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Abstract

Systems and Synthetic Biology use computational models of biological pathways in order to study in silico the behaviour of
biological pathways. Mathematical models allow to verify biological hypotheses and to predict new possible dynamical
behaviours. Here we use the tools of non-linear analysis to understand how to change the dynamics of the genes
composing a novel synthetic network recently constructed in the yeast Saccharomyces cerevisiae for In-vivo Reverse-
engineering and Modelling Assessment (IRMA). Guided by previous theoretical results that make the dynamics of a
biological network depend on its topological properties, through the use of simulation and continuation techniques, we
found that the network can be easily turned into a robust and tunable synthetic oscillator or a bistable switch. Our results
provide guidelines to properly re-engineering in vivo the network in order to tune its dynamics.
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Introduction

The emerging field of Synthetic Biology aims at constructing

novel biological circuits in the cell [1]. It uses quantitative

mathematical models in order to design and implement new

cellular functions in a predictable and reliable fashion. In [2], we

described the construction of a novel synthetic network in

Saccharomyces cerevisiae, IRMA, built for In vivo Reverse-engineering

and Modelling techniques Assessment. We measured time series

and steady-state expression data after multiple perturbations and

used them to assess the state of the art of both modelling and

reverse-engineering techniques. The yeast synthetic network is

composed of five genes that directly regulate the transcription of

each other (CBF1, GAL4, SWI5, GAL80 and ASH1) and includes

one protein-protein interaction (Gal4-Gal80). The topology

(Figure 1 in [2]) consists of one transcriptional positive feedback

loop containing a delayed interaction (with a fixed time delay of

100 minutes) and two negative feedback loops. The first negative

loop consists of direct transcriptional interactions between genes

(CBF1, GAL4, SWI5 and ASH1), while the second is present only in

glucose growing condition, when there is a protein-protein

interaction between Gal4 and Gal80. Such negative loop can be

switched off by culturing cells in galactose. We derived and

identified a non-linear Delay Differential Equations model

containing 33 parameters (Supplemental Data in [2]). Our

formalism uses non-linear Hill functions to describe transcrip-

tional interactions and a phenomenological law to describe the

protein-protein interaction triggered by the input. The model

provides a reasonable compromise between accuracy and

simplicity.

The main aim of this paper is to show how to use novel tools

from numerical bifurcation theory (e.g. DDE-BIFTOOL [3], able

to deal with delayed systems), together with recent results on the

link between the dynamics and topology of networks, in order to

redesign a synthetic circuit. The need to modify a synthetic

network after its biological implementation is common practice in

Synthetic Biology. When a novel network is built, e.g. a synthetic

oscillator, the design at the very beginning is often difficult and can

lead to misleading results mainly due to the lack of quantitative

characterisation of network components [4]. In our model-

supported approach, the analysis of the previously identified

mathematical model allows to increase the predictability of the

network dynamics and experimental re-engineering, decreasing

the amount of in vivo experiments and post hoc tweaking to be

performed [4,5]. The model predictions are used to determine

how to tune the system parameters, and hence their physical

counterparts, in order to change the dynamic behaviour of the

network. Of note, the use of bifurcation theory for classification

and categorization of the dynamics of species in a reaction

mechanism, initiated in [6], is now commonly adopted for the

construction and fine-tuning of synthetic networks (see [7] for an

overview).
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In particular, the aim is to understand if and how IRMA can be

turned into a robust and tunable synthetic oscillator or a bistable

switch. Oscillations have a crucial role in cell behaviour: the

circadian clock and the cell cycle are common examples [8].

Currently, the interest of many researchers is focused on the

properties of cellular oscillations that only depend on the topology

of the reaction network, transcending the individual species

involved [9–11].

In the case of IRMA, the goal is challenging, both in terms of

the mathematical analysis and in terms of the in vivo implemen-

tation. Up to now, only small topologies have been analyzed, and

the synthetic oscillators experimentally built consist of a few genes

(e.g. [12–16]). Moreover, to our knowledge, numerical continu-

ation techniques for DDEs model have not been applied to the

analysis of synthetic gene networks up to now. We found that

multi-step processing of gene products in the negative feedback

loop and strong cooperativity in gene regulation are the

ingredients to elicit robust oscillations.

In addition, we discovered that by reducing the topology of the

network to a single positive feedback loop, IRMA can be turned

into a bistable system (a ‘‘toggle switch’’, that toggles between two

discrete, alternative stable steady states). Hysteretic examples have

been observed in several natural examples, including the control of

lactose utilization in E. coli, and ensuring unidirectional cell-cycle

progression in eukaryotes [17]. Synthetic switches have been built

both in bacterial [18] and mammalian [19] cells for a variety of

applications (e.g. gene therapy, construction of bio-sensors and

research tools).

Results

Turning IRMA into an Oscillator
In [2], in order to analyze the dynamic behavior of the network,

we performed perturbation experiments by shifting cells from

glucose to galactose (switch-on experiments, used to fit the kinetic

parameters), and from galactose to glucose (switch-off experiments,

Figure 1. Re-engineering the topology in order to turn IRMA into an oscillator or a switch. Comparison between the topology of the
actual version of the network (A) and the re-engineered topologies (B)–(E); in all the cases we only consider the galactose growing condition. A
thicker line corresponds to an increase of the strength of the corresponding interaction; the strength is intended in terms of Michaelis-Menten
coefficient and/or Hill coefficient and/or maximal transcriptional velocity. The parameters in red are the ones that we are varying from the nominal
value. (A) Topology of IRMA. In galactose growing conditions, the topology consists of one delayed positive and one negative feedback loop, since
the protein-protein interaction between Gal4 and Gal80 is switched off. (B) Re-engineering of IRMA in order to turn it into an autonomous oscillator,
Scenario 1. Tuning the parameters v2, k6, h2 and h6 we increase the strength of the following interactions: Cbf1 on Gal4, Swi5 on Ash1 and Ash1 on
Cbf1. Both the original positive and the negative feedback lops are present. (C) Re-engineering of IRMA in order to turn it into an autonomous
oscillator, Scenario 2. Tuning the parameters v2, k1, k2, k6, h3 and h6 we increase the strength of the following interactions: Cbf1 on Gal4, Swi5 on Ash1
and Ash1 on Cbf1. The original positive feedback loop is removed. (D) Re-engineering of IRMA in order to turn it into an autonomous oscillator,
Scenario 3. The topology is identical to the one in Scenario 2 with the addition of a positive auto-feedback-loop on Swi5. The tuned parameters are:
v2, k1, k2, k6, h3 and h6. (E) Re-engineering of IRMA in order to turn it into a bistable switch, Scenario 4. Properly tuning the parameters v2, k1, k2, h1

and h3 we increase the strength of the following interactions: Cbf1 on Gal4, Swi5 on Cbf1. The negative feedback loop is removed.
doi:10.1371/journal.pone.0008083.g001
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used to test the model predictive performance). Experimental data

and the model simulated data (Figure 3 in [2]) show a clear delay

in the dynamics of CBF1 both in the switch-on and in the switch-

off time-series. Regarding the transient dynamics of the switch-on,

we observed seemingly damped oscillatory behavior in SWI5 and

CBF1 concentrations and monotonic dynamics for all the other

genes. In the switch-off, as expected, the transcription of the

network genes is rapidly and monotonically turned off.

With the aim of tuning the dynamics of IRMA and turning it

into an autonomous biochemical oscillator, we shall seek to

achieve the desired dynamic behaviour by appropriately varying

the model parameters. In so doing it is obviously fundamental both

to remain inside the physically feasible range and to minimize the

number of changes to the existing network topology and nominal

parameter values, in order to speed up the experimental

implementation.

In our specific case, the number of physical parameters is quite

high (33), thus an exhaustive exploration of the parameter space

would be excessively complicated and time consuming. On the

other hand, from the analytical view point it is cumbersome to get

any results about the structural stability of equilibria under

parameters variations since the system is time-delayed and highly

non-linear, due to the large value that the Hill coefficients can

assume. For the case of our multi-parametric delayed gene

network, it is then crucial to restrict the number of parameters to

be changed to induce sustained oscillations. For the selection of the

parameter subset to be used to carry out the bifurcation analysis,

we use as guidelines the links between the topology and the

occurrence of autonomous oscillations presented in the recent

literature [9–11,20–22]. Exploiting the interplay between param-

eter variations and network geometry, we decide to vary those

parameters which can affect the topology (adding-removing links).

In the analytical studies of simple two-components networks

modelled by differential equations [9–11], it was proposed that the

presence of a negative feedback loop and high Hill coefficients in

the kinetic functions are the key ingredients for the occurrence of

oscillatory behaviour. In [20], the authors consider larger systems

with three genes, postulating four general requirements for

biochemical oscillations: negative feedback, time delay, sufficient

non-linearity of the reaction kinetics and proper balance of the

timescales of the reactions. In particular, a negative-feedback loop

with at least three components can generate oscillations, even

without an explicit time delay. It has been further demonstrated

that the inclusion of a positive auto-feedback loop can help in

obtaining an oscillatory dynamic behaviour [21]. Extending such

an idea, in [22] the authors consider topologies in which, in

addition to a negative feedback-loop, also a positive one is present,

showing that it is generally difficult to adjust a negative feedback

oscillators frequency without compromising its amplitude, whereas

with positive-plus-negative feedback one can achieve a widely

tunable frequency and near-constant amplitude. Thus, positive-

plus-negative oscillators appear to be more robust and easier to

evolve, rationalizing why they are found in contexts like heartbeats

and cell cycles [22].

For the analysis of the IRMA network, we decide to consider

only the galactose growing condition, since in such a condition the

network is ‘‘switched on’’ and the genes are significantly expressed.

Note that, in such condition the protein-protein interaction

between Gal4 and Gal80 is switched off (see the section Methods

for the details on the mathematical model when only the kinetic

parameters). Thus, the topology of IRMA consists of two loops

composed only of transcriptional interactions in galactose are

considered: one delayed positive feedback loop (DFBL) among the

genes CBF1, GAL4, SWI5 with a delayed reaction due to the

presence of the HO promoter (see Methods), and one negative

feedback loop (NFBL) among the genes CBF1, GAL4, SWI5, ASH1

(Figure 1A). The presence of intermediate states in such negative

loop suggests that the network has the potentiality of being turned

into an autonomous oscillator, if a proper tuning of the parameters

is performed.

In what follows, we analyse 3 possible re-engineering scenarios

in order both to compare the oscillator tunability and robustness

due to different network topologies and to explore different

experimental strategies for their implementation.

Scenario 1: Stable oscillations keeping the activation of

Swi5 on CBF1 (DDEs model). Simulation and continuation

results. By looking at the values of the kinetic parameters

estimated from in vivo data (DDEs model in Methods, parameters

in Table 1, Nominal Value column, Figure 1A), it emerges that all

the interactions in the NFBL loop are balanced in terms of

strength and timescales, except for the maximal velocity of

transcription of the MET16 promoter v2 (which drives the

expression of GAL4) and the Michelis-Menten coefficient k6,

which describes the strength of the activation of Swi5 on ASH1

gene. In particular, the parameter v2 is two order of magnitude

lower than all other maximal transcriptional rates while the

Michealis-Menten k6 coefficient is one order of magnitude higher.

Thus, in order to balance the strength of the regulations involved

in the negative feedback loop, we start by decreasing the value of

k6 and increasing the value of v2, as schematically shown in

Figure 1B.

Then, we evaluate the effect of the non-linearity of the reaction

kinetics generated by the Hill functions on the network behavior.

Since the stiffness of such sigmoidal function is determined by the

Hill coefficients, which describe the cooperativity of the promoters,

we perform our numerical investigation increasing the Hill

coefficients h2 and h6 (Figure 1B). According with the parameters

choice reported in Table 1 (Scenario 1 A column), the dynamic

behaviour of the network appears like in Figure 2A. Here,

oscillations have period equal to 120 minutes, thus close to the the

yeast cell cycle period in galactose; the amplitude is physically

feasible and observable for all the mRNAs, but CBF1.

Once oscillations are obtained, a fundamental step in the

theoretical analysis is the investigation of the robustness and the

tunability of the oscillator. To this aim we use numerical

continuation techniques [23]. The transition from a stable steady

state solution to a periodic state happens through a supercritical

Hopf bifurcation, which occurs when the real part of a complex

conjugate pair of eigenvalues of the Jacobian matrix crosses zero,

while the real parts of all other eigenvalues remains negative. The

software used to perform numerical continuation is DDE-

BIFTOOL [3], the first general-purpose package for bifurcation

analysis of DDEs. Details on the employed methods and the

underlying theory can be found in [24,25] and in Methods.

The limit cycle can be continued on each of the 4 parameters

we are varying (k6, v2, h2, h6). Moreover, once the Hopf

bifurcation is localized, it is possible to continue it on all the pairs

obtainable by combining such 4 parameters. From continuation

results represented in Figure S1, it emerges that keeping the

Michelis-Menten parameter k6 low (i.e. keeping the activation of

Swi5 on ASH1 strong enough) is fundamental to guarantee

persistent oscillations. The range of k6 that allows the desired

dynamics is further enlarged when the k1 coefficient increases (see

Figure S1 A): it means that, if the strength of the positive loop

decreases, oscillations are guaranteed only if the strength of the

negative loop decreases as well. Figure S1 B shows that k6 must be

kept small if the maximal transcriptional velocity of the MET16

promoter increases, remarking that the reaction in the loop must

Tuning IRMA Dynamics
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be balanced in terms of strength. In Figure S1 C and D we

continue the Hopf bifurcation to analyze the relationship between

the Hill coefficients h2 and h6 and the Michealis-Menten

parameter k6, showing that if the activation of Swi5 on ASH1 is

strong enough, the cooperativity coefficient can be decreased

without losing persistent oscillations.

Furthermore, continuation allows us to investigate the tunability

of the oscillator in terms of amplitude and period (Figure S1 E and

F). We found that the amplitude and the period of the oscillations

are tunable individually, thus confirming what stated in [22] for

topologies that include both a negative and a positive feedback

loop. The parameter that was found to affect the period of the

oscillations the most is h2: increasing it can enlarge the period up

to 18 minutes (Figure S1 F), but the amplitude of the oscillations

keeps almost constant (results not shown). Regarding the

amplitude, we found that it can be tuned by varying the parameter

v2 inside the range that ensures oscillations (Figure S1 E). Thus,

using continuation we found how to increase the amplitude of

CBF1 oscillations. By simulating the dynamics of the network using

the parameters of Scenario 1 B (all parameters identical to

Scenario 1 A, but v2 set equal to the value for which the amplitude

of x1 has its maximum in Figure S1 E), we get observable

oscillations for all the genes (Figure 2B).

Finally, it is useful to test for the robustness of the oscillator

under initial conditions variations. To this aim, we perform a

significant number of time simulations (5000) fixing the parameters

to the values in Table 1 and changing randomly the initial

conditions for all the five genes, keeping all of them into a physical

reasonable range ([0 1] [a.u]). The simulations show robustness

with all trajectories converging to limit cycles of period 1 (results

not shown).

Experimental implementation of Scenario 1 in vivo. At

this point, it is crucial to address the feasibility of re-engineering

IRMA in vivo according with our theoretical results.

Table 1. Parameters of the mathematical models.

Parameter Nominal Value Scenario 1 (A, B) Scenarios 2, 3 Scenario 4 (A, B)

k1 [a:u:] 1 1 – 0.0477 ;

k2 [a:u:] 0.035 0.035 0.00035 ; –

k3 [a:u:] 0.037 0.037 0.037 0.037

k4 [a:u:] 0.010 0.010 0.010 0.010

k5 [a:u:] 1.884 1.884 1.884 1.884

k6 [a:u:] 1.884 0.0477 ; 0.0477 ; 1.884

a1 [a:u:min{1] 0 0 0 0

a2 [a:u:min{1] 1.49:10{4 1.49:10{4 1.49:10{4 1.49:10{4

a3 [a:u:min{1] 3:10{3 3:10{3 3:10{3 3:10{3

a4 [a:u:min{1] 7.4:10{4 7.4:10{4 7.4:10{4 7.4:10{4

a5 [a:u:min{1] 6.1:10{4 6.1:10{4 6.1:10{4 6.1:10{4

v1 [a:u:min{1] 0.040 0.040 0.040 0.040

v2 [a:u:min{1] 8.82:10{4 0.026 : (A); 0.001 : (B) 0.026 : 8.82:10{4 (B)

v3 [a:u:min{1] 0.020 0.020 0.020 0.020

v4 [a:u:min{1] 0.014 0.014 0.014 0.014

v5 [a:u:min{1] 0.018 0.018 0.018 0.018

d1 [min{1] 0.022 0.022 0.022 0.022

d2 [min{1] 0.047 0.047 0.047 0.047

d3 [min{1] 0.421 0.421 0.421 0.421

d4 [min{1] 0.098 0.098 0.098 0.098

d5 [min{1] 0.050 0.050 0.050 0.050

h1 1 1 – 4 :

h2 1 4 : 1 –

h3 1 1 4 : 4 : (A); 1 (B)

h5 1 1 1 1

h6 1 4 : 4 : 1

h7 4 4 4 4

c [a.u.] 0.6 0.6 0.6 0.6

t [min] 100 100 100 100

All the parameters are reported. The arrows indicate if the value of the parameter was increased (:) or decreased (;) with respect of the nominal value.
doi:10.1371/journal.pone.0008083.t001
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In order to increase the maximal transcription velocity v2 of the

MET16 promoter, the idea is to decrease the level of methionine in

the yeast. Methionine modulates the expression of the MET genes

by affecting the formation of the Cbf1-Met4-Met28 transcriptional

complex [26]. High levels of methionine increase the ubiquitina-

tion and the subsequent degradation of the activator Met4, indeed

inhibiting the transcription [27]. The activation of Cfb1 on Gal4 is

the weakest in the actual version of the network, being the MET16

promoter weak for the methionine concentrations used in our

medium (140 mm) [2].

In Figure S2, we show in vivo data (from both semi-quantitative

and quantitative real-time RT-PCR) representing the expression

levels of the MET genes, including MET16, when yeast cells are

grown in the presence of low (10mM ) or high (1000 mM )

methionine concentration. The levels are compared with the

standard yeast growing condition complete medium (YPD), which

contains an intermediate concentration of methionine (140 mM )

and thus show an intermediate level of MET genes expression.

MET16 expression is tightly regulated by methionine concentra-

tions: it is completely turned off in the presence of high methionine

levels and, even at intermediate methionine levels (the control

condition), its transcription appears to be strongly decreased.

In Figure 3, we show the transcription levels of the genes of

IRMA at steady state upon culturing cells in the presence of

different concentrations of methionine, both in glucose and in

galactose containing medium. Even in the presence of glucose

(network off in the control standard growing condition YEP,

methionine = 140 mM ), network genes are activated in low

methionine containing medium, and reach the same expression

levels that they have in the cells grown in galactose (network on in

YEP). Thus, the increased GAL4 expression, due to MET16

activation after the removal of methionine, turns on all the network

genes, while addition of methionine inhibits them, independently

from galactose. From such experimental results, we can conclude

that increasing the the maximal transcriptional rate v2, that

determines the steady state of the MET16 promoter and allows to

tune the amplitude of the oscillations, can be achieved by simply

decreasing the level of methionine in the medium.

Regarding the changes to the ASH1 promoter, needed to vary

h6 and k6, the idea is to replace it with a stronger one. A possible

candidate is the EGT2 promoter [28]. Since this gene is activated

even by low levels of Swi5, as well as, by the mutant version of

Swi5 (Swi5-AAA) that is present in IRMA [2], it should ensure a

low Michaelis-Menten parameter k6, required for obtaining the

oscillatory behaviour. Moreover, six putative binding sites have

been identified [28], thus ensuring a high Hill coefficient h6.

The last parameter to be tuned is the Hill coefficient h2.

Actually, this would be the most delicate tuning as, in the analyzed

scenario, all kinetic parameters of the HO promoter are kept equal

to their nominal values, but for h2, that describes the cooperativity

of the inhibition of Ash1 on such promoter. Increasing such

cooperativity could be implemented in vivo by increasing the

number of binding sites for Ash1 on the HO promoter, although it

has not been previously demonstrated that experimental re-

engineering would affect only the Hill coefficient and not other

parameters, e.g. the Michaelis-Menten constant of the promoter.

Furthermore, such promoter is also activated by Swi5 and the

regulatory mechanisms are quite complex [2]. We can conclude

that the re-engineering of the HO promoter could be troublesome.

Scenario 2: Stable oscillations by removing the activation

of Swi5 on CBF1 (ODEs model). Simulation and

continuation results. The positive loop in Scenario 1 seems

difficult to implement in vivo. Therefore, we consider a second

scenario, in Figure 1C, in which the delayed activation of Swi5 on

Cbf1 is removed and the topology of IRMA is reduced to a

negative feedback loop through the genes CBF1, GAL4, SWI5

and ASH1. The corresponding Ordinary Differential Equation

model is reporter in Methods.

Again, we tune both the strength of the negative loop (by

decreasing k6 and increasing v2) and the non-linearity of the

Figure 2. Turning IRMA into an oscillator: time simulations. In
silico oscillations simulating the mathematical model using the
parameters of Scenario 1 A, Scenario 1 B, Scenario 2 and Scenario 3.
(A) Scenario 1 A, simulations of the DDEs model; parameters v2, k6, h2

and h6 were varied from their nominal values (Table 1, Scenario 1 A
column). Period of the oscillations = 120 minutes. (B) Scenario 1 B,
simulations of the DDEs model; parameters k6, h2 and h6 were varied
from their nominal values like in Scenario 1 A (Table 1, Scenario 1 B
column), while v2 was tuned according to the continuation results in
Figure S1 E in order to increase the values of CBF1. Period of the
oscillations = 120 minutes. (C) Scenario 2, simulations of the ODEs
model; parameters v2, k1, k2, k6, h3 and h6 were varied form their
nominal values (Table 1, Scenario 2 column). The negative feedback
loop was removed. Period of the oscillations = 110 minutes. (D) Scenario
3, simulations of the ODEs model; parameters v2, k1, k2, k6, h3 and h6

were varied form their nominal values (Table 1, Scenario 3 column). The
negative feedback loop was removed. A positive auto-feedback loop
was introduced on Swi5. Period of the oscillations = 133 minutes.
doi:10.1371/journal.pone.0008083.g002

Tuning IRMA Dynamics
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Figure 3. Viability of tuning parameter v2 in vivo: methionine modulates IRMA genes expression. Expression levels of IRMA genes at
different methionine concentrations in glucose (white bars) or in galactose/raffinose (grey bars). The control is the standard complete medium, YEP,
which contains 140 mM of methionine. Data represent the 22DCt (mean of two experiments6Standard Error).
doi:10.1371/journal.pone.0008083.g003
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reaction kinetics (by increasing the Hill coefficients h3 and h6).

Moreover, we increase the strength of the inhibition of Ash1 on

CBF1 by reducing the value of the Michaelis-Menten coefficient

k2. Using the parameters in Table 1 (Scenario 2 column),

simulation shows the presence of sustained oscillations with period

equal to 110 minutes (Figure 2C). Note that the amplitude of the

oscillations is physically feasible and observable for all the genes,

including CBF1.

Such a scenario can be analyzed in terms of robustness to

parameters variations and tunability by using the continuation tool

DDE-BIFTOOL with no delayed variable. The most relevant

continuation results, reported in Figure S3, lead to conclusions

similar to the ones discussed for the first scenario. Namely, it is of

utmost importance to keep the Michaelis-Menten parameters k6

and k2 low and the Hill coefficients h3 and h6 large enough. This

confirms that, to have oscillatory behaviour, a proper balance of

the reactions in the negative feedback loop is needed together with

the presence of significant non-linearities.

Furthermore, through continuation we investigate the tunability

of the oscillator, discovering that in Scenario 2, contrary to what

found for Scenario 1, it is not possible to tune the amplitude

independently of the period. The unique parameter that allows to

tune the dynamics of oscillations is h3, that significantly affects

both the period and the amplitude (Figure S3, E and F). Such

results confirms what stated in [22] about the tunability of

topologies composed only by a negative feedback loop.

Testing through simulations the network dynamics under

varying initial conditions within the range [0 1] [a.u], we observe

again that robustness is guaranteed. All the trajectories converge to

limit cycles of period 1 (results not shown).

Experimental implementation of Scenario 2 in vivo. The

critical parameters which have to be tuned to implement scenario

2 in vivo are v2, k6, h6, h3, k1 and k2. Concerning the first 4, we

could proceed like it has been described for Scenario 1: decrease

the level of methionine in order to increase the strength of the

activation of Cbf1 on Gal4 and replace the ASH1 promoter with

the EGT2 promoter. Moreover, it is possible to tune also the h3

parameter by changing the level of methionine in the yeast. In fact,

the behaviour of the MET16 promoter with low methionine

concentrations should become switch like, thus leading to an

increase of the stiffness of the sigmoidal Hill function modelled by

the h3 coefficient.

The tuning of parameters k1 and k2 requires two additional

changes: first to replace the HO promoter with a promoter which is

not activated by Swi5. Secondly, we need to replace ASH1 gene

with a gene whose expression is driven by the EGT2 promoter and

that is able to inhibit strongly the new promoter. A good candidate

inhibitor-promoter couple is given by ROX1 repressor and ANB1

promoter [29].

Scenario 3: Stable oscillations by removing the activation

of Swi5 on CBF1 and by adding a positive auto-feedback

loop on SWI5 (ODEs model). Simulation and continuation

results. The topology proposed in Scenario 2 appears feasible

for in vivo implementation and the oscillations appear robust to

varying parameters and initial conditions. For the sake of

completeness, we consider also the possibility of including in the

network a positive feedback loop, in order to check if the

robustness and the tunability of the oscillations increase, according

to what shown in a number of works [22,30,31].

In Scenario 3, the topology of the network is the same as in

Scenario 2 with the addition of an auto-activation reaction on

SWI5 (Figure 1D). The parameters are the same of Scenario 2

(Table 1), but in the Ordinary Differential Equation the equation

of SWI5 needs to be modified, like reported in Methods.

Numerical simulations show sustained oscillations with period

equal to 133 minutes (Figure 2D). Note that the amplitude of the

oscillations is physically feasible and observable for all the genes; in

particular, it is significantly higher than in Scenario 2 for the genes

SWI5 and ASH1.

We can compare the robustness to parameter variations of

Scenarios 2 and 3 by continuing the Hopf bifurcation on the same

pairs of parameters considered previously. By comparing Figure

S3 A–D and Figure S4 A–D, it appears that the parameter regions

that ensure oscillatory behaviour are significantly enlarged.

Moreover, unlike the single negative feedback topology, the

topology of Scenario 3 allows to tune the amplitude of the

oscillations independently from the period (Figure S4, E and F).

The period of oscillations can be varied up to 30 minutes, while in

Scenario 2 the maximum change was of 10 minutes. Such results

confirm that the robustness and the tunability of the network can

increase by adding a positive feedback loop.

Experimental implementation of Scenario 3 in vivo. For

the in vivo implementation, we need to apply the same changes of

Scenario 2 and to add an extra-plasmid containing a strong

promoter upstream of the starting codon of SWI5. The previously

described EGT2 promoter is again a good candidate.

Turning IRMA into a Bistable Switch
As our investigation confirms the flexibility of IRMA, we further

explore the possibility of turning the network also into a bistable

switch. A bistable system is one that toggles between two discrete,

alternative stable steady states, in contrast to a monostable system.

In biology, bistability has long been established in control of the

cell cycle and other oscillations [32], and also recently reported in

an artificial gene regulation network [18]. Bistability arises in

signaling systems that contain a positive feedback loop or a

mutually inhibitory, double negative- feedback loop (which, in

some regards, is equivalent to a positive-feedback loop) [33].

Indeed, in [34] it is demonstrated that the existence of at least one

positive-feedback loop is is a necessary condition for the existence

of multiple steady states.

Scenario 4: Continuation results. In our setting, the idea is

to reduce the actual version of the topology to a 3 gene positive

feedback loop between the genes CBF1, GAL4 and SWI5, thus

removing the inhibition on CBF1 by Ash1. The corresponding

mathematical model is presented in Methods.

The ODEs model can be analyzed by continuing the steady

state on the critical parameters. Figure S5 A and B show typical

bistability continuation plots: continuing the steady state on k1 and

on h1 two saddle-node bifurcations delimitate the bistability region

in which 3 equilibria coexist, two stable and one unstable. In

particular, we can notice that bistability is ensured for k1 inside the

range [0.02 0.14] [a.u.] and h1 in [2.3 40], thus the activation of

Swi5 on Cbf1 must be strong enough. Figure S5 C shows the

continuation of one saddle-node bifurcation point on two

parameters: a codimension 2 bifurcation point (cusp) is detected,

from which two branches delimiting the bistability region for the

parameters v2 and h3 emanate. From such continuation, it

emerges that bistability is guaranteed even if we do not vary v2 and

h3 from their nominal values (Table 1, Scenario 4 B column):

continuing the steady state on k1, in Figure S5 D we observe again

two saddle-node bifurcations delimitating the bistability region

that, however, is now slightly smaller ([0.03 0.08] [a.u.]).

Experimental implementation of Scenario 4 in vivo. For

the in vivo implementation, a simple strategy is to replace the HO

promoter by inserting the previously described EGT2 promoter in

front of the CBF1 gene. Correspondingly, in the model the

nominal values of k1 and h1 (Michaelis-Menten and Hill
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coefficient of the HO promoter in eq. (7) in Methods) are replaced

respectively with k6 and h6. In so doing, the strength and the non-

linearity of the positive loop are increased.

Again, we can increase the strength of the activation of the

MET16 promoter by Cbf1 by tuning the parameters v2 and h3 as

in the previously analyzed scenarios by decreasing the methionine

concentration in the medium. The overall re-engineering of the

topology is schematically represented in Figure 1E; the parameters

are reported in Table 1, Scenario 4 A column.

Discussion

In this work, using numerical and continuation techniques, we

showed how IRMA can be turned into a robust and tunable

oscillator, or a bistable genetic switch. The deterministic

mathematical model, previously formulated and identified to

allow data interpretation and experiment planning, is here

analysed to guide the re-engineering of the network with

predictable functions.

IRMA showed great flexibility. Its topology can be re-

engineered in a number of ways in order to achieve the desired

dynamical behaviour. Of note, all the proposed changes are viable

in vivo. The robustness to parameters changes and the tunability of

the oscillator were assessed via continuations performed using the

software DDE-BIFTOOL, the first package for bifurcation

analysis of systems with delays that, up to now, has not been

commonly used in the Synthetic Biology community.

The major conclusion we can draw from our results is that,

aiming at constructing a robust and tunable oscillator, the best

option is to include in the topology both a delayed negative

feedback loop and a fast positive one. This is the case explicitly

analyzed in Scenario 3 that results to be most robust and tunable

as compared to Scenario 2, in which the topology of the network is

reduced to a single negative feedback loop.

In the context of Synthetic Biology, our model guided re-

engineering framework can be applied to existing topologies with

the aim of turning them into oscillators or switches. We analyzed

three topologies for the oscillator case and one for the switch case.

A crucial point was to minimize the number of experiments

needed to modify the synthetic network. Surely, other possible

ways to re-engineering IRMA can give rise to other oscillatory,

switch-like and maybe more complex dynamical behaviours. Of

note, once the best performing scenario has been chosen from our

deterministic approach, it will be crucial to resort to stochastic

simulations in order to estimate the impact of noise on the network

dynamics [35]. Remarkably, resulting noise-induced bifurcations

can lead to multi-stability or oscillatory dynamics in biochemical

networks even when the deterministic description predicts a stable

steady state for a certain parameter set [36], or for any parameter

values [37].

Methods

Mathematical Models
The mathematical model we used is made up of of five

nonlinear Delay Differential Equations that describe the produc-

tion rates of the five mRNA concentrations, assuming Hill kinetics

and proportionality between protein and mRNA levels. The time

delay, describing the delayed activation of the HO promoter by

Swi5, is fixed (100 minutes). In [2] the model was identified and

extensively validated against experimental data. The 33 unknown

parameters (3 parameters are medium dependent) were estimated

from time series data. In order to fit the Glucose to Galactose time-

series, we further included a transient term in the degradations of

GAL4 and GAL80 that describes the starvation effect due to the

washing of the cells before the medium shift [2].

For this work, the medium-dependent parameters in the

equation of SWI5 are fixed to their values in galactose. Moreover,

since the transient dynamics are neglected, the starvation effect

induced by the medium shift is removed.

Letting ½CBF1 �~x1; ½GAL4 �~x2; ½SWI5 �~x3; ½GAL80 �
~x4; ½ASH1 �~x5, the model is:

dx1

dt
~a1zv1

xh1

3 (t{t)
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where di,i~1, . . . ,5 are the degradation rates, kj ,j~1, . . . ,6 are

the Michaelis-Menten constants, ai are the basal activities, vi

represent the maximal transcription rates. t models the delay in

the HO promoter. Since the real-time qPCR data showed in [2]

were obtained as ratio of fluorescence normalized with respect to

ACT1 gene, concentrations are reported in arbitrary units [a:u:],

the degradation rates d1,d2,d3,d4,d5 in [min{1], the Michaelis-

Menten constants k1,k2,k3,k4,k5,k6 in [a:u:], the affinity constant

c in [a:u:], the basal activities a1,a2,a3,a4,a5 in [a:u:min{1], the

maximal transcription rates in [a:u:min{1]. In Table 1 (Nominal

values column) the estimated parameters are reported.

The model analyzed in Scenario 1 is the DDEs model

composed of equations (1)–(5).

To describe Scenario 2, the positive feedback loop on CBF1 is

removed. In the model, this corresponds to fixing the Michealis-

Menten coefficient k1 to zero or equivalently rewrite equation (1) as:

dx1

dt
~a1zv1

kh2

2

kh2

2 zx5
h2

 !
{d1x1: ð6Þ

To describe Scenario 3, the positive feedback loop on CBF1 is

removed and a positive auto-feedback loop on SWI5 is inserted.

The auto-activation is driven by the same promoter that drives the

expression of ASH1. In the ODEs model, these changes

correspond to fixing the Michealis-Menten coefficient k1 to zero,
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thus substituting (1) with (6), and adding an activation term in

equation (3) that becomes:

dx3

dt
~a3zv3

xh4

2

kh4

4 zxh4

2 (1z
xh7
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ch7
)

0
BBB@
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3

 !
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To obtain Scenario 4, the negative feedback loop is removed,

and the positive one on CBF1 is not delayed. The ODEs model

consists of equations (2)–(5) while equation (1) is replaced with:

dx1

dt
~a1zv1

xh1

3

(kh1

1 zxh1

3 )

 !
{d1x1: ð8Þ

Numerical Simulations and Continuations
Numerical simulations were run using Matlab 2008b (The

MathWorks). For Scenario 1, we adopted the dde23 solver, which

solves delay differential equations (DDEs) with constant delays (a

detailed discussion of the numerical method can be found in [38]).

In the case of Scenario 2, 3 and 4 (ODE models), we used the

ode23 solver (a detailed discussion of the numerical methods on

which ode23 relies can be found in [39]).

All the numerical continuation experiments were performed

using DDE-BIFTOOL package [3]. The characteristic matrix

appearing in the stability theory for DDEs has an infinite number

of eigenvalues because of the infinite-dimensional nature of DDEs.

To determinate the local stability of an equilibrium, in DDE-

BIFTOOL [3] a linear multi-step method is applied to the

variational equation and the approximations to the rightmost

(stability determining) characteristic roots are computed. In case of

periodic solution of period T, a discrete approximation on a mesh

in [0, T] and its period are computed as solutions of the

corresponding periodic boundary value problem by using a

piecewise polynomial collocation. The local asymptotic stability

of a periodic solution is determined by the spectrum of the linear

so-called monodromy operator [3].

Supporting Information

Figure S1 Continuation results for Scenario 1 A using DDE-

BIFTOOL software. (A) Two parameters continuation of the Hopf

bifurcation on parameters k1 (Michealis-Menten coefficient of the

HO promoter) and k6 (Michealis-Menten coefficient of the ASH1

promoter). (B) Two parameters continuation of the Hopf

bifurcation on parameters v2 (maximal transcriptional rate of the

MET16 promoter) and k6 (Michealis-Menten coefficient of the

ASH1 promoter). (C) Two parameters continuation of the Hopf

bifurcation on parameters k6 (Michealis-Menten coefficient of the

ASH1 promoter) and h2 (Hill coefficient of the HO promoter). (D)

Two parameters continuation of the Hopf bifurcation on

parameters h2 (Hill coefficient of the HO promoter) and h6 (Hill

coefficient of the ASH1 promoter). (E) Tunability of the oscillations

in terms of amplitude. Amplitude of x1 (level of the CBF1 gene)

continuing the periodic solution on v2 (maximal transcriptional

rate of the MET16 promoter). (F) Tunability of the oscillations in

terms of period. Period of x1 (CBF1 gene) continuing the periodic

solution on h2 (Hill coefficient of the HO promoter).

Found at: doi:10.1371/journal.pone.0008083.s001 (0.26 MB TIF)

Figure S2 Expression of MET genes in wild type yeast cells.

MET genes regulated by Cbf1 are transcriptionally activated in the

presence of low levels of methionine (10 mm) while they are

repressed at high methionine concentrations (1000 mm). Semi-

quantitative (A) and quantitative (B) RT-PCR (normalization

against ACT1 gene)of MET genes were performed on total RNA

extracted from yeast cells grown in the standard complete medium

YPD (140 mm of methionine)and at two different methionine

concentrations.

Found at: doi:10.1371/journal.pone.0008083.s002 (0.47 MB TIF)

Figure S3 Continuation results for Scenario 2. Continuation

results for Scenario 2 using DDE-BIFTOOL software. (A) Two

parameters continuation of the Hopf bifurcation on parameters k2

(Michealis-Menten coefficient of the HO promoter) and h3 (Hill

coefficient of the MET16 promoter). (B) Two parameters contin-

uation of the Hopf bifurcation on parameters v2 (maximal

transcriptional rate of the MET16 promoter) and k6 (Michealis-

Menten coefficient of the ASH1 promoter). (C) Two parameters

continuation of the Hopf bifurcation on parameters k6 (Michealis-

Menten coefficient of the ASH1 promoter) and h3 (Hill coefficient of

the MET16 promoter). (D) Two parameters continuation of the

Hopf bifurcation on parameters h3 (Hill coefficient of the MET16

promoter) and h6 (Hill coefficient of the ASH1 promoter). (E)

Tunability of the oscillations in terms of amplitude. Amplitude of x1

(level of the CBF1 gene) continuing the periodic solution on h3 (Hill

coefficient of the MET16 promoter). (F) Tunability of the

oscillations in terms of period. Period of x1 (CBF1 gene) continuing

the periodic solution on h3 (Hill coefficient of the MET16 promoter).

Found at: doi:10.1371/journal.pone.0008083.s003 (0.30 MB TIF)

Figure S4 Continuation results for Scenario 3. Continuation

results for Scenario 3 using DDE-BIFTOOL software. (A) Two

parameters continuation of the Hopf bifurcation on parameters k2

(Michealis-Menten coefficient of the HO promoter) and h3 (Hill

coefficient of the MET16 promoter). (B) Two parameters

continuation of the Hopf bifurcation on parameters v2 (maximal

transcriptional rate of the MET16 promoter) and k6 (Michealis-

Menten coefficient of the ASH1 promoter). (C) Two parameters

continuation of the Hopf bifurcation on parameters k6 (Michealis-

Menten coefficient of the ASH1 promoter) and h3 (Hill coefficient

of the MET16 promoter). (D) Two parameters continuation of the

Hopf bifurcation on parameters h3 (Hill coefficient of the MET16

promoter) and h6 (Hill coefficient of the ASH1 promoter). (E)

Tunability of the oscillations in terms of amplitude. Amplitude of

x1 (level of the CBF1 gene) continuing the periodic solution on h3

(Hill coefficient of the MET16 promoter). (F) Tunability of the

oscillations in terms of period. Period of x1 (CBF1 gene) continuing

the periodic solution on h6 (Hill coefficient of the ASH1 promoter).

Found at: doi:10.1371/journal.pone.0008083.s004 (0.26 MB TIF)

Figure S5 Continuation results for Scenario 4. (A) Scenario 4 A.

One parameter continuation of the steady state on k1 (Michealis-

Menten coefficient of the HO promoter). Two saddle-node

bifurcation points (at (k1; x1) = (0.02 0.007) and (k1; x1) = (0.14

0.01)) delimitate the bistability region. (B) Scenario 4 A. One

parameter continuation of the steady state on h1 (Hill coefficient of

the HO promoter). Two saddle-node bifurcations (at (h1; x1) = (2

0.008) and (h1; x1) = (40 0.019)) delimitate the bistability region.

(C) Scenario 4 A. Two parameters continuation of one saddle-

node bifurcation point on v2 (maximal transcriptional rate of the

MET16 promoter) and h3 (Hill coefficient of the MET16

promoter). The cusp bifurcation occurs at (v2; h3) = (0.0005

0.39). (D) Scenario 4 B. One parameter continuation of the

steady state on k1 (Michealis-Menten coefficient of the HO
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promoter). Two saddle-node bifurcation points (at (k1; x1) = (0.03

0.002) and (k1; x1) = (0.08 0.05)) delimitate the bistability region.

Found at: doi:10.1371/journal.pone.0008083.s005 (0.27 MB TIF)
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