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Abstract

Sequence alignment is an important bioinformatics tool for identifying homology, but searching against the full set of
available sequences is likely to result in many hits to poorly annotated sequences providing very little information.
Consequently, we often want alignments against a specific subset of sequences: for instance, we are looking for sequences
from a particular species, sequences that have known 3d-structures, sequences that have a reliable (curated) function
annotation, and so on. Although such subset databases are readily available, they only represent a small fraction of all
sequences. Thus, the likelihood of finding close homologs for query sequences is smaller, and the alignments will in general
have lower scores. This makes it difficult to distinguish hits to homologous sequences from random hits to unrelated
sequences. Here, we propose a method that addresses this problem by first aligning query sequences against a large
database representing the corpus of known sequences, and then constructing indirect (or transitive) alignments by
combining the results with alignments from the large database against the desired target database. We compare the results
to direct pairwise alignments, and show that our method gives us higher sensitivity alignments against the target database.
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Introduction

During the last decade, new developments in sequencing

technology have resulted in lower costs and larger sequence

volumes. Genome and transcriptome sequencing is now per-

formed almost routinely, and the amount of publicly available

sequence data has grown enormously. In contrast, correctly

identifying the sequence by experimental means remains expen-

sive, and as sequencing volumes continue to grow exponentially

the proportion of sequences that can be analyzed in the lab is

quickly diminishing. Thus, accurate and efficient computational

methods for correct indentification and annotation of newly

produced sequences remains an increasingly important challenge.

Typically, computational annotation involves searching for

similar but known sequences using search tools like BLAST [1].

Putative function can then be derived by transferring annotation

from matches deemed to be of sufficient reliability, typically using

an alignment score threshold or BLAST E-value. Although a large

number of sequence data exists in public databases (as of March

2012, TrEMBL [2] contains close to twenty million proteins, and

NCBI’s RefSeq [3] almost fifteen million), only a few model

organisms can be considered well studied, and most annotation is

derived from homology or other automated means. Consequently,

many sequences in these databases lack precise and detailed

annotations.

In contrast, curated databases like SwissProt [2] generally

provide much better annotations based on experimental study of

the proteins in the database. The downside is limited proteome

coverage, and although several thousand eukaryote species are

represented in SwissProt [2], only 18 of them are represented with

more than 1000 proteins.

A lack of close homologs tempts the researcher to use lower

similarity thresholds, decreasing the reliability of matches and

increasing the likelihood of false positives and incorrect annota-

tions. This problem is exacerbated further when the species or

process under study is phylogenetically remote from model

organisms like human, mouse, or yeast.

Thus, the dilemma faced by the researcher seeking to identify

novel sequences is the choice between a) a small, curated database

like SwissProt, which would produce precise and detailed

descriptions but where low similarity scores would mean that

transferred annotations would not necessarily be accurate, or a

large database like TrEMBL which would result in higher

confidence alignments, but to proteins with less informative and

possibly unreliable descriptions.

Here we propose an approach that combines the sensitivity of

searching a large database with the detailed annotation from a

curated database. This is achieved by calculating alignments

against the curated database indirectly, combining hits against a

comprehensive database with alignments between the compre-

hensive database and the curated one.

Our approach is inspired by algorithms for multiple sequence

alignment (MSA), and in particular the T-Coffee [4] algorithm,

which uses triplets of pairwise aligned sequences to increase overall

consistency of the multiple alignments by avoiding early local

misalignments. These triplets are similar to our transitive

alignments, but in contrast to the MSA problem which is NP-

complete and therefore must depend on heuristics [5], we limit our
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aim to producing pairwise alignments, and thus we are able to

provide an optimal solution.

Methods

In the following, we first define and describe the composition of

two pairwise alignments to produce a transitive alignment. We then

show how to combine a set of alignments into a consensus

alignment, and discuss a scoring scheme and our current

implementation.

Composing alignments
We define an alignment of a pair of sequences as a function (f ,

say) that maps positions in one sequence to positions in the other.

In addition, we require two invariants, first that the mapping is one-

to-one, that is, given positions p and q,

fp~fqup~q ð1Þ

It follows that the alignment invertible, i.e. there exists a

mapping f ’ back from the second sequence to the first one.

Second, the alignment is monotonic (or colinear), satisfying:

fpwfqupwq ð2Þ

(Note that for or nucleotide sequences matches may be against

the reverse-complement strand. In this case we represent target

positions by their negation, and then the criterion still holds).

Given an alignment f from a sequence a to a sequence b, and an

alignment g from b to a sequence c, we define the transitive alignment

to be the function composition g0f , i.e. the mapping produced by

first applying f to each position in a to get a coordinate in b, and

then applying g to get a coordinate in c. This is illustrated in

Figure 1. It is easy to see that g0f constitutes a valid alignment, as

both the one-to-one property and the monotonicity is preserved.

Let A be a set of query sequences, B be a (large) set of

intermediate sequences, and C be a set of target sequences. Given

a set of alignments F : A?B, and G : B?C, we can for each

fij[F aligning a sequence ai[A to a sequence bj[B find the set of

all gjk[G that aligns bj to some sequence ck[C. We can then

construct the set of all transitive alignments H : A?C containing

all alignments gjk0fij . Note that for any i and k there may be

several values of j, each representing one particular intermediate

sequence. The set of transitive alignments H may therefore

contain more than one alignment of sequences ai and ck.

Scoring heuristic
The preceding description ignores some details for the sake of

simplicity. In addition to providing a mapping between positions,

alignments are also assumed to have an associated score. In order

to calculate a score for transitive alignment, we first distribute the

alignment score evenly to each pair of positions in the alignment.

I.e., given an alignment of score s that aligns position pairs (pi,qi)

for i[f1::ng, the alignment score for each position pair is s=n. The

composition of two alignments uses the minimum of the involved

scores, so if, as in Figure 1, f maps position p to position q with

score s=n and g maps q to r with score t=m, the transitive

alignment g0f maps p to q with a score of min(s=n,t=m).

For the entire alignment (e.g., for scoring the consensus

alignments), the score is calculated as the sum of scores for each

coordinate pair, recovering the original score if the alignment is

constructed from a single alignment.

Combining alignments
Given a set of (transitive) alignments H : A?C, we can for any

two sequences a[A and c[C extract the subset H ’ of alignments

from a to c. As these alignments are not necessarily consistent with

each other, it remains to reconcile these in a single consensus

alignment.

We formulate the problem as follows: given a set of scored

alignments H ’ from a to c, construct the combined alignment by

choosing the subset of position pairs from all alignments in H ’ that

maximizes the total sum of scores while satisfying Equations 1 and

2.

Let si,j be the maximal alignment score in H ’ that aligns

position i in sequence a to position j in sequence c. We can then

calculate the total score Si,j for aligning a(0::i) and b(0::j) with the

recurrence:

Si,j~max

Si{1,j

Si,j{1

Si{1,j{1zsi,j

8><
>:

with S0,j~Si,0~0 ð3Þ

This recurrence is analogous to sequence alignment (without

gap penalties), with a reward for aligning ai with bj as the

maximum alignment score linking these positions (i.e. sij ), and we

solve it similarly by dynamic programming.

Results

To explore transitive alignments, we used UniRef 50 [6] as the

intermediate database. Its entries are at most 50% similar on the

sequence level, retaining a large variety of proteins while reducing

the number of sequences to approximately 4 million – a more

manageable number than the full UniProt database, but still about

eight times the size of SwissProt, and encompassing a larger

variety of proteins. Unless otherwise noted in the text, the

following uses the NCBI BLAST suite version 2.2.25 using the

default parameters.

Protein structure identification
The SCOP database [7] classifies proteins based on structural

alignments. Protein 3D structure is generally considered to be

more conserved than protein sequence, and structural alignments

is therefore able to identify homology in many cases where

Figure 1. The alignments f maps position p in a to position q in
b and the alignment g maps position q in b to r in c. Thus, the
composed alignment, g0f , maps position p to position r.
doi:10.1371/journal.pone.0054422.g001
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sequence comparison fails. At around 25–30% identity we find the

Twilight Zone, where pairwise sequence alignments start to produce

a considerable number of non-homologous hits [8].

We downloaded SCOP 40, version 1.75A. This contains 11 211

proteins from SCOP with at most 40% identity, classified into

SCOP’s categories of class, fold, superfamily, and family. We used

BLASTP to align this set of proteins against itself, and we also

generated transitive alignments by using BLASTP to match the

SCOP proteins to UniRef 50, and BLASTP alignments from

UniRef 50 to SCOP 40, in both cases with an E-value threshold of

0.1. The results were sorted according to alignment score, and

classified as true positives if the query and target had the same

classification, false positives if they had different classification. The

resulting ROC curves for the SCOP superfamily and fold levels

are shown in Figure 2.

We see that for the same number of false positives, we are able

to identify a higher number of true positives using transitive

alignments. We also see that as we increase the number of false

positives, transitive alignments gain true positives at a higher rate.

Using direct BLAST with the default E-value threshold of 10, we

identified a total of 47 908 false and 54 222 true positives at the

superfamiliy level. Using transitive alignments with the same

number of false positives, we identified 112 718 true positives,

more than a twofold improvement. We also attempted the BLAST

analysis specifying different substitution matrices, using BLO-

SUM-90 and BLOSUM-45 instead of the default BLOSUM-62.

This did not have any substantial effect on the outcome, and

BLOSUM-62 produced marginally better results than the

alternatives.

It is also interesting to compare the results for superfamilies and

folds. We see that using the looser criterion of folds only marginally

increases the number of true positives for BLASTP, but that there

is a substantial improvement for the transitive alignments. For

instance, at 500 false positives, we find 36 243 true positives using

BLAST at the superfamily level, with an additional 459 (1.3%) hits

at the folds level. For transitive alignments, we identify 67 932 true

positives at the superfamily level, increasing by 6 419 (9.4%) at the

folds level.

Transcript annotation
The salmon louse Lepeophtheirus salmonis is a small crustacean that

is parasitic on salmonid fish. It is phylogenetically distant from

most well-studied species, with copepods believed to have

separated from insects more than 300 million years ago [9]. In

addition, the salmon louse has a specialized life cycle, which adds

to the challenge of identifying its proteins.

As part of the Salmon Louse Genome Project a set of 45 360

putative transcripts have been predicted ab initio from a draft

genome assembly using Augustus [10]. In the following, we will

investigate how transitive alignments can be used to annotate these

sequences.

The input sequences were aligned against UniRef 50 using

BLASTX and the UniRef 50 sequences were aligned against

SwissProt using BLASTP, in both cases using an E-value threshold

of 10{4. Transitive alignments were then calculated from these

sets of BLAST hits, resulting in 23 457 transcripts receiving at least

one alignment to a SwissProt sequence.

Sensitivity
In order to compare our approach to a traditional BLAST

analysis, we aligned the putative transcripts directly against

SwissProt using BLASTX. Using a maximum E-value of 1, we

were able to align 29 137 (64%) transcripts, but as shown in

Figure 3, the number decreases rapidly with stricter E-value

thresholds, and a large fraction of transcript only have low

confidence alignments. To get the same number of aligned

transcripts as we found using transitive alignments requires an E-

value threshold of 0.33.

A direct alignment of the putative transcripts with an E-value

threshold of 10{4 to SwissProt results in 14 018 (31%) of the

sequences matching at least one protein sequence. Aligning the

transcripts to UniRef 50 results in 25 034 (55%) sequences

matching, and aligning UniRef 50 against SwissProt results in 1.9

million (43%) of the UniRef proteins being aligned. This is

summarized in Figure 4. In light of these numbers, the number (23

457, or 52%) of transitively aligned sequences is high, and

sequences in UniRef 50 that are aligned to a transcript also have a

higher probability than average of matching a SwissProt sequence.

Consistency
SwissProt and UniProt IDs (entry names) consist of two parts, a

mnemonic protein ID (or gene symbol), and a mnemonic species ID.

For instance, the protein CYAB_BORPE is the Cyclolysin

secretion/processing ATP-binding protein gene (CYAB) found in

the species Bordetella pertussis (BORPE). For each transcript, we

extracted the gene symbol from the best SwissProt hit, and

Figure 2. ROC curves of hits from SCOP 40 to itself. Hits to the
same SCOP classification are considered true positives, hits with
different classifications are considered false positives.
doi:10.1371/journal.pone.0054422.g002

Figure 3. The number of transcripts aligned against the
SwissProt database using increasing E-value threshold. For
comparison, the total number of transcripts (45 360), and the number of
transcripts annotated using transitive alignments with BLAST E-values

of 10{4 (22 162) are also shown.
doi:10.1371/journal.pone.0054422.g003
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identified the position (rank) of the highest scoring transitive

alignment to a protein with the same gene symbol (i.e., ignoring

any differences in organism).

We partitioned the transcripts in categories based on the E-

value for the best direct alignment to SwissProt. Figure 5 shows the

fraction of the transcripts in each category receiving an annotation

based on transitive alignments. We see that the likelihood of

receiving a transitive annotation increases with the quality of the

SwissProt alignment. For low E-values, the consistency is low, and

for the transcripts with only weak direct alignments (E-value

w0.1), only 508 (5.7%) of them were transitively aligned to the

same gene symbol as the direct alignment. Interestingly, a much

larger number (1 957, 21.8%) received a different annotation.

A more detailed view on the consistency of the alignments is

given in Figure 6. This shows the rank of the best SwissProt hit

among the transitive alignments. We see that the best SwissProt

hits are usually at or near the top of the transitive alignments,

and that this is more pronounced for transcripts with good direct

hits.

One important caveat is that gene symbols do not provide an

unambiguous or even accurate way to identify orthologs, and for

historical reasons, orthologous genes are often assigned different

gene symbols. Also, members of closely related gene families can

be difficult to distinguish, and will often have similar, but not

identical, gene symbols. For instance, the transcripts g34 and g35

were annotated based on direct alignments as LCE and NAS4,

respectively. Their transitive alignments assigned both to NAS15,

which means that for the purposes of our analysis, both

transcript were counted as a changed gene symbol. However,

both the NASx family and LCE genes are metal-binding

proteinases in the peptidase M12A family. A closer inspection

of the genome revealed that g34 and g35 were indeed the same

gene, and that they were incorrectly predicted to be separate

transcripts due to a misassembly of the genome, where a short

region had been erroneously duplicated in the scaffolding

process.

Improved alignments
With a more sensitive local alignment algorithm, we expect to

see longer alignments in the case where the correct homolog is

identified. For each transcript, we calculated the ratio of

transitive alignment length to the direct alignment length, both

for the highest scoring transitive alignment, and for the same

target sequence as the best direct alignment. The results are

shown in Figure 7. We see that for all categories, more than 75%

of the sequences produce longer transitive alignments than direct

alignments. Here also, we see the tendency of lower improve-

ments for the best alignment category. An example where a

longer alignment is discovered using transitive alignments is

shown in Figure 8. Here, the annotation for one transcript is

extended through the use of several intermediate matches,

resulting in a transitive alignment of length 145 amino acids, in

contrast to the direct alignment length of 89 amino acids.

Figure 4. Sequence databases, and the number of query
sequences with BLAST hits, using an E-value threshold of

10{4. Numbers in parentheses indicate the percentage of query
sequences with BLAST hits, transitive alignments are represented by the
dashed arrow.
doi:10.1371/journal.pone.0054422.g004

Figure 5. The fraction of all transcripts receiving an annotation
using transitive alignment, grouped by e-value threshold of
the transcript’s best SwissProt match. Red bars indicate that the
gene symbol of the best SwissProt match is also among the transitive
annotations (see also Fig. 6), green bars that only different proteins
were matched.
doi:10.1371/journal.pone.0054422.g005

Figure 6. The fraction of transcripts with transitive alignments,
categorized by the position (rank) of the best SwissProt hit
among the transitive alignments. Proteins are considered the same
if they have the same gene symbol.
doi:10.1371/journal.pone.0054422.g006
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Pfam domains and novel annotations
Of the transcripts, 16 223 (35.8%) had no direct BLAST hits to

SwissProt. Using transitive alignments, we were able to identify an

alignment for 2405 of these. The distribution of alignment scores

and lengths are given in Figure 9. As expected, most alignments

are short and with low scores, but there are also several transcripts

with long or high scoring alignments.

SwissProt records are, among other information, annotated with

identified protein domains. We therefore compared the transitive

alignments to the results of using HMMER with Pfam to identify

domains in the sequences. Of the full set of transcripts, HMMER

was able to annotate 13 393 (29.5%) with a Pfam domain. (If we

limit the E-value to 10{4 the number of transcripts with an

identified domain is 12 985, or 28.6%). For each of the transcripts

we examined the SwissProt record of the best transitive alignment

hit. We found that for 12 727 (95.0%) transcripts, the highest

scoring protein was annotated with the domain identified using

HMMER.

Of the transcripts without direct BLAST hits, only 117 (4.7%)

were annotated with a Pfam domain annotation using HMMER,

these are shown separately in Figure 9. Examining the SwissProt

records of the highest scoring transitive alignment, we find that 93

(79.5%) of them are annotated with the same Pfam domain as

HMMER identifies.

The most commonly occurring domains in this set, and the

corresponding transitive alignments, are listed in Table 1. Here we

see that our annotations are quite consistent with the identified

domains, for instance: all the THAP domains occur in sequences

identified as THAPx variants; the Transposase_1 and

HTH_Tnp_Tc3_2 (helix-turn-helix) domains are identified in

sequences all annotated as transposases; and POGK, POGZ,

TIDG6, and JERKL are all annotated with the DDE_1

endonuclease domain in UniProt.

An example of a novel annotation is shown in Figure 10, where

the transcript is aligned via two different UniRef 50 sequences.

Both sequences map consistently to a SwissProt sequence, but with

little overlap. The transitive alignment thus covers the whole

transcript, and it can be unambiguously annotated as a fragment

of a gene similar to mariner transposase [11].

Discussion

There are now vast amounts of easily available sequence data,

and although large resources are committed to curation and

experimental validation, the proportion of uncurated data is large

and growing. As the raw data becomes cheaper to produce, we

need automatic methods that can exploit the raw data directly.

The method we present here use uncurated sequence data to

provide a context for sequence alignments, and is able use this

context to construct alignments with higher sensitivity than direct,

pairwise alignments.

As a typical transcript annotation experiment, we aligned

transcripts to SwissProt, and found that using transitive alignments

with a relatively conservative E-value threshold identified align-

ments for a larger fraction of the query sequences than direct

alignments with similar parameters. Also, the alignments identified

transitively are substantially longer, indicating higher sensitivity.

Figure 7. Alignments lengths resulting from transitive align-
ments divided by the corresponding score for the best direct
alignment. The plot shows median, quartiles, and 10- and 90-
percentile length ratios, for the best transitive alignment (blue), and
for the best transitive alignment with the same gene symbol as the best
direct alignment (red).
doi:10.1371/journal.pone.0054422.g007

Figure 8. Using BLASTX to align the transcript (g4) to SwissProt identifies a short match (green) against YK006. BLASTX searches
against UniRef 50 produces alignments (yellow) to proteins Q1HPJ3 and F4WS09. Both of these also match YK006, and these are used to construct
the transitive alignment (blue) that covers almost the complete transcript. (For simplicity, other intermediate hits in UniRef 50 are omitted).
doi:10.1371/journal.pone.0054422.g008

Figure 9. Length and score of transitive alignments for
transcripts that had no direct BLAST match. Although not
directly comparable, direct alignments with an E-value of 10{4 have
alignment scores averaging 44.4. Data points marked with as |
represent transcripts with an identified Pfam domain.
doi:10.1371/journal.pone.0054422.g009
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We also see that we are able to find identified Pfam domains from

transitively aligned protein matches.

Perhaps the most significant result is the identification of SCOP

folds and superfamilies. Here we see that not only does transitive

alignment identify the known SCOP relationships more accurately

than direct BLAST, but while BLAST mainly find superfamily

relationships, transitive alignments are also able to identify many

relationships at the more distant fold level. This is perhaps the

clearest evidence that our method offers substantial improvement

over direct BLAST.

Related work
Perhaps the best known tool for identifying distantly related

homologs is PSI-BLAST [1]. It uses the result of an initial

BLASTP query against a database to build a position-specific

scoring matrix (PSSM), which is then used to search the database

again to identify more matching sequences, and this process is then

iterated.

Similar to the PSSMs generated by PSI-BLAST, it is possible to

identify functionally related proteins through shared motifs or

domains, often described using hidden Markov models. Typically,

motif or domain databases (e.g. Pfam [12] or SMART [13]) are

derived from collections of proteins, and used with search

programs like HMMER [14] to search the candidate sequences.

Although these tools share the goal of identifying homology,

they differ from our approach in several important respects. First,

although we also make use of multiple sequences to strengthen the

results, our aim is to identify individual homologs. Thus, our

method serves as a drop-in replacement for regular BLAST, and

the method is simpler both to understand and to use as it avoids

stochastic models of sequences or sequence fragments. In contrast

to PSI-BLAST, our method can be used to annotate nucleotide

query sequences directly, and where PSI-BLAST results in a

cluster of related sequences, our method results in a set of

individual sequences in a specific target database.

Combining or post-processing pairwise BLAST results is not a

new approach, and e.g. taking the best alignment score between

groups of sequences has been shown to identify protein family

relationships with a higher sensitivity than using stochastic models,

at least for small groups of sequences [15]. Our method differs in

that it does not depend on any a priori grouping or classification,

and that it produces the alignment of sequence positions, and not

just a similarity score.

Future Directions
In our analyses we have kept the intermediate and target

databases separate. This serves to distinguish the effect of transitive

alignments from direct alignments, but will lead to inferior results

in some cases when the sequences in the intermediate database

match neither query or target sequence well. In practice, this is

easily avoided by merging the seqeunces from the target database

into the intermediate database.

In our current experiment, we have used BLAST-based

transitive alignments from nucleotide sequences to proteins, and

from proteins to proteins. It is of course possible to use different

combinations of sequence databases, or to use different alignment

software. It is also possible to extend the chain of databases by

introducing more intermediate databases.

Similarly, the method is not limited to traditional sequence

alignments. For instance, SwissProt contains annotated features for

many of its sequences, and one could extract sequence-to-feature

‘‘alignments’’ to identify conserved domains. Functional annota-

tion with Gene Ontology terms [16] is often derived from protein

alignments [17], but as is illustrated by the example in Figure 10,

this runs the risk of one conserved domain leading to an incorrect

annotation with terms belonging to a different domain that

happens to occur on the same sequence in the database.

Here we have used a simplistic scoring model for an alignment,

distributing BLAST scores uniformly over the aligned region, and

summing the scores for all aligned position pairs. This scheme has

the property that it preserves the original BLAST score, but other

schemes are certainly conceivable. The consensus calculation

could for instance be modified to use affine gap penalties, and

differentiate between global and local alignments. We have not

studied transitive alignment scores in detail, and consequently, the

alignment score is not interpreted beyond ranking alignments.

More work is needed before we can give alignment scores any

meaningful interpretation, for instance in terms of p- or E-values.

Table 1. The most frequent Pfam motifs identified in the
novel transcripts.

Pfam Motif SwissProt hit Count

Chitin_bind_3 OR92A_DROME 2

CUE TC1A_CAEEL 1

TCB2_CAEBR 1

DDE_Tnp_IS1595 Y132A_HAEIN 2

DUF227 DHS27_CAEEL 2

DUF659 CGBP1_MOUSE 2

MTTB MTTB_DESHY 2

Peptidase_A17 POL4_DROME 1

TAAR4_MOUSE 1

RVP YRD6_CAEEL 2

rve YRD6_CAEEL 3

RVT_1 LIN1_NYCCO 1

PO11_NASVI 1

RTJK_DROME 1

Zona_pellucida CUT1_CAEEL 2

ELDP2_LOTGI 1

DDE_1 POGK_HUMAN 2

POGK_MOUSE 1

POGZ_MOUSE 1

TIGD6_HUMAN 1

JERKL_MOUSE 1

THAP HAP2_HUMAN 3

THAP4_BOVIN 2

THAP2_MOUSE 1

THAP1_DANRE 1

THAP9_HUMAN 1

Transposase_1 MOS1T_DROMA 11

SETMR_HUMAN 2

HTH_Tnp_Tc3_2 TCB1_CAEBR 5

TCB2_CAEBR 4

TC1A_CAEEL 3

TC3A_CAEEL 3

SETMR_HUMAN 1

MOS1T_DROMA 1

doi:10.1371/journal.pone.0054422.t001
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Conclusion

The choice of databases to use for sequence alignment is often a

compromise between accuracy and precision. By using transitive

alignments, we can leverage searches against large databases that

give high sensitivity and produce stronger hits against a curated

database than one would get directly, and thus make this

compromise less severe.

The method is conceptually simple, and relies only on standard

alignment software and sequence databases. Addition of new

sequences to the databases and improvements in sensitivity in the

alignment software (e.g., [18–20]) will therefore improve the

results. Also, as the output is similar to BLAST output, transitive

alignments can be used directly in existing analysis pipelines. In

contrast to using precalculated patterns, motifs or classes, transitive

alignments rely only on sequence databases. We therefore believe

transitive alignments provides a useful and easy to use method,

and a valuable addition to the molecular biology toolset.

Availability
We have implemented transitive alignments in Haskell, using

version 7.4.1 of the GHC compiler. The source code is available

under a GPL license from http://malde.org/ketil/biohaskell/

transalign.
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