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Abstract

While most transcriptome analyses in high-throughput clinical studies focus on gene level expression, the existence of
alternative isoforms of gene transcripts is a major source of the diversity in the biological functionalities of the human
genome. It is, therefore, essential to annotate isoforms of gene transcripts for genome-wide transcriptome studies. Recently
developed mRNA sequencing technology presents an unprecedented opportunity to discover new forms of transcripts, and
at the same time brings bioinformatic challenges due to its short read length and incomplete coverage for the transcripts. In
this work, we proposed a computational approach to reconstruct new mRNA transcripts from short sequencing reads with
reference information of known transcripts in existing databases. The prior knowledge helped to define exon boundaries
and fill in the transcript regions not covered by sequencing data. This approach was demonstrated using a deep sequencing
data set of human muscle tissue with transcript annotations in RefSeq as prior knowledge. We identified 2,973 junctions,
7,471 exons, and 7,571 transcripts not previously annotated in RefSeq. 73% of these new transcripts found supports from
UCSC Known Genes, Ensembl or EST transcript annotations. In addition, the reconstructed transcripts were much longer
than those from de novo approaches that assume no prior knowledge. These previously un-annotated transcripts can be
integrated with known transcript annotations to improve both the design of microarrays and the follow-up analyses of
isoform expression. The overall results demonstrated that incorporating transcript annotations from genomic databases
significantly helps the reconstruction of novel transcripts from short sequencing reads for transcriptome research.
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Introduction

In large-scale clinical studies, most existing data sets focus on gene

expression profiles; however, human transcriptome is undoubtedly

more complex. While human genome encodes only 20,000,25,000

genes [1], alternative splicing allows a single gene to produce

multiple transcripts and subsequently multiple proteins that greatly

increases protein diversity and their functions [2]. In addition, more

than 90% of genes are shown to undergo alternative splicing [3,4],

and many disease-causing mutations introduce alternative mRNA

transcripts [5]. It is, therefore, of great importance to effectively

measure the levels of gene isoforms in human health and diseases.

High-throughput RNA sequencing (RNA-Seq) provides unparal-

leled dynamic ranges and specificity for transcriptome analysis,

while its sample throughput and cost are being improved

continuously. An emerging approach for large-scale clinical studies

is, therefore, to first sequence with a sufficient depth to

comprehensively identify the mRNA transcriptome of the disease,

followed by the design of customized microarrays targeting these

transcripts as well as by high-throughput screening of thousands of

patient samples using the arrays [6].

In addition to providing essential references for array design, the

discovery and annotation of new transcripts are also critical to the

analysis of both array and RNA-Seq data. The successful

deconvolution of isoform expression levels of a gene from

microarray data requires a ‘complete’ exon structure not missing

any major isoforms of the gene [7]. Similarly statistical inference of

isoform expression and their changes from RNA-Seq data also

relies on prior annotations of gene transcripts [8]. Currently, the

UCSC genome browser includes annotations of human mRNA

transcripts from RefSeq [9], UCSC Known Genes [10], and

Ensembl [11] (35,971, 77,614, and 143,123 respectively as of June

21, 2010). While each database uses different but overlapping

criteria to curate existing sequencing evidences, many new gene

isoforms remain to be discovered and catalogued from high-

throughput sequencing data.

While generating long-read expressed sequence tags (ESTs)

using Sanger sequencing was traditionally the major experimental

approach to discover new isoforms of mRNA transcripts [12], the

second generation sequencing technologies produce many millions

of short reads from mRNA, making it possible to comprehensively

analyze the entire transcriptome [13]. Data sets of RNA-Seq have
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been rapidly accumulated for multiple mammalian tissues [4,14],

various cancers [15], and individual patients [16], which brings the

opportunity to discover new mRNA transcripts, i.e. gene isoforms,

to a genome-wide scale.

However, currently the reads generated by either Illumina or

ABI platforms are typically 50,100 bases long, much shorter than

the full length of mRNA transcripts. For example, a survey of the

NCBI Sequence Read Archive (Dec. 1, 2011) indicates that among

4,653 RNA-Seq experiments 84% have read lengths shorter than

100 bp and 76% are single-end reads [17]. In addition, gene

transcripts are often not fully covered by uniquely mapped reads of

RNA-Seq data because of either the low abundance of the

transcripts, the low amplification efficiency of the transcript

regions in sample preparation, the insufficient depth of typical

sequencing runs, or the high sequence homology. Therefore, the

discovery of new transcript isoforms from RNA-Seq data becomes

a bioinformatic problem: how to reconstruct a full-length mRNA

transcript from short reads by inferring exons and exon-exon

junctions that are incompletely covered or completely missing in

the sequencing.

The limitations of read length and coverage completeness make

it difficult to apply conventional assembly or reconstruction

methods to RNA-Seq data. Many short read assemblers for

second generation sequencing data construct contigs by extending

consensus of overlapping sequencing reads [18,19,20,21]. How-

ever, the incomplete coverage of RNA-Seq data significantly limits

the length of the reconstructed transcripts, and these short read

assemblers commonly target to build sequence contigs rather than

full-length transcripts. Other constructors such as ExonWalk

[22,23], which was extensively utilized in the design of exon and

junction arrays [6,7], build full-length transcripts by walking

through exons, which is more suitable for long sequencing reads

such as ESTs that completely cover several consecutive exons of

the transcripts.

While the objective survey of transcriptome by RNA-Seq

provides valuable and yet incomplete information on previously

unknown transcripts, prior knowledge on annotated transcripts

from public databases can compensate the missing information in

RNA-Seq data. For example, if sequencing reads alone only

identify one of the two junctions of an exon, the other one can be

defined by previously known exons sharing the same junction.

In this paper, we propose a computational approach using

previously developed SpliceMap [24] as well as ExonMap and

JunctionWalk algorithms proposed here to reconstruct new

transcripts from RNA-Seq data and prior knowledge on annotated

transcripts from existing databases. The proposed method was

demonstrated on an RNA-Seq data set of 203 million sequencing

reads of 58 bases from human reference muscle tissue [6]. Using

strict filtering criteria to control false positives, we identified 2,973

new junctions, 7,471 new exons, and 7,571 new transcripts that

were not annotated in RefSeq. These new findings can be included

in the future array design and the analysis of alternative splicing in

large-scale transcriptome studies [6].

Results

Coverage of the RNA-Seq data
203 million RNA-Seq reads from human muscle tissue were

mapped over annotated exon and junction regions collected from

RefSeq, Ensembl, UCSC Known Genes and EST databases, and

120 million reads were uniquely mapped by allowing up to 2

mismatches. Among the detected exons and junctions with at least

one read in the data, 41% of exons and 62% of junctions were

covered by fewer than 20 reads because they were from lowly

expressed transcripts or in the repeated regions where sequencing

reads cannot be mapped with confidence. In addition, for 20% of

the detected exons, sequencing data only covered less than 50% of

their genomic regions, which made it difficult to recover whole

exon regions from the data alone. The overall mapping results

show that using RNA-Seq data exclusively is insufficient to build

full-length transcripts and additional information on transcripts is

required for successful reconstruction.

Detection of un-annotated junctions and exons
First, junctions were detected from the 203 million mRNA

sequencing reads using SpliceMap [24]. In brief, for a given

sequencing read, SpliceMap first finds the genomic region where

25 bases at one end of the read can be mapped, and locates the

exon-exon junction site by extending the mapping as far as

possible toward the other end of the read. Then, it locates the

other side of the junction by searching for the rest of the read in

the nearby genomic regions.

In total, 203,531 candidate junctions were identified from the

data. Comparing with a collection of 200,902 known junctions

derived from RefSeq annotations, 130,104 (63%) junctions were

already known and 73,427 (37%) were not annotated in the

database (Table 1). The 130,104 known junctions cover 65%

(130,104/200,902) of all the annotated junctions in RefSeq,

showing a good agreement between the sequencing data and the

prior knowledge. Transcripts expressed at very low levels or not

expressed at all in the muscle tissue, as well as those potentially

failed to be amplified during the sample preparation step may

have constituted the other 35% of RefSeq junctions.

Next, we sought to identify previously un-annotated exons. An

internal exon can be precisely defined by the two junctions that

connect it with its adjacent exons. Using the junctions identified

from the data by SpliceMap as well as the annotated exon-exon

junctions from the reference database, ExonMap detects exons as

genomic regions between two junctions if the distance between the

two junctions is shorter than a pre-defined threshold, which

corresponds to the maximum length of an exon allowed. Here, a

length of 10,000 bases was used as the maximum length of an exon

because more than 99.97% of exons in RefSeq annotation are

shorter than 10,000 bases. Since the first and last exons of

transcripts cannot be fully defined by exon-exon junctions, the

known start and end positions of transcripts in the reference

database were also used together with the junction information to

define these exons. For example, an exon can be defined with the

Table 1. Number of observed junctions from the RNA-Seq
data and new findings not annotated in RefSeq.

Num. reads supporting
the junction

Observed
junctions

Un-annotated
junctions

1 55,347 43,066

2,4 38,191 19,442

5,9 22,792 5,252

10,19 22,929 2,694

20,49 27,555 1,791

50,99 15,633 636

100,499 16,793 477

500+ 4,291 69

Total 203,531 73,427

doi:10.1371/journal.pone.0031440.t001

Knowledge-Based Transcript Reconstruction
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start position of a known transcript and a previously un-annotated

junction newly identified from the sequencing data. Using RefSeq

as a reference database, 107,697 candidate exons were identified

by ExonMap, and 12,894 (12%) of these exons were new findings

that differed from the annotated exons in RefSeq by at least four

bases (Table 2).

As expected, the number of detected candidate junctions and

exons decreased with the increasing number of sequencing reads

mapped to the junctions and exons, and the number of newly

identified, previously un-annotated junctions and exons dropped

even more rapidly. For example, while 78% of junctions detected

by only one sequencing read were previously un-annotated, only

2% of junctions detected by more than 500 reads were new

findings. Since SpliceMap reported a 7% false discovery rate for

newly found junctions with at least 2 reads and there were likely

more false positives among junctions supported by only few reads

[24], we chose a cutoff of 20 reads to ensure the presence of the

junctions, which is the same criterion used in Wang, et al. to detect

alternative splicing events [4]. Using this criterion, 2,973 junctions

were discovered as new junctions that were not found in RefSeq

transcript annotations. Similarly, to ensure high confidence on the

newly identified exons, a minimum of 20 reads was required to be

mapped to each of these exon regions. With this criterion, 7,471

new exons were identified that were not previously annotated in

RefSeq.

We compared these new exons with annotations in other

databases that are more comprehensive and include contents with

perhaps less experimental support. Figure 1 shows the coverage of

these new exons in UCSC Known Genes, Ensembl and EST

transcript databases. While 14% of the 7,471 new exons were

found in either UCSC Known Genes or Ensembl, 26% of the

exons were found only in the EST database, which is expected

because the EST database is more comprehensive than the other

two annotations. 4,502 (58%) exons were not annotated in any of

the three databases. However, since each of these exons were

supported by more than 20 reads in the RNA-Seq data, they are

very unlikely to be false positives.

Reconstruction of new transcripts by JunctionWalk
Finally, we introduce JunctionWalk algorithm to predict full-

length mRNA transcripts (Figure 2). Given a set of previously

annotated transcripts from the reference database (Figure 2A),

newly identified junctions with high confidence by SpliceMap

Table 2. Number of observed exons from the RNA-Seq data
and new findings not annotated in RefSeq.

Num. reads supporting the
exon Observed exons Un-annotated exons

0 18,427 3,224

1 2,568 227

2,4 6,471 514

5,9 8,788 634

10,19 12,092 824

20,49 17,301 1,297

50,99 11,450 1,093

100,499 20,236 2,408

500+ 10,364 2,673

Total 107,697 12,894

doi:10.1371/journal.pone.0031440.t002

Figure 1. Coverage of the 7,471 new exons identified from
RNA-Seq data in other databases. ExonMap was applied to the
RNA-Seq data using RefSeq as a reference. 7,471 new exons were
identified which were not annotated in RefSeq, among which 4,502
were not annotated in UCSC Known Genes, Ensembl, and EST
databases.
doi:10.1371/journal.pone.0031440.g001

Figure 2. JunctionWalk algorithm. Showing as an example is the
application of JunctionWalk algorithm to (A) two previously annotated
transcripts in the reference database, (B) two new junctions identified
from RNA-Seq data, and (C) three new exons discovered from RNA-Seq
data by annotated boundaries in the reference database (gray arrows)
or observed boundaries defined by the new junctions from RNA-Seq
data (black arrows). A box represents an exon, and a line linking two
exons is a junction. From the reference database, transcript A1 has three
annotated junctions of a11, a12, and a3, and transcript A2 has a21, a22 and
a3. From RNA-Seq data, previously un-annotated new junctions of n1

and n2 are defined. The previously annotated exons and junctions are
presented in gray, and new ones are in black. (D) The algorithm
reconstructs new transcript N1 and N2 by walking over the annotated
and new exons and junctions.
doi:10.1371/journal.pone.0031440.g002

Knowledge-Based Transcript Reconstruction
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(Figure 2B), and new exons identified with high confidence by

ExonMap (Figure 2C), JunctionWalk reconstructs new transcripts

(Figure 2D) by walking through the provided exons and junctions.

As an example, newly identified exons in Figure 2C are bounded

by new junction n1 and n2 identified from sequencing reads, and

previously annotated junction a12 and a22 defined from previously

known transcripts. To form a complete transcript, new exons and

junctions are connected together, and complemented by annotat-

ed ones that fill in the missing coverage for transcripts.

This algorithm was applied to our RNA-Seq data of human

muscle tissue using RefSeq or Ensembl as a reference transcript

database, and identified a significant number of un-annotated

transcripts (Table 3). By referring to RefSeq, we identified 7,571

previously un-annotated transcripts in 1,337 RefSeq genes. On

average, these newly identified transcripts have a median length of

1,553 bases, and consist of 11 exons and 10 junctions, which

include 3 un-annotated exons and 2 un-annotated junctions. The

number of new transcripts decreased exponentially with the

increasing number of RNA-Seq reads required for the detection of

previously un-annotated exons and junctions. Similarly, the

reconstruction with Ensembl annotations as the reference

predicted 8,980 new transcripts (Table 3) because Ensembl

includes a larger number of annotated transcripts than RefSeq.

To evaluate the performance of the reconstruction algorithm,

we compared the transcripts computationally reconstructed from

the RNA-Seq data and using either RefSeq and Ensembl as prior

knowledge with transcript sequences in the EST database. Only

transcripts un-annotated in the prior knowledge used for the

reconstruction were compared with the EST database. Since a

large number of ESTs in the EST database are not full-length

transcripts, we compared each reconstructed transcript with each

of the ESTs by calculating the percentage of nucleotide bases

overlapped between the two sequences. As shown in Figure 3A

(the solid line), 73% of the 7,571 new transcripts reconstructed

from RNA-Seq data and RefSeq reference were verified by ESTs

with more than 50% coverage. Similarly, 75% of the 8,980 new

transcripts from RNA-Seq and Ensembl reference were verified

with .50% EST coverage (Figure 3B, the solid line). Further, new

transcripts constructed from new exons and junctions each

supported by at least 50 reads (the dotted lines) have higher

percentages of EST coverage than from those supported by 20

reads (the solid lines) or 10 reads (the dashed lines), suggesting that

reconstructed transcripts supported by a larger number of RNA-

Seq reads likely have higher confidence.

Examination of the structures of the new transcripts recon-

structed from RNA-Seq data and RefSeq reference reveals that

they differ from the previously annotated transcripts in RefSeq by

skipping previously known exons, adding previously unknown

exons or introns, or including exons with alternative starts or ends.

As examples, Figure 4A shows a new transcript skipping a

previously annotated exon in RefSeq, which was discovered by the

identification of a previously unknown junction bridging the two

neighboring exons of the skipped exon. Similarly, Figure 4B shows

a new transcript consisting of a previously un-annotated exon,

which was defined by two new junctions bridging two previously

known exons on each side to the un-annotated exon. Figure 4C

shows a previously annotated exon split into two new exons with

the introduction of an intron, which was discovered by two new

junctions within the annotated exon. Figure 4D presents a

reconstructed transcript with an exon that has an alternative

end, where the leftmost exon with the alternative end was

connected to the second leftmost exon by a new junction in the

RNA-Seq data. The reconstructed transcripts in Figure 4B, C and

D are supported by Ensembl while the transcript in Figure 4A is

Table 3. Number of previously un-annotated transcripts
reconstructed using RefSeq or Ensembl annotations as the
reference.

Num. reads supporting the transcript RefSeq Ensembl

$10 30,005 33,514

$20 7,571 8,980

$50 1,616 2,023

$100 734 1,020

doi:10.1371/journal.pone.0031440.t003

Figure 3. Verification rates in EST of new transcripts reconstructed from the data. The transcripts were reconstructed by using (A) RefSeq
and (B) Ensembl as the reference databases. The solid line is the verification rate by transcript sequences in the EST database for the constructed
transcripts supported by with more than 20 reads, the dashed line is with more than 10 reads, and the dotted line is with more than 50 sequencing
reads.
doi:10.1371/journal.pone.0031440.g003

Knowledge-Based Transcript Reconstruction
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not annotated in either RefSeq or Ensembl. These examples show

that the approach of reconstruction is capable of capturing

different alternative structures.

Among the 7,571 reconstructed transcripts not previously

annotated in RefSeq, 2,167 (29%) transcripts have less than

50% coverage with EST annotations, which are subject to further

evaluations using experimental data. However, since each exon

and junction of these new transcripts is either well supported by

RNA-Seq data (of more than 20 reads) or from prior annotations

in RefSeq, these are also new candidates to be included in the

design of custom arrays and in the future transcriptome research.

Discussion

In this work, we proposed a knowledge-based approach to

reconstruct new mRNA transcripts from short sequencing reads.

By utilizing previously annotated exons and junctions to fill in the

missing information of experimental data of RNA-Seq, we showed

that the proposed algorithm is able to construct long transcripts

from short reads. As a comparison, we applied two de novo

assembly methods to our RNA-Seq data that utilize no existing

knowledge of annotated transcripts. Velvet, an assembly algorithm

based on de Bruijin graphs [18], reconstructed transcripts with a

median length of 207 bases, and Trinity, another de novo algorithm

that does not rely on aligning reads to a reference genome,

reported a median length of transcripts of 173 bases [25], which

are much shorter than the median length 1,553 bases from our

algorithm. These results corroborate the usefulness of leveraging

prior gene annotations in the reconstruction of mRNA transcripts

from sequencing data.

Very recently, Roberts et al. described an interesting alternative

approach of reference annotation based transcript (RABT)

Figure 4. Types of alternative splicing events found in the newly reconstructed transcripts. These transcripts differ from the annotated
transcripts of the same genes in RefSeq by (A) skipping a known exon, (B) inserting a new exon, (C) splitting a known exon, and (D) having a different
end of a known exon. The first transcript track in black on top of each panel presents a reconstructed transcript, the second track in blue presents the
annotated transcript in RefSeq which was used as the reference for the reconstruction, the third set of tracks in brown represent transcripts of the
same gene in Ensembl, and the track in black at the bottom is a ‘dense’ presentation of the ESTs, because of the large number of ESTs.
doi:10.1371/journal.pone.0031440.g004

Knowledge-Based Transcript Reconstruction
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assembly, where faux reads were first generated to tile every

reference transcript, and the Cufflinks assembler was then applied

to compute the minimum number of transfrags that explain both

sequencing data and the faux reads [26]. While this approach is

useful for RNA-Seq data analysis, the parsimonious assembly

constructs a new exon to only one of the reference transcripts that

share the same exon-exon junctions. To illustrate this, Figure S1

shows a simplified example of two reference transcripts (of TPM2

gene) and sequencing reads tiling across a new exon (highlighted)

and its connected exons. While RABT assembled the new exon

with one of the two reference transcripts, our method discovered

both new transcripts. Since most of the human genes have more

than one annotated transcript isoforms that share exon-exon

junctions, we found that the assembled transfrags from the current

RABT are problematic when applied to array design and analysis.

In addition, in contrast to the pure assembler approach, our

method explicitly defines and utilizes exons, exon boundaries, and

exon-exon junctions, which can be directly applied to the design

and analysis of transcriptome arrays [6].

While here we utilized a sequencing data set of 58 bps as a

demonstration example, our algorithm is expected to be applicable

to RNA-Seq data with longer read length and paired-end data as

well. Our proposed approach can be further improved by utilizing

additional information such as sequence conservation and

transcript structures [27,28]. As the sequencing data sets from

increasing number of tissues, physiological states and diseases are

becoming available, the confidence on a novel reconstructed

transcript is increased if it has been identified in multiple data sets.

Besides, the boundaries of the starting and ending exons of the

reconstructed transcripts can also be improved by the accumula-

tion of deeper sequencing data as well as the estimation of the

poly-A tail cleavage sites [29]. Finally, further developments are

required to combining the strength of de novo assemblers with the

knowledge-based reconstructions.

In summary, we demonstrated that the limitations of the short

read length of RNA-Seq and its incomplete coverage of full-length

gene transcripts can be partially overcome by utilizing prior

transcript annotations from reference databases. This algorithm

has been utilized by the NIGMS Inflammation and the Host Response to

Injury Glue Grant program in the design and revision of the human

transcriptome array for large-scale clinical studies [6]. With the

continuing technical improvements of sequencing technologies,

especially on the sequencing cost and sample throughput, RNA-

Seq data of human transcriptome under various biological

conditions will likely be accumulated exponentially in the near

future, which provides an unprecedented opportunity to system-

atically discover new transcripts of human genome. The resulting

comprehensive catalogue of human gene transcripts will provide

an essential reference for transcriptome studies, including the

design and revision of customized exon-junction arrays for large-

scale clinical studies [6] as well as the computational analysis of

microarray and RNA-Seq data for genome-wide alternative

splicing in biological and clinical studies [7].

Methods

mRNA sequencing
mRNA was purified from total human muscle RNA, processed

and sequenced using the Illumina Genome Analyzer following

protocols recommended by the manufacturer. From two sequenc-

ing runs, 203 million reads with 58 bases were acquired [6].

Sequencing reads were mapped over the exon and junction

regions of RefSeq using SeqMap with 2 mismatches allowed [30].

Among the 203 million total reads, 128,916,392 (63.6%) reads

were mapped over exon and junction regions, and 119,576,008

(59.0%) were uniquely mapped. These percentages are compara-

ble to previously reported results [31].

ExonMap algorithm
SpliceMap performs junction discovery using RNA-Seq data,

based on sequence mapping and splicing signals [24]. As an input,

ExonMap takes these newly identified junctions that are not

annotated previously in databases as well as a set of annotated

exons and exon-exon junctions. It searches both sides of a newly

identified junction for either another newly identified junction or a

known junction within a defined search window. ExonMap then

defines one observed exon between the two junctions. In this

study, a collection of 221,022 annotated exons and 200,902

junctions from 35,971 transcripts in RefSeq (Release 41) was used

as the reference, and a window of 10,000 bases was used as the

searching window.

JunctionWalk algorithm
JunctionWalk algorithm reconstructs candidate full-length

transcripts from a set of previously un-annotated and annotated

exons and junctions. Previously annotated exons and junctions are

derived from a reference transcript database such as RefSeq and

Ensembl. The previously annotated junctions are defined as

junctions observed between two adjacent exons in a transcript in

the reference database. The un-annotated junctions are not

included in the collection of annotated junctions but identified

from RNA-Seq data by SpliceMap. Similarly, the un-annotated

exons are newly derived exons by ExonMap algorithm and not

previously annotated.

To reconstruct transcripts of a gene, two junctions are assigned

to the same transcript if and only if the following conditions are

satisfied:

1) The two junctions are on the same strand of a chromosome.

2) The two junctions do not overlap in genome coordinates.

3) The exon defined by the two junctions belongs to the set of

un-annotated or previously annotated exons.

4) The exon in condition 3 is not longer than a pre-defined

gene specific threshold.

5) If the two junctions are both previously annotated, they are

observed together on at least one transcript in the reference

database.

Conditions 1 and 2 are obvious. Condition 3 guarantees that

every exon of a reconstructed transcript is either known or

identified from the sequencing data. Condition 4 is to avoid

generating artificially long exons. In this study, the gene specific

threshold for condition 4 is defined as the larger value between

1,000 bases and the maximum length of annotated exons of the

corresponding gene. Since 95% of exons in RefSeq are shorter

than 1,000 bases, this gene specific threshold provides a reasonable

upper bound for the length of the potential exon of each gene.

Condition 5 prevents junctions that belong exclusively to different

transcripts to be assigned together to the same transcript without

experimental evidence. JunctionWalk algorithm reconstructs

potentially full-length transcripts by connecting all junctions that

can be put together.

Starting from a junction, this algorithm extends a transcript by

walking over junctions in the order of their genomic positions.

First, a starting junction is selected. The first junction of any

annotated transcript in the reference database can be a starting

junction. If there is an un-annotated junction identified from

Knowledge-Based Transcript Reconstruction
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RNA-Seq data before the first annotated junction on genome

coordinates, the un-annotated junction also can be a starting

junction. Then, the algorithm walks to the next junction if the

second junction can be put together with the previous junction

according to the five conditions listed above. By continuing

walking until there are no more junctions left that meet the

criteria, JunctionWalk algorithm completes the reconstruction of a

transcript. If there are multiple junctions that can be walked over

in the middle of the process, each branch of the walking will be

processed resulting the reconstruction of different transcripts.

Figure 2 illustrates how JunctionWalk reconstructs a new

transcript. For a gene with two annotated transcripts (Figure 2A),

assume that two un-annotated junctions (Figure 2B) and three un-

annotated exons (Figure 2C) are newly discovered from sequenc-

ing data. Both junction a11 and a21 can be a starting junction of the

walking process. Starting from junction a11, the algorithm moves

to junction a12. Since the pre-defined maximum exon length in

condition 4 is longer than or equal to the maximum length of

annotated exons, two annotated junctions can always be put

together if they are from the same annotated transcript. From

junction a12, it can walk to both junction a3 and junction n1. The

reconstruction moving to junction a3 ends up to be annotated

transcript A1. The walking over junction n1 continues to junction

n2, and finally reconstructs new transcript N1 (Figure 2D).

Similarly, transcript N2 is constructed by a walking process

starting from junction a21. Exons on reconstructed transcripts are

either known or newly identified by ExonMap with two

neighboring junctions (Figure 2C). Exons at each end of a

transcript are defined by the nearest annotated exon boundary.

The ending exons of the reconstructed transcripts in Figure 2D are

defined with the boundary of the first and last exons of the

annotated transcripts in Figure 2A.

Supporting Information

Figure S1 A reconstruction example of TPM2. Our

proposed algorithm was compared with the Cufflink reference

annotation based transcript (RABT) assembly algorithm [Robert

et al, Bioinformatics, 2011] over a simplified example of TPM2

gene. Given two reference transcripts of the gene (Ref1 and 2),

sequencing reads tiling across a new exon (highlighted) and its

connected exons were fed into each algorithm. The Cufflink

RABT was able to assemble only one new transcript where the

new exon is assembled with one of the two reference isoforms of

the gene (CUFF.2.2) while our proposed algorithm generated two

new transcripts with the new exon integrated to each of the two

reference isoforms (JucWalk 1 and 2).
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