 ratio values ,20.12 were categorised as losses,

those .0.12 as gains, and those in between as unchanged.

Amplifications were defined as smoothed log2 ratio values .0.4

[35]. Data processing and analysis were carried out in R 2.0.1

(http://www.r-project.org/) and BioConductor 1.5 (http://www.

bioconductor.org/), making extensive use of modified versions of

the packages aCGH, marray and aws in particular.

Cell viability assay to measure WEE1 siRNA sensitivity
Cells plated in 96 well plates were transfected 24 hours later

with WEE1 ONTARGETplus SMARTpool or ONTARGETplus

siControl (final concentration 100 nM), as per manufacturer’s

instructions. Twenty four hours following transfection, cells were

trypsinised and divided into three identical replica plates. Media

was replenished after 48 hours and 96 hours, and cell viability was

assessed after seven days using CellTiter Glo Luminescent Cell

Viability Assay (Promega, USA) and expressed relative to mean

luminescence in the wells transfected with siControl.

Cell viability assay to measure drug sensitivity
Cells were plated in 96 well plates and exposed to various doses

of WEE1 inhibitor (Calbiochem, Cat. No. 681637, 4-(2-Phenyl)-9-

hydroxypyrrolo[3,4-c]carbazole-1,3-(2H,6H)-dione (PHCD)) [21].

Cell viability was assessed by CellTiter Glo Luminescent Cell

Viability Assay (Promega, USA) 48 hours later and surviving

fraction for each dose of drug assessed by dividing the

luminescence value of drug treated by the luminescence value of

vehicle.

Western blots
Protein lysates were prepared using RIPA lysis buffer (50 nM

Tris pH 8.0, 150 mM NaCl, 0.1% SDS, 0.1% DOC, 1%

TritonX-100, 50 mM NaF, 1 mM Na3VO4 and protease

inhibitors). 100 mg of total cell lysate was loaded onto
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prefabricated 4–12% Bis-Tris gels (Invitrogen), with full range

rainbow molecular weight marker (GE Healthcare, UK) as a size

reference, and resolved by SDS-PAGE electrophoresis. Proteins

were transferred to nitrocellulose membrane (Bio-rad, USA),

blocked and probed with primary antibody diluted 1 in 1000 in

16TBS-T with 5% BSA overnight at 4uC. Secondary antibodies

were diluted 1 in 5000 in 16TBS-T with 5% skim milk and

incubated for one hour at room temperature. Protein bands were

visualised using ECL (GE Healthcare, UK) and MR or XAR film

(Kodak).

Validation of gene silencing by siRNA
Validation of RNAi gene silencing was determined by western

blotting. Cells were transfected with WEE1 ONTARGETplus

SMARTpool or ONTARGETplus siControl, and protein lysates

were made 48 hours later and western blotted for WEE1

expression with b-tubulin as a loading control.

PARP cleavage western blotting
Cells were transfected with WEE1 ONTARGETplus SMART-

pool or ONTARGETplus siControl, and total cell lysates were made

48 hours later and western blotted for PARP with b-tubulin as a

loading control. Cells were treated with 5 mM Wee1 inhibitor for 0, 6,

24 and 48 hours. Total cell lysates were made at the time points and

western blotted for PARP with b-tubulin as a loading control.

Caspase 3,7 activation assay
Cells were transfected with WEE1 ONTARGETplus SMART-

pool or ONTARGETplus siControl, and caspase 3,7 activation

was measured 48 hours later using Caspase-Glo 3/7 Assay

(G8091, Promega) and expressed relative to mean luminescence

in the wells transfected with siControl. Cells were treated with

5 mM Wee1 inhibitor and caspase 3,7 activation was measured

24 hours later using Caspase-Glo 3/7 Assay (G8091, Promega)

and expressed relative to mean luminescence in the wells treated

with vehicle.

WEE1 immunohistochemical staining
Immunohistochemistry for WEE1 was performed with a rabbit

polyclonal antibody (Cell Signalling; 4936) at a dilution of 1/20

and developed with the dual Envision kit (DakoH, Glostrup,

Denmark). Details of this cohort of patients are described

elsewhere [24,25]. Antigen retrieval was performed at 98uC for

30 minutes in citrate buffer pH 6 (Labvision) in the Labvision pre-

treatment module. WEE1 immunohistochemical distribution on

tissue microarray sections was analysed by two of the authors (JR-

F and KS) on a multi-headed microscope. Only nuclear reactivity

was considered specific. Cases were scored according to the Allred

scoring system [36] and a cut off of .5 (median score in the series)

was adopted. The analysis was performed blinded to the results of

other immunohistochemical markers and patients’ outcome. All

cases were classified into luminal, HER2 and basal-like groups

according to the immunohistochemical panel described by Nielsen

et al. [26].

Supporting Information

Table S1 Title of dataset: Z scores for 779 siRNA SMARTpools

in five cancer cell lines Description of dataset: The sensitivity of

five cancer cell lines to siRNA SMARTpools is shown. Analysis

was carried out as in the materials and methods. SMARTpools

causing significant loss of viability effects (where Z#23) are shown

in bold.

Found at: doi:10.1371/journal.pone.0005120.s001 (0.14 MB

XLS)

Table S2 Title of dataset: Combined RNAi and expression data

from five cancer cell lines Description of dataset: Z scores are

shown for SMARTpools for all 779 gene. For each of the

corresponding genes, transcript expression data is shown,

generated by Illumina profiling [15]. In this case, average signal

from each Illumina probe is shown. Significance of correlation

between expression and siRNA Z score with Pearson correlation

coefficient and Spearmans rank correlation coefficient.

Found at: doi:10.1371/journal.pone.0005120.s002 (0.40 MB

XLS)

Table S3 Title of dataset: Array Comparative Genomic

Hybridisation (aCGH) data from five cancer cell lines Description

of dataset: Genome-wide aCGH profiling was performed as

described in the materials and methods. Average signal from each

BAC is shown.

Found at: doi:10.1371/journal.pone.0005120.s003 (8.95 MB

XLS)

Figure S1 Correlation between gene copy number and Z score.

Scatter plots illustrating the relationship between gene copy

number and sensitivity to siRNA. Horizontal dashed lines

represent the threshold for copy number gains (aws ratios.0.12)

and vertical dashed lines represent the threshold for significant loss

of viability effects.

Found at: doi:10.1371/journal.pone.0005120.s004 (0.10 MB TIF)

Figure S2 Gene silencing of WEE1. a. Cells were transfected

with SMARTPool siRNA or one of the component siRNAs from

each SMARTPool as shown. Forty-eight hours after transfection,

RNA was extracted and quantitative real-time PCR performed.

Specific gene expression in each sample was normalised to that of

a house keeping gene (GAPDH) and standardised according to

gene expression in cells transfected with a control, non-targeting

siRNA (siCONTROL). Each bar represents data from triplicate

transfections, with error bars representing SEM. * = p,0.05 vs

siCONTOL, Student’s t test. B. Multiple WEE1 siRNAs cause

selective killing of CAL51 cells, when compared to MCF7 cells.

Cells were transfected with SMARTPool siRNA or one of the

component siRNAs from each SMARTPool as shown. Cell

viability measurements were performed and surviving fractions

calculated as in the materials and methods. Each bar represents

data from triplicate transfections, with error bars representing

SEM. * represents significant (p,0.05) loss of viability in CAL51

cells vs MCF cells transfected with the same siRNA.

Found at: doi:10.1371/journal.pone.0005120.s005 (0.08 MB TIF)
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