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Abstract

Species-specificity is one of the major characteristics of cytomegaloviruses (CMVs) and is the primary reason for the lack of a
mouse model for the direct infection of human CMV (HCMV). It has been determined that CMV cross-species infections are
blocked at the post-entry level by intrinsic cellular defense mechanisms, but few details are known. It is important to explore
how CMVs interact with the subnuclear structure of the cross-species host cell. In our present study, we discovered that
nuclear domain 10 (ND10) of human cells was not disrupted by murine CMV (MCMV) and that the ND10 of mouse cells was
not disrupted by HCMV, although the ND10-disrupting protein, immediate-early protein 1 (IE1), also colocalized with ND10
in cross-species infections. In addition, we found that the UL131-repaired HCMV strain AD169 (vDW215-BADrUL131) can
infect mouse cells to produce immediate-early (IE) and early (E) proteins but that neither DNA replication nor viral particles
were detectable in mouse cells. Unrepaired AD169 can express IE1 only in mouse cells. In both HCMV-infected mouse cells
and MCMV-infected human cells, the knocking-down of ND10 components (PML, Daxx, and SP100) resulted in significantly
increased viral-protein production. Our observations provide evidence to support our hypothesis that ND10 and ND10
components might be important defensive factors against the CMV cross-species infection.
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Introduction

Cytomegaloviruses (CMVs) are a b-subfamily of herpes viruses.

Many types of cells (including fibroblast, epithelial, endothelial,

and hematopoietic cells) are permissive for CMV infection, which

infection results in the production of infectious particles [1], but

CMV infection and replication are limited to a narrow host range

[2,3]. For example, murine CMV (MCMV) can produce viral

particles in both mouse and rat cells, while rat CMV (RCMV)

cannot successfully replicate in mouse cells [4,5]. Similar

observations were also reported for human CMV (HCMV) and

simian CMV (SCMV). SCMV productively infected human and

monkey cells, but HCMV failed to replicate in monkey cells [3].

CMV replication in native host cells is a well-defined sequential

process: entry into cells, immediate-early (IE) and early (E) gene

expression, DNA replication, late gene expression, and viral

production [6]. Blocking any stage will cause the failure of

infection. It has been determined that both CMV cross-species

infections and low MOI (multiplicity of infection) infections in

permissive cells are blocked at the post-entry level by intrinsic

cellular defense mechanisms [3,6], but few details are known.

We and others recently discovered that viruses encode gene

products that counter cellular defenses in human cells, which

preventive action can help MCMV to successfully infect human

cells [7,8]. For instance, we discovered that intrinsic cellular

defense mechanisms are involved in blocking MCMV infection in

human cells and that these mechanisms can be overcome by

HCMV-encoded proteins (such as immediate-early protein 1—

IE1), resulting in successful cross-species infection [7]. The Brune

group discovered that the inhibition of apoptosis by the

overexpression of Bcl-2 and other apoptosis inhibitors caused the

successful replication of MCMV in human cells [8]. However,

very few efforts have attempted to determine how HCMV

replication is blocked in mouse cells other than to observe that

HCMV infection in mouse cells is blocked at the IE stage [3]. The

significance of successfully infecting mouse cells with HCMV is

that doing so would enable the development of an HCMV mouse

model. We are also curious whether any nuclear structure (and its

components) is involved in blocking cytomegalovirus cross-species

infection.

A nuclear structure called ND10 (nuclear domain 10) has been

attracting intense attention from virologists due to the functional

interaction of its components with viruses. Several herpes viruses

(e.g., Herpes simplex virus type-1 [HSV-1], cytomegalovirus

[CMV], and Epstein-bar virus [EBV]) were found to be capable

of disrupting ND10 [9,10,11], and various viral proteins have been

identified as being related to ND10 and ND10 proteins, which

identification has been summarized by Dr. Kalejta and colleagues

[12]. Recently, accumulated evidence showed that major ND10

components (PML, Daxx, and SP100) have negative impacts on

the herpesviruses [13,14,15,16,17,18,19,20,21,22,23,24]. There-

fore, it has been assumed that ND10 defends against herpes viral
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infection, but this assumption is contradicted by the fact that

several DNA viruses replicate DNA and transcribe RNA

predominately at ND10 [25,26].

More recently, the Brune group isolated a naturally acquired

mutant MCMV that was able to replicate rapidly and to high titers

in human retinal pigment epithelial (RPE-1) cells [27]. The

interesting observation that the ability of mutated MCMV to

disrupt ND10 seems to be related to viral production [27] initiated

our investigation on whether the disruption of ND10 might be

related to HCMV infection in mouse cells. In the present study, we

discovered that HCMV infection in mouse cells can express IE

and many early genes and is blocked before DNA replication. In

addition, we show that ND10 colocalizes with IE1 in cross-species

infections but is not dispersed by CMV in such infections (HCMV

in mouse cells and MCMV in human cells) and that ND10

components are involved in blocking viral gene expression in both

MCMV and HCMV cross-species infections.

Materials and Methods

Cells and viruses
The following cell lines were used: NIH3T3 (ATCC), Mrc-5

cells (ATCC), and Ad5 E1A-transformed human epithelial kidney

cell 293 (HEK293, ATCC). Cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

calf serum (FCS) and 1% penicillin-streptomycin (PS). The

MCMV Smith strain was from ATCC. The HCMV Towne and

AD169 strains (ATCC) were kept in our laboratory; the clinical

strains of HCMV included FIX [VIR1814, provided by Dr. Gerna

in Italy [28]] and Toledo [provided by Dr. Zhu in UMDNJ [29]];

the UL131-repaired HCMV AD169 strain (vDW215-BA-

DrUL131) was provided by Dr. Shenk (Princeton University) [29].

RNA interference
In order to knock down the expression of the ND10

components, we transfected plasmids, thereby producing small

interference RNA (siRNA) against each component. All the

siRNA-producing plasmids were bought from Santa Cruz

Biotechnology, Inc. (Santa Cruz, CA). The shRNA plasmids are

shown in Table 1. An shRNA plasmid (sc-108060) encoding of a

scrambled shRNA sequence that does not lead to the specific

degradation of any cellular message is used as control. For Western

blot analysis, 100 pmol of siRNA plasmid was used for each well of

a 24-well plate of HEK293 cells or NIH3T3 cells; 24 h after

transfection, cells were super-infected with MCMVIE1/3gfp or

the UL131-repaired AD169 (vDW215-BADrUL131) at an MOI

of 1 for another 24 hours, then the cells were harvested and lysed

for protein detection.

Antibodies
The human and mouse ND10-associated proteins were

recognized using the following antibodies from Santa Cruz

Biotechnology, Inc. (Santa Cruz, CA): Monoclonal antibody

(mAb) (PG-M3, sc-966) against human PML, polyclonal antibody

(H-238, sc-5621) against human and mouse PML, polyclonal

antibody against human and mouse Daxx (M-112, sc-7152), and

Table 1. shRNA plasmids used in this study.

Mouse cell Human cell

SP-100 (sc-41033-SH) SP-100 (sc-41032-SH)

PML (sc-36283-SH) PML (sc-36284-SH);

Daxx (sc-35177-SH) Daxx (sc-35178-SH)

doi:10.1371/journal.pone.0019187.t001

Figure 1. Immunofluorescent assay to show IE1 and ND10 in CMV cross-species infection. A–C: After HCMV infection in NIH3T3 cells for
5 hour, cells were stained with anti-PML antibody (rabbit) to show ND10 (in red) (A); anti-IE1 antibody (mouse) was used to show IE1 (in green) (B);
the merged picture is shown in C. D–F: After MCMV infection in Mrc-5 cells for 5 hour, cells were stained with anti-PML antibody (Rabbit) to show
ND10 (in red) (D); anti-IE1 antibody (mouse) was used to show IE1 (in green) (E); the merged picture is shown in F.
doi:10.1371/journal.pone.0019187.g001

Interaction of MCMV MIE Gene Products and ND10
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polyclonal antibody against human SP100 (H-60, sc-25568) and

mouse SP100 (M-75, sc-25569). MAb against tubulin came from

Sigma Co. (St. Louis, MO). MAb against MCMV IE1 and M112/

113 (E1) were generously provided by S. Jonjic (Croatia).

Monoclonal antibody against HCMV IE1, mAb810, came from

Millipore (Billerica, MA).

Figure 2. Immunofluorescent assay to show cytomegalovirus infection and ND10. A–C: After MCMV infection in NIH3T3 cells for 24 hours,
cells were stained with anti-PML antibody (rabbit) to show ND10 (in red) (A); anti-IE1 antibody (mouse) was used to show IE1 (in green) (B); the
merged picture is shown in C. D–F: After MCMV infection in Mrc-5 cells for 24 hours, cells were stained with anti-PML antibody (rabbit) to show ND10
(in red) (D); anti-IE1 antibody (mouse) was used to show IE1 (in green) (E); the merged picture is shown in F. G–H: After HCMV infection in NIH3T3
cells for 24 hours, cells were stained with anti-PML antibody (rabbit) to show ND10 (in red) (G); anti-IE1 antibody (mouse) was used to show IE1 (in
green) (H); the merged picture was shown in I. J–L: After HCMV infection in Mrc-5 cells for 24 hours, cells were stained with anti-PML antibody
(rabbit) to show ND10 (in red) (J); anti-IE1 antibody (mouse) was used to show IE1 (in green) (K); the merged picture is shown in L.
doi:10.1371/journal.pone.0019187.g002

Interaction of MCMV MIE Gene Products and ND10
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Detection of Viral DNA replication by PCR
Cells (NIH3T3 or Mrc-5) were infected with HCMV AD169

(vDW215-BADrUL131) at an MOI of 1. Viral DNA was isolated

using the Hirt method [30]. PCR was performed on HCMV DNA

using the following primers: forward-59 GTC AAA CAG ATT

AAG GTT CGA GTG-39 and reverse-59 TTA CTG GTC AGC

CTT GCT TCT AGT 39.

Immunohistochemistry
The localization of ND10 and viral proteins by immunohis-

tochemistry has been described [31]. Briefly, cells were seeded

on coverslips and washed twice with phosphate-buffered saline

(PBS) 24 h later, fixed in 1% paraformaldehyde for 10 min at

room temperature, again washed twice with PBS, and

permeabilized with 0.2% Triton X-100 on ice for 20 min.

Primary antibody was added and incubated for 30 min at room

temperature. Cells were then washed twice with PBS.

Secondary antibody (labeled with Texas Red or fluorescein

isothiocyanate [green] of either anti-rabbit or anti-mouse IgG)

was added and incubated for an additional 30 min at room

temperature. After a final wash with PBS, cells were stained

with Hoechst 33258.

Immunoblot analysis
Proteins were separated by SDS-7.5% polyacrylamide gel

electrophoresis, transferred to nitrocellulose membranes, and

probed according to standard procedures. Membranes were

stripped with stripping buffer (100 mM ß-mercaptoethanol, 2%

SDS, 62.5 mM Tris-HCl, pH 6.8), washed with PBS-0.1% Tween

20, and used to detect additional proteins.

Confocal microscopy
Cells were examined at 1006magnification with a Leica TCS

SPII confocal laser scanning system equipped with a water-cooled

argon-krypton laser. Two wavelength channels (495 and 590 nm)

were recorded simultaneously or sequentially. Power and

integration were adjusted to minimize bleed-through between

the green and far red channels prior to data acquisition. Digital

images obtained were cropped and adjusted for contrast with

Photoshop.

Results

ND10 were not dispersed by cytomegalovirus cross-
species infection but co-localized with the ND10-
disrupting protein (IE1)

At least two aspects of the relationship between ND10 and DNA

viruses have been described: several DNA virus-encoded proteins

colocalize with ND10, and some of them can disperse ND10

[25,32]. The fact that CMV IE1 disrupts the ND10 of native host

cells supports the speculation that ND10 acts in a defensive

capacity. We wondered whether the IE1 of cytomegalovirus could

behave differently in cross-species infections. To determine this,

we performed an immunofluorescence assay to verify whether

CMV IE1 still colocalizes with ND10, such as occurs in the

infection of native host cells [10,26]. As shown in Fig. 1, we stained

Figure 3. Immunofluorescent assay to show IE1 and IE3 in murine cytomegalovirus-infected human and mouse cells. Upper:
MCMVIE1/3gfp-infected NIH3T3 cells to show distribution of IE1 (left) and IE1_IE3 (right). Lower: MCMVIE1/3gfp-infected Mrc-5 cells to show
distribution of IE1 (left) and IE1_IE3 (right).
doi:10.1371/journal.pone.0019187.g003

Interaction of MCMV MIE Gene Products and ND10
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HCMV IE1 (green, B and E) and ND10 (anti-PML in red, A and

D) at five hours post-infection (hpi) of the HCMV UL131-repaired

AD169 (vDW215-BADrUL131) in NIH3T3 cells (A–C) and of the

wt (wild type) MCMV in human cells (D–F). Clearly, at the very

early stage, IE1 presented as patterns of speckles. The IE1 speckles

colocalized with ND10 after CMV cross-species infection in host

cells. Therefore, the distribution of IE1 at the very early stage of

infection was not different in cross-species infection compared with

native infection (e.g., HCMV in human cells and MCMV in

mouse cells).

Next, we performed another IFA to analyze the ability of IE1 to

disperse ND10 in cross-species–infected cells. We infected wt

MCMV into Mrc-5 cells and HCMV into NIH3T3 cells for

24 hours. Cells were fixed and permeabilized and stained with

anti-PML to show ND10 (red, Fig. 2A, D, G, and J) and anti-IE1

to show the distribution of IE1 (green, Fig. 2B, E, H, and K). As

can be seen in HCMV-infected human cells and MCMV-infected

mouse cells, IE1 was diffusely distributed in the nucleus at 24 hpi.

Interestingly, the IE1 of MCMV formed domains (Fig. 2 E) in

human cells and lost the ability to disperse ND10, their

distribution being different from that found in MCMV-infected

mouse cells (Fig. 2 A–C). Similarly, HCMV IE1 also lost the ability

to disperse ND10 in mouse cells (Fig. 2 G–I), which was controlled

by an IFA of the HCMV-infected Mrc-5 cells in which the ND10

was dispersed (Fig. 2 J–L). However, HCMV IE1 did not form

domains in NIH3T3 cells but diffused. The differential distribution

of IE1 and the inability to disperse ND10 in cross-infection might

be related to the failure to induce a productive cytomegalovirus

cross-species infection.

Previously, we discovered that MCMV IE1 and IE3 have no

associations with each other in infected mouse cells [33]. We

wanted to know whether IE1 could be related to IE3 in MCMV-

infected human cells. For the detection of IE3, we infected

NIH3T3 cells with MCMVIE1/3gfp in which IE1 was kept intact

and EGFP was also fused to the C-terminus of IE3 [33]. At 24 hpi,

we performed IFA to stain IE1 red (Fig. 3 A and C) and IE3 green

(Fig. 3B and D). As can be seen, in MCMV1/3gfp-infected mouse

cells, IE1 was shown not to be related to IE3 (Fig. 3A and B),

which is consistent with our previous report [33]. However, IE1

formed domains that colocalized with IE3 domains in MCMV-

infected human cells (Fig. 3C and D). The biological impact of the

association between IE1 and IE3 in MCMV-infected human cells

on viral infection still remains unclear.

Detection of HCMV proteins in infected NIH3T3 cells
Two decades ago, Lafemina and Hayward reported that

HCMV can enter mouse cells and produce only IE1, its infection

being blocked at the IE stage [3]. The strain of HCMV used in

those studies was the Towne strain, which has been attenuated by

serial passage through human fibroblast cells [3]. Recently, it was

discovered that the UL128–131 locus of laboratory strains (Towne

and AD169) has mutated because of their repeated passages

through fibroblast cells, causing the virus to lose its ability to infect

epithelial and endothelial cells [1,29,34,35,36]. Clinical HCMV

strains, or the Ul128–131-repaired AD169 (vDW215-BA-

DrUL131) [29], can infect other types of cells in addition to

fibroblast cells, including endothelial cells, lymphocytes, and

epithelial cells [29,37]. We are curious to know whether either

the clinical or repaired HCMV can replicate in mouse cells or,

alternately, whether it can express more genes in mouse cells than

laboratory strains.

To make this determination, we performed Western blot assays

using different antibodies against viral proteins to detect viral-

protein production in infected cells. Two laboratory stains (AD169

and Towne), one clinical strain (FIX), and Ul128–131-repaired

AD169 (vDW215-BADrUL131) were used to infect either Mrc-5

or NIH3T3 cells for 48 hours, the whole-cell lysates were run on

PAGE gels, and Western blot was performed to detect different

HCMV proteins, as indicated on the right side of Fig. 4A. As can

be seen, the infection of four strains of HCMV can produce all

HCMV proteins (IE, E, and late) as detected in Mrc-5 cells;

however, infection in NIH3T3 cells was blocked at different stages

for different strains. The two laboratory strains (Towne and

AD169) of infection were blocked at the IE stage (only IE1 was

detectable). Repaired AD169 and the clinical strain (FIX) were

blocked at an early stage: several early proteins could be detected,

but late protein was not detectable.

To determine whether HCMV could replicate DNA in

NIH3T3 cells, we infected either Mrc-5 cells or NIH3T3 cells

with repaired AD169; viral DNA was extracted at different times

post-infection by the Hirt method [30]. Then, we performed PCR

using primers to amplify the DNA of HCMV. If the virus could

replicate DNA, the PCR products should show increased amounts

Figure 4. Detection of HCMV proteins and DNA after infection
in NIH3T3 and Mrc-5 cells. A. Western blot assay to detect HCMV
protein production: Whole-cell lysates were prepared at 48 hr after the
infection of different strains of HCMV in MRC-5 cells (left) and NIH3T3
cells (right); after being run on PAGE gels, the proteins were transferred
and detected with specific antibodies. Detected HMCV proteins are
indicated on the right. B. PCR to detect HCMV DNA replication: Using a
modified Hirt method (7), viral DNA was prepared from MRC-5 cells (left)
or NIH3T3 cells (right) at the indicated post-infection times. PCR was
performed using the primers (described in the Material and Methods)
and PCR products were run on an agarose gel in order to visualize the
DNA (using a UV light).
doi:10.1371/journal.pone.0019187.g004
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of DNA following the infection time, which was the case in the

HCMV-infected Mrc-5 cell shown in Fig. 4 B (left); however, the

DNA level decreased in the HCMV-infected NIH3T3 cells from

48 hpi. Therefore, HCMV cannot replicate DNA in NIH3T3

cells.

Distribution of HCMV proteins in NIH3T3 cells
We observed in the Western blot assay that the repaired

HCMV and the clinical strain of HCMV can produce more IE

and early (E) gene products; we wondered whether the proteins

distribute in these cells as they do in native host cells (human cells).

At 12 hpi, we performed IFA to detect IE2 in NIH3T3 cells. As

shown in Fig. 5A and C, IE2 distributes in the nucleus as speckles,

which is similar to what occurs in native infection. Both UL112/

113 (the homology of to the M112/113 of MCMV) and UL 57

were related to viral DNA replication [33,38] and were produced

before DNA replication. In most cases, both proteins form

domains in the nucleus before DNA replication in human cells.

Here, as can be seen in Fig. 5D and G, the two proteins distributed

in NIH3T3 cell as domains. DAPI was used to show the total cells

(infected and uninfected). Therefore, the repaired HCMV

infection in NIH3T3 cells produced DNA replication-related

early proteins, and those proteins distributed in the nucleus as they

would in cells infected with the native virus.

ND10 proteins are strong suppressors of MCMV infection
in human cells

The most important ND10 proteins include SP100, Daxx,

and PML, all of which have been demonstrated to be intrinsic

defense mechanisms against viral infection. To determine

Figure 5. Immunofluorescent assay to detect HCMV proteins after infection in mouse cells. A–C: Detection of HCMV IE2 in red (A), DAPI
to show total cells (B), and the two merged in C. D–F: Detection of UL112/113 in red (D), DAPI to show total cells (E), and the two merged in F. G–I:
Detection of UL58 in red (G), DAPI to show total cells (H), and the two merged in I.
doi:10.1371/journal.pone.0019187.g005

Interaction of MCMV MIE Gene Products and ND10
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whether the ND10 proteins play important roles in preventing

MCMV cross-species infection, we used siRNA to knockdown

each protein. One hundred pmol of siRNA was transfected into

HEK293 cells seeded in 24-well plates; siRNA to Luciferase was

used as control. As shown in Fig. 6, 24 hours after the

transfection of each siRNA into HEK293 cells, whole-cell

lysates were run on PAGE gels, and Western blot assays were

performed to detect PML, Daxx, and SP100. The results

showed that siRNA effectively repressed gene expression as

compared to the loading control protein, tubulin, seen in the

bottom of each slide in Fig. 6.

Twenty-four hours after the transfection of 100 pmol of each

siRNA into the HEK293 cells, the cells were super-infected with

MCMVIE1/3gfp at an MOI of 1; the cells were harvested at

different times post-infection, as indicated, and the whole cell-

lysates were run on PAGE gels, after which different antibodies

were used to ascertain the production of different viral proteins. At

this point, we detected IE1, IE3, and early protein 1 (E1). Tubulin

was used as sample-loading control. Clearly, after knocking down

the ND10 proteins, viral gene products can be increased.

However, knockdown of the ND10 proteins is not enough for

MCMV to productively infect human cells because no viral

particles can be detected in the human cell; some other

mechanism must be involved in blocking the successful infection

of MCMV in human cells.

Knockdown of ND10 proteins enhanced HCMV protein
production in mouse cells

Using siRNA, we also knocked down ND10 proteins (SP100,

Daxx, and PML) from NIH3T3 cells. As shown in Fig. 7, 24 hours

after the transfection of each siRNA into NIH3T3 cells, whole-cell

lysates were run on PAGE gels, and Western blot assays were

performed to detect PML, Daxx, and SP100. The results showed

that siRNA effectively repressed gene expression as compared to

the loading control protein, tubulin, seen in the bottom of each

picture of Fig. 7.

Twenty-four hours after the transfection of 100 pmol of each

siRNA into NIH3T3 cells, the cells were super-infected with the

repaired AD169 at an MOI of 1; the cells were harvested at

different times post-infection, as indicated, and the whole cell-

lysates were run on PAGE gels, after which different antibodies

were used to ascertain the production of different viral proteins.

At this point, we detected IE1 and early proteins UL112/113

and UL57. Tubulin was used as sample-loading control.

Clearly, after knocking down the ND10 proteins, viral gene

products can be increased. However, the essential gene product,

pp28 (also called true late protein), was not detectable in all

knockdown cells (data not shown). We wondered whether viral

DNA replication can be initiated after knocking down the

inhibitory genes. Using PCR, we also examined DNA

replication in NIH3T3 cells transfected with siRNA against

the respective ND10 components; the results showed there to be

no increase of DNA in those cells following the infection time

course (Fig. 8).

Therefore, ND10 components are important suppressors of

viral gene expression, but the knockdown of ND10 proteins cannot

lead to a productive CMV cross-species infection. There must be

other factors involved in the blocking of HCMV cross-species

infection.

Discussion

In recent years, nuclear domain 10 (ND10), also called PML

bodies, has been a topic of intense interest, especially in terms

of its role in viral infection [13,25]. Although a great deal of

evidence supports the theory that ND10 components such as

PML, Daxx, and SP100 are viral gene repressors and protect

host cells against many viruses [14,16,21,22,26,39,40,41,42],

the effects of the ND10 structure on viral infection have been

not determined. The fact that several herpesviruses are able to

disrupt ND10 at a very early stage of infection implies that

ND10 has a defensive role in the process [9,10,11,26].

However, several DNA viruses (such as herpesviruses) dock

their input DNA, replicate DNA, and transcribe immediate-

early genes at ND10, which argues that ND10 favors viral

replication [10]. To comparatively investigate the roles of

ND10 and ND10 proteins in cross-species infections (MCMV

in human cells and HCMV in mouse cells), we performed an

immunofluorescence assay to detect the effects of CMV

infection on ND10. We discovered that during the infection

of MCMV in human cells, MCMV IE1 distributed both

diffusely and as domains (Fig. 2), which differs from what has

been found in mouse cells, where IE1 distributes only diffusely.

In addition, MCMV IE1 loses the ability to disrupt the ND10

of human cells. HCMV IE1 also loses the ability to disperse

mouse cell ND10.

Previously, it was found that laboratory strains of HCMV

infection in mouse cells can express only IE1 and not IE2, even

though that IE1 shares a promoter and its first three exons with

IE2. Therefore, it was concluded that HCMV infection in mouse

Figure 6. Western blot assay to detect the effects of ND10
proteins (Daxx, PML, and SP100) on MCMV protein produc-
tion. A. siRNA to knockdown the ND10 protein. One hundred pmol of
siRNA (the sequences are shown in Materials and Methods) was
transfected into HEK293 cells for 24 hours, the whole-cell lysates were
run on PAGE gels and probed with antibodies to the targeted proteins,
as indicated. Tubulin was used as a house-keeping gene for sample-
loading control. siRNA-Luc was used as control. B. One hundred pmol of
siRNA was used to transfect HEK293 cells in a 24-well plate; 12 hours
after transfection, the cells were infected with MCMVIE1/3gfp at an MOI
of 1; the cells were harvested at the time indicted, and the whole-cell
lysates were used to detect viral-protein production.
doi:10.1371/journal.pone.0019187.g006

Interaction of MCMV MIE Gene Products and ND10
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cells was blocked at the IE stage [3]. However, it has been

reported that the laboratory strains of HCMV experience

profound mutations during replication in human fibroblast cells

[29,34,35,36,43]. The mutations lead not only to the attenuation

of HCMV but also to the narrowing of cell tropisms. The

mutation of HCMV cell tropism occurred at gene UL128–131

since the repaired UL128–131 caused the recovery of cell

tropisms [29,34,35,36,43]. Therefore, this time using both the

clinical HCMV strain and the repaired HCMV, we reentered the

study of HCMV infection in mouse cells. At this point, we found

that HCMV could produce IE proteins and some early proteins

(Fig. 4 and 5), but failed to replicate DNA. We now conclude that

HCMV infection in mouse cells was blocked before DNA

replication.

Unlike what takes place in RNA viruses (in which species

specificity is determined by the interaction of viral proteins and

Figure 7. Western blot assay to detect the effects of ND10 proteins (Daxx, PML, and SP100) on HCMV protein production in mouse
cells. A. siRNA to knockdown the ND10 protein. One hundred pmol of siRNA (the sequences are shown in Materials and Methods) was transfected
into NIH3T3 cells for 24 hours, the whole-cell lysates were run on PAGE gels and probed with antibodies to the targeted proteins, as indicated.
Tubulin was used as a house-keeping gene for sample-loading control. siRNA-Luc was used as control. B. One hundred pmol of siRNA was used to
transfect NIH3T3 cells in a 24-well plate; 12 hours after transfection, the cells were infected with repaired AD169 at an MOI of 1, the cells were
harvested at the time indicted, and the whole-cell lysates were used to detect viral-protein production.
doi:10.1371/journal.pone.0019187.g007

Figure 8. Detection of HCMV DNA after infection in NIH3T3 and Mrc-5 cells. siRNA was used to transfect NIH3T3 cells; 12 hours after
transfection, the cells were infected with repaired AD169 at an MOI of 1; using a modified Hirt method (7), viral DNA was prepared from MRC-5 cells
(left) or NIH3T3 cells (right) at the indicated post-infection times. PCR was performed using the primers (described in the Material and Methods) and
PCR products were run on an agarose gel to visualize the DNA (using a UV light).
doi:10.1371/journal.pone.0019187.g008
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cellular receptors) [44], the species-specific restriction of CMV

occurs not at the entry to cells but at the post-DNA replication

stage for MCMV infection in human cells [3,45,46,47] and at

the early stage before DNA replication for HCMV infection in

mouse cells. Cellular proteins, including transcription repres-

sors (Daxx, PML, SP100), have suppressive effects on viral

gene expression and represent an intrinsic, host-cell defense

[26,41,48,49]. PML is the scaffold protein and is essential for

the formation of ND10 because PML knockout (k/o) cells lack

ND10, and inducing exogenous PML into PML knockout cells

can restore ND10 [50]. SUMOylation is another characteristic

of PML and makes it possible for PML to interact with many

other nuclear proteins. There are more than 70 different

cellular proteins that have been found to be related to ND10,

and the proteins that interact with PML have already been

reviewed by Dr. Van Ostade1 and colleagues [51]. The most

frequently investigated PML-interacting proteins include Daxx

and SP100. ND10 structure can be shown by indirect

immunofluorescence using anti-PML, -Daxx, and -SP100

antibodies.

The inhibitory effects of ND10 proteins on viral infection have

been demonstrated on PML, Daxx, and SP100. The effects of the

ND10 structure on viral infection have not been determined.

ND10’s defensive role in the infection process can be inferred by

the fact that several herpesviruses are required to disrupt it. We

previously showed that IE1 is the only protein of MCMV that is

capable of disrupting the ND10 of mouse cells [26]. In that prior

study, we reported that the IE1 of MCMV also colocalized with

the ND10 of human cells; however, IE1 lost its ability to disperse

ND10 in cytomegalovirus cross-species infections. This discovery

supports the theory that ND10 might block the productive cross-

species infection of cytomegalovirus. Consistent with this specu-

lation, we found that human-cell ND10 proteins, such as SP100,

PML, and Daxx, strongly suppress MCMV viral gene expression

(Fig. 6), and mouse cell ND10 protein also represses HCMV gene

expression (Fig. 7).

Interestingly, HCMV laboratory-strain infections in mouse cells

can produce IE1 but not IE2, even though IE1 and IE2 share a

promoter and the first three exons, all of which suggests that

splicing regulation also plays a role in blocking HCMV infection in

mouse cells.

In summary, we discovered that intrinsic cellular defense

mechanisms participate in the blocking of CMV cross-species

infection and that CMV IE1 loses its ability to disperse ND10. In

HCMV-infected mouse cells, only IE1 (and not IE2) can be

detected in laboratory-strain–infected mouse cells, but clinical

strains and UL128–131-repaired strains can produce many more

viral gene products. Future studies will focus on identifying the

additional mechanisms that are involved in blocking cross-species

infection.
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