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Abstract

Mutations in the TP53 gene are very common in human cancers, and are associated with poor clinical outcome. Transgenic
mouse models lacking the Trp53 gene or that express mutant Trp53 transgenes produce tumours with malignant features
in many organs. We previously showed the transcriptome of a p53-deficient mouse skin carcinoma model to be similar to
those of human cancers with TP53 mutations and associated with poor clinical outcomes. This report shows that much of
the 682-gene signature of this murine skin carcinoma transcriptome is also present in breast and lung cancer mouse models
in which p53 is inhibited. Further, we report validated gene-expression-based tests for predicting the clinical outcome of
human breast and lung adenocarcinoma. It was found that human patients with cancer could be stratified based on the
similarity of their transcriptome with the mouse skin carcinoma 682-gene signature. The results also provide new targets for
the treatment of p53-defective tumours.
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J.M. Paramio, Pedro Larrañaga, and Concepción Bielza, Title: Predictor test of global survival in lung adenocarcinoma, Request Nu: P201031626, Priority country:
Spain, Priority date: 05/november/2010, Organism: CIEMAT and UPM. In relation with employment, consultancy, or products in development the authors declare
no conflict of interest. The conflict of interest that the authors are declaring does not alter their adherence to all the PLoS ONE policies on sharing data and
materials.

* E-mail: ramon.garcia@ciemat.es (RG-E); jesusm.paramio@ciemat.es (JMP)

Introduction

Mutations in the TP53 tumour suppressor gene are very

common in human cancers, and in most cases are associated with

a poor clinical outcome. Although great efforts have been made to

find specific therapies for TP53-mutant cancers [1], none are

currently used in the clinical setting. The lack of such therapies

may be explained by the wide diversity of p53-related genomic

alterations (point or truncating mutations, oncogenic or dominant-

negative mutations, loss of heterozygosity, etc.) and by the

presence of additional alterations in oncogenic signalling pathways

[2]. Besides, such mutations are predictors of resistance to Nutlin-

3a [3], an inhibitor of the MDM2 E3 ligase that negatively

regulates p53 protein levels. However, the sensitivity of human

cancer cell lines to chemotherapeutic drugs is not associated to p53

mutations [3]. The search for effective therapies for mutant

patients is therefore of prime importance. One way of arriving at

a treatment might be to identify and validate molecular bio-

markers of TP53-based carcinogenesis, some of which might be

suitable as targets for therapy. An added value of p53-based

biomarkers would be their potential use in predicting the response

to cancer therapies, thus allowing for the personalised treatment of

patients.

There are different ways to search for correlations between

tumour gene expression (GE) patterns and the clinical behaviour

of tumours [4]. In the model-driven approach, the transcriptome

of cells exposed to specific stimuli (such as a wound) or after the

activation of specific oncogenic pathways, is used to determine

a prognosis [5,6]. This approach has the drawback that the

experimental model used might not accurately reflect the processes

that occur in tumours. The advantage, however, is that the model

system acts as a ‘‘filter’’ of genes that are important in oncogenic

signalling. The use of genetically engineered mouse models

(GEMMs) designed to emulate the genetic alterations found in
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human cancers represents a great advance in this area. The

targeted over-expression of a particular oncogene or knockout of

a specific tumour suppressor gene in a well defined genetic

background offers many advantages for studying tumour pro-

gression initiated by genetic aberrations [7]. A major benefit of

GEMMs over cellular systems is that mouse carcinomas contain

tumour cells as well as stromal and endothelial cells, which all

contribute to a tumour’s biology [8]. Thus, genome-wide GE

profiles of primary carcinomas from GEMMs of cancer [9,10], as

well as comparisons between metastatic and primary mouse

carcinoma samples, have been used to try to develop predictors of

the outcome of human cancer [11].

We previously reported that a 682-gene expression signature

common to two skin carcinoma models lacking p53 (alone or

combined with a lack of pRb, hereafter referred to as p53DEC and

p53DEC;pRbDEC respectively) in stratified epithelia [12,13] showed

strong similarities to signatures of human primary carcinomas

involving TP53 mutations (both truncating and point) arising in

different anatomical locations. Bioinformatic tools used to examine

the mouse skin carcinoma gene signature and transcriptomes of

different types of human cancer showed a human signature of 20

overexpressed genes associated with TP53 mutation and a poor

prognosis. Importantly, when patients with cancer were stratified

depending on the expression of these genes, different clinical

outcomes were observed: the stronger the expression, the lower the

probability of surviving cancers such as breast carcinoma (BC) or

multiple myeloma [12].

This report shows the above 682-gene signature to be present

in different GEMMs of BC and lung adenocarcinoma (LAd).

Importantly, the similarities were strongest in those models

involving p53 inhibition, and in the metastatic samples arising

from some of them. Using this 682-gene signature, we obtained

and validated GE tests able to stratify patients with these

cancers into groups with significant differences in expected

clinical outcome, and which showed high sensitivity in terms of

the identification of patients with a potentially good outcome.

Results

The 682-gene Signature is Present in GEMMs of BC and
LAd with p53 Inhibition
Genome-wide microarray analyses have shown human aggres-

sive and/or TP53-mutant tumours to possess transcriptomes

resembling the 682-gene mouse skin carcinoma signature [12].

These similarities are particularly noticeable for human BC and

LAd [12]. Further, the transcriptome of the mouse skin

carcinomas shows strong similarities to that of embryonic stem

cells (ESC), suggesting that p53 deficiency induces a potent de-

differentiation process in epithelial cells [12]. p53-mutant human

BCs show these ESC signatures too [14]. This is in agreement with

the locally invasive properties of these mouse tumours, and their

propensity to metastasise to distant organs [15].

Given the significant GE similarities between these mouse skin

tumours and human BC and LAd with a p53 mutation, in the

present work the 682-gene signature was sought in GEMMs of

BC and LAd showing p53 inhibition. Raw GE data were

downloaded from the GEO database (Table S1) [10,11,16–22]

and similarities with the 682-gene tumour signature sought by

calculating Pearson correlations (see Materials and Methods).

Metagenomic comparisons showed carcinomas from specific BC

(Fig. 1A) and LAd (Fig. 1B) GEMMs to have GE profiles very

similar to those of mouse skin carcinoma. With respect to BC,

models of p53 inactivation via the expression of the SV40 large

T-antigen (C3(1)Tag and WAP-TNP8 models) [20,23], and the

p53fl/fl;MMTV-cre transplant model [23], were among the most

similar (highlighted in red, Fig. 1A). Significant similarities were

seen with the 682-gene signature for a LAd model in which p53

expression is repressed in the presence of an oncogenic KrasG12D

allele (KrasLA2/+;Trp53LSL/LSL;Rosa26CreERT2 model) [18]

(highlighted in red, Fig. 1B). Importantly, the p53-deficient skin

carcinomas shared GE patterns with metastatic samples arising in

a Kras/p53R172H and a Kras/Lkb1L/L LAd GEMM [10,11],

confirming their aggressive molecular properties (highlighted in

pink, Fig. 1B). Importantly, most Kras/p53R172H metastatic

samples lose the wild type (WT) Trp53 allele during malignant

transformation [10]. These comparisons between GEMMs show

that the 682-gene skin signature is significantly present in p53-

deficient mouse lung and mammary carcinomas, and might be

considered a common signature of p53-deficient carcinoma

GEMMs.

Since the p53-deficient primary skin samples profiled were overt

carcinomas, it cannot be ruled out that other oncogenic events

may be acting as major players in their transcriptome de-

regulation, and therefore in the similarities seen with human

primary tumours with poor outcome. To detect any direct

implication of p53 protein activity in the GE pattern, breast and

lung GEMMs in which p53 expression levels could be modulated

were examined. In the WAP-TNP8 model, time-course analyses of

p53 inhibition by means of SV40 large T-antigen expression (1, 2,

3, 4 and 5 months) showed a progressive increase in the

overexpression of already overexpressed (plus a reduction in the

expression of already underexpressed) 682-signature genes in

mammary carcinomas (Fig. 2A). In addition, the restoration of

Trp53 expression with tamoxifen in KrasLA2/+;Trp53LSL/LSL;Ro-

sa26Cre
ERT2

mouse lung adenomas and adenocarcinomas reduced

the overexpression (and induced the underexpression) of 682-

signature mRNAs (Fig. 2B). As previously reported [18],

tamoxifen-dependent p53 induction in these malignant lung

adenocarcinomas leads to significant tumour cell loss. These

results directly associate tumour reduction (upon p53 expression)

with the disappearance of the 682-gene signature, indicating that

its transcriptional regulation is dependent on p53. This confirms

that this signature is common to both p53-altered human and

mouse carcinomas.

Development and Validation of a Prognostic Genomic
Test for Human BC Clinical Outcome
Given the similarities between the mouse skin signature and

those of mouse lung and BC (see above) and human tumours

arising in these organs [12], the question arose as to whether the

682-gene signature could be used to develop prognostic tests for

these human cancers. To develop such genomic predictors, the

rodent signature was combined with GE data for primary human

BC or LAd samples with known survival data.

For human BC, a subgroup of 40 probesets, corresponding to

32 genes (40-gene test), was selected based on optimal distant

metastasis prediction accuracy and small gene set size (Materials

and Methods, Figs. S1 and S2A-C, Tables S2 and S3). The 40-

gene test stratified BC patients into three risk groups: high,

intermediate and low. The prediction accuracy of the test was

validated in 12 additional datasets, comprising a total of 2993

tumour samples, 4 different endpoints, and 2 microarray

platforms (Affymetrix and Agilent) (Fig. 3A, Figs. S3 and S4,

Table S2). Multivariate Cox regression analysis including both

genomic and clinical variables showed the 40-gene test to

discriminate patient risk groups independent of clinical prog-

nostic factors (Table 1).

Mouse Models for Predicting Human Cancer Outcomes
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Figure 1. The mouse skin 682-gene signature is significantly present in mouse mammary and lung carcinoma models showing p53
inhibition. Heatmaps of the 682-gene signature transcripts from (A) primary breast carcinomas and normal mammary glands from different
transgenic GEMMs (upper panel), and from (B) primary and metastatic lung adenocarcinomas and normal lungs from different transgenic GEMMs

Mouse Models for Predicting Human Cancer Outcomes
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Most breast cancers are oestrogen receptor positive (ER+) and
are treated with adjuvant hormonal therapy, such as tamoxifen.

Interestingly, although the 40-gene test was developed using data

from patients that received no such treatment, it predicted the

outcome for such hormonally-treated patients as well (Fig. 3B). A

possible explanation for this is that this test identifies tumours with

inherent malignant behavior, and which are therefore less prone to

respond to adjuvant therapy. Alternatively, it may be that high risk

patients with BC suffer inhibition of the p53-dependent pathway

linked to ER signalling pathways [24–27]. In agreement with this

hypothesis it should be noted that a reduced response to tamoxifen

has been reported in patients with BC carrying TP53 mutations

[28,29] (Fig. 3C).

Development and Validation of a Prognostic Genomic-
clinical Test for Human LAd Clinical Outcome
Using the same approach used with BC, an optimal group of 36

probesets corresponding to 30 genes (36-gene test) was obtained to

predict overall survival (Materials and Methods, Fig. S1, Fig. S2

[panels A, D and E], Tables S4 and S5). Shedden et al. [30]

reported that the accuracy of genomic predictors of LAd outcome

could be improved by incorporating certain clinical variables.

Thus, a clinical predictor test was developed including tumour

stage, patient gender and age (Fig. S5A). The combination of both

genomic and clinical information (36-gene genomic-clinical test)

increased the prediction accuracy, of overall survival, allowing

patients to be stratified into three risk groups (low, intermediate

and high) using the same approach as for BC. Validation in 3

(upper panel) (Table S1) are shown. The T-values returned by Student’s t-test comparisons between normal skin and carcinoma samples in which the
682-gene signature was determined (GSE11990) were used to build a centroid template. The Pearson correlation coefficient (and the corresponding
p-value) with respect to the centroid was calculated for each mouse sample. Samples were ordered from left to right based on increasing correlation.
Probesets are ordered from top to bottom based on T-values (see Materials and Methods). Samples within blue rectangles are normal skin samples
and skin tumour samples. The number of samples in each group is shown under the heatmaps. Pearson values are shown in the middle panel. Values
range from 21 (negative correlation, bluish background) to +1 (positive correlation, reddish background). The significance value for the correlation is
shown in the lower panel as –log10(p-val). The red line indicates p-val = 0.01. Genotypes highlighted in red are models with p53 alterations
significantly correlated with the 682-signature. Samples highlighted in pink are metastases. In (B), the Kras (1) and Kras/Lkb1L/L (1) samples are from
the GSE6135 dataset; the Kras (2) and Kras/Lkb1L/L (2) samples are from the GSE21581 dataset.
doi:10.1371/journal.pone.0042494.g001

Figure 2. The 682-gene signature expression pattern in mouse carcinomas is dependent on p53 expression. A) SV40 Large-T antigen
expression in mammary gland was analysed at various time-points during carcinoma formation in transgenic WAP-TNP8 mice. Heatmaps of 682-gene
signature transcripts from normal mammary glands (green), primary breast carcinomas (red) and mammary samples with transgene expression at 1,
2, 3, 4 and 5 months (blue) are shown (upper panel). B) p53 expression was induced in lung adenomas and adenocarcinomas in the KrasLA2/

+;Trp53LSL/LSL;Rosa26CreERT2 mouse model. The heatmaps of the 682-gene signature transcripts from normal lungs (green), lung adenomas (orange)
and adenocarcinomas (red) (treated and untreated) are shown (upper panel). In A and B, sample groups are ordered from left to right based on
increasing Pearson correlation with the centroid template based on the 682-gene signature. Probesets are ordered from top to bottom based on T-
values (see Materials and Methods). The number of samples in each group is shown under the heatmap. The correlation values for individual samples
with the centroid are shown in the middle panel. Values range from 21 (negative correlation, bluish background) to +1 (positive correlation, reddish
background). The significance of the correlation for each sample is shown in the lower panel as –log10(p-val). The red line indicates a p-val of 0.01.
doi:10.1371/journal.pone.0042494.g002

Mouse Models for Predicting Human Cancer Outcomes
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Figure 3. Human BC patient stratification using the mouse-derived 40-gene predictor test. A) Kaplan-Meier curves of distant metastasis-
free survival (DMFS) for a pooled population of 12 GE datasets of patients with BC. Patients were stratified based on the 40-gene test as of low
(green), intermediate (blue) or high (red) risk (see Materials and Methods). B) Kaplan-Meier curves of DMFS from ER+, tamoxifen-treated women with

Mouse Models for Predicting Human Cancer Outcomes
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external microarray GE datasets showed the accuracy of the

combined test with the pooled patients (n = 313) (Fig. 4A), or in

individual datasets (Fig. S6). More importantly, it also accurately

predicted clinical outcome among early stage patients (Fig. 4B,

Fig. S6). As the number of reported human LAd samples that we

have used for validation is lower when compared to human BC,

we decided to add new LAd samples by performing GE from

FFPE tumour blocks. This analysis would also aid to demonstrate

the feasibility of the 36-gene genomic-clinical predictor using

FFPE tissue. Validation was performed using quantitative real-

time PCR (qRT-PCR) (Materials and Methods, Fig. S5B). The

results confirmed that the genomic-clinical test stratified patients

with different survival probabilities (Fig. 4C) with similar accuracy

to that seen for ‘fresh’ (i.e., non-FFPE) samples profiled using GE

microarrays (area under the curve [AUC]= 0.72, p-

val = 1.461029 for microarrays; AUC=0.70, p-val = 0.05 for

qRT-PCR). Univariate Cox regression analysis including all

patients in the validation datasets (n = 362) showed significant risk

differences between patient strata. The hazard ratio (HR) for OS

at 5 years was 14.14 times higher (95% CI= 3.46 to 57.83, p-

val = 0.0002) than in the high than the low risk groups. In

addition, the hazard ratio (HR) for OS at 5 years was 7.60 times

higher (95% CI 1.82 to 31.78, p-val = 0.005) for the high risk

group than the intermediate risk group.

Correlation between 40-gene Test and TP53 Mutations
Using metagenomic comparisons of GEMMs (Fig. 2), the time-

course inhibition of p53 was seen to involve the progressive

appearance of the 682-gene signature with BC formation. In

addition, p53 restoration in mouse lung adenomas and adeno-

carcinomas led to the disappearance of the signature; other

authors have reported tumour cell loss to occur as well [18]. A

similar result was obtained for the 40-gene signature in the BC

model, and for the 36-gene signature in the LAd model (Fig. S7).

These findings support the idea of a major role for p53 in the

control of the genes in both signatures. Network analyses of the 40-

gene and 36-gene proteins in relation to p53 and pRb (since the

682-signature was obtained from the common transcriptomes of

the p53DEC and p53DEC;pRbDEC models [12]) showed both p53

and pRb to be direct regulators of most of these proteins (Fig. S8A

and C). Further, these signature genes appear to be important

regulators of processes involved in carcinogenesis such as

apoptosis, differentiation and proliferation (Fig. S8B and D).

The calculation of the risk score for the BC and LAd patients

was based on the GE profiles of the p53-deficient tumours, not on

the presence/absence of p53 mutations in sample patients as

previously reported for BC predictors [28,31]. Given the

importance of p53 alterations in the appearance of human cancer,

great effort has been directed towards the development of

therapies that restore p53 function [1]. However, no such

treatments are yet available in the clinical setting. Another

possibility is to identify molecular biomarkers associated with

p53 alterations that offer themselves as therapeutic targets. To

examine this, we selected genes that are overexpressed in p53-

mutant human BC tumours (Miller dataset, Table S2) [28], and

for which specific inhibitors are in preclinical testing: AURKA,

AURKB and PLK1 (Fig. 5A). These inhibitors, if validated

clinically, might be usable for the treatment of patients with p53

mutations. Importantly, the overexpression of the AURKA,

AURKB and PLK1 genes was also observed in non-p53 mutant

tumours within the high risk group as assessed by the 40-gene test

(Fig. 5A), showing that some patients with poor outcome suffering

p53-WT tumours may also benefit from such therapies. To search

for any potential anti-tumoral effect of these inhibitors in tumour

samples with p53 deficiency, the GE profiles of human cancer cell

lines and xenografts sensitive to targeting therapies were compared

to the 682-gene signature. The similarities observed indicate their

potential susceptibility to these agents. The human cancer

xenografts that responded to AURKA inhibitors were found to

be more similar to the mouse p53-deficient tumours than those

that did not respond (Fig. S9A) [32]. Further, those cell lines

sensitive to targeted therapies against AURKB and PLK showed

strong similarities to the p53-deficient mouse carcinomas

(Fig. S9B) [33]. Importantly, these sensitive cell lines included

not only BC and LAd cell lines, but cells of other organs,

suggesting an effect of these inhibitors in different cancer types.

Another approach to search for targeted therapies that might be

useful in p53-deficient tumours was performed using the

Connectivity Map resource [34] (Materials and Methods). Briefly,

we search for small molecule bioactive compounds (dubbed

perturbagens) able to induce GE profiles with the reverse pattern

of that observed in the 682-signature, so that they could be used to

treat p53-deficient tumours. The results indicate that inhibitors of

histone deacetylases (such as trichostatin A or vorinostat) are

between the most significant perturbagens that may repress the

682-signature pattern (Table 2). Interestingly, the antipsychotic

drug thioridazine also represses the p53-deficient carcinoma GE

profiles, in line with recent evidences demonstrating that the drug

antagonizes dopamine receptors that are expressed on cancer stem

cells and on breast cancer cells [35].

A comparison between clinical outcome as predicted by the 40-

gene test and p53 mutation status was performed using the Miller

dataset. The genomic test showed greater sensitivity than the p53

mutation status in terms of predicting patients with a good

prognosis (see comparisons of the low risk [L, green line] and p53-

WT [pink line] groups; Fig. 5B). Interestingly, patients without

BC. Patients were stratified based on the 40-gene test as of low (green), intermediate (blue) or high (red) risk. C) Kaplan-Meier curves for ER+,
tamoxifen-treated patients with breast cancer in the Miller dataset. Patients were stratified depending on the presence (red) or absence (green) of
p53 mutations. p-val: significance of survival differences (log-rank test).
doi:10.1371/journal.pone.0042494.g003

Table 1. Multivariate Cox regression including the 40-gene
test and breast cancer clinical variables.

Variable HR1 95% CI2 p-val

40-gene test H vs L 4.43 2.46 to 7.95 8.561028*

I vs L 2.06 1.13 to 3.74 6.761027*

tumor size (T2 vs T1) 2.21 1.52 to 3.21 3.061025*

Node (positive vs negative) 1.07 0.78 to 1.46 0.69

ER status (negative vs positive) 1.15 0.77 to 1.72 0.50

Grade (3 vs 1 and 2) 1.00 0.72 to 1.41 0.98

Age (#50 vs .50, years) 1.27 0.82 to 1.97 0.28

Total number of samples is 668. Endpoint analyzed was distant metastasis at
10 years.
Cox analysis was done stratifying by dataset.
1HR: Hazard ratio.
2CI: confidence interval.
*Significant p-values.
doi:10.1371/journal.pone.0042494.t001
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TP53 mutations but predicted to be at high risk by the 40-gene test

showed poor survival potential (high risk and WT in Fig. 5C, red

line). Importantly, these WT patients showed similar survival

probabilities to the high risk TP53-mutant patients (high risk and

MUT in Fig. 5C, dashed red line). A similar result was obtained

when comparing the 40-gene test with the Miller GE-based

predictor of p53 mutation status [28] (Fig. S10). Multivariate Cox

regression including both predictors showed the results of the 40-

gene test to be better correlated with survival than the p53

mutation genomic predictor (Table S6). These results indicate that

the prediction of clinical outcome based on the 40-gene test to be

more accurate than the TP53 mutation status, the consequence of

its ability to detect poor outcome patients with no mutation and to

discriminate low risk patients with greater sensitivity.

p53 Dysfunction in Molecular Subtypes of Human BC and
LAd
Currently, there are oncogene biomarkers defining molecular

subtypes with different clinical outcome and/or targeted therapies

in BC and LAd, as we have already mentioned for oestrogen

receptor and breast cancer (see Fig. 3). The p53 dysfunction was

analysed in these molecular subtypes by comparing the p53RS-

derived values using the 40-gene test and 36-gene genomic-clinical

test. For breast tumours, ER or progesterone receptor (PR)

negative samples displayed higher risk score values than the

positive ones, in line with their highest aggressive behavior (Fig. 6A)

(Table S9). HER2-positive carcinomas exhibited higher score

values (Fig. 6A), also in agreement with worse clinical outcome.

For LAd, EGFR-mutant tumours showed lower risk score values

(Fig. 6B) (Table S10), as expected due to their best clinical

behavior. However, no significant differences were found between

samples with or without KRAS mutations. Despite the mean

differences in p53RS values, both 40-gene test (Fig. 7) and 36-gene

genomic-clinical test (Fig. 8) stratified patients with significant

survival differences independent on oncogene biomarker sub-

grouping.

Discussion

The p53 pathway is one of the most important tumour

suppression mechanisms; mutations affecting it are commonly

found in the majority of cancer types. The correlation between

such mutations and tumour malignancy, suggests the need for

more detailed characterization of this pathway. High throughput

technologies such as genome-wide GE analysis or next generation

sequencing (NGS) may help to determine the alterations in

individual tumours, which would allow personalized treatments

and ultimately improve the care that could be offered to patients.

However, arriving at effective personalized medicine depends on

the availability of appropriate analysis model systems and

adequate clinical evaluation/validation. The present work dis-

cusses a p53-deficient tumour mouse model system with molecular

features leading to tumour aggressiveness, and the development

and validation of GE signatures that can predict clinical outcomes

in human BC and LAd. The results show the genes making up

these signatures to be surrogate markers of p53-dependent

pathway alterations, and possible candidates for targeting thera-

pies.

We previously reported a mouse 682-gene signature seen in

p53-deficient skin tumours to show significant molecular similar-

ities to human cancer transcriptomes (such as those of BC and

LAd) involving TP53 mutations and/or poor outcome. The

present results show that such similarities are also present in

GEMMs of BC and LAd carcinoma in which p53 expression or

function is inhibited, confirming our previous findings. They also

show that human and mouse carcinomas arising in different

organs such as skin, lung and breast show strong similarities upon

p53 alteration. Similar findings were reported by Deeb et al. [9],

which identified a gene signature associated with clinical outcome

of human BC, LAd and prostate cancer using GEMMs expressing

SV40 T/t antigens. An explanation for the similarities in

molecular profile between tumours of different organs may be

that p53 inhibition induces an overall process of de-differentiation,

giving rise to an ESC-like phenotype. This would agree with our

previous results showing ESC signatures in the mouse skin

carcinomas [12], with findings showing that tumour aggressiveness

is predicted by these ESC GE profiles [36], and with the presence

of such profiles in p53-mutant human BC tumours [14]. The

observation that p53 inhibition in different organs induces

a common GE program associated with poor clinical outcome

also reinforces the direct role of p53 protein in the suppression of

malignancy. Similarly, the present results show that time-de-

pendent inhibition of p53 in a BC model or restoration of p53

expression in tumours in a LAd model is significantly correlated

with the 682-, 40-, and 36-gene signatures in vivo (Fig. 2 and S7).

Pathway analysis showed that p53 directly inhibits the genes

overexpressed in the 40-gene and 36-gene signatures. Collectively

these findings strengthen and support the major roles of p53 in

multiple tissues of different organisms, and demonstrate that these

gene signatures are surrogate biomarkers of p53 inhibition during

carcinoma progression. Using the Oncomine database, the

analysis of the transcriptome of human cell lines and xenografts

with sensitivity to drugs designed against AURKA, AURKB or

PLK1 kinases show a profile similar to that seen in the described

mouse skin carcinomas. These similarities indicate that tumours

with such profiles may respond to these therapeutic agents,

providing alternative therapies for TP53-mutant patients. Impor-

tantly, the Millenium company has recently reached Phase III

clinical trials with the AURKA inhibitor MLN8237 for the

treatment of haematological and solid tumours. These kinases

have roles in mitosis, a process deeply de-regulated in p53-mutant

tumours [37]. In addition, both AURKA and PLK1 are directly

regulated by p53 (Fig. S8A). We suggest that the efficacy of the

inhibitors of these kinases in tumours overexpressing them

probably depends on both the presence of p53 mutations and

p53 pathway inhibition independent of TP53 mutation (as assessed

by the 40-gene test). Thus, there are reports indicating that

inhibitors to AURKA or to PLK display better efficacy with p53

mutation [38–40]. Using the Connectivity Map resource, we

found that HDAC, mTOR, PIK3CA or topoisomerase II

inhibitors might be beneficial for tumours with similar profile to

our p53-deficient mouse carcinomas. Some of these compounds

Figure 4. Human LAd patient stratification using the mouse-derived 36-gene genomic-clinical predictor test. A) Kaplan-Meier curves
for overall survival (OS) for the pooled population of patients with lung cancer in three datasets including patients with all disease stages. Patients
were stratified based on the 36-gene test as of low (green), intermediate (blue) or high (red) risk (see Materials and Methods). B) Kaplan-Meier curves
for early stage patients (Stages IA and IB). Patients were stratified based on the 36-gene test as of low (green), intermediate (blue) or high (red) risk. C)
Kaplan-Meier curves for patients profiled using qRT-PCR and FFPE samples. Patients were stratified based on the 36-gene test as of low (green), or
high-intermediate (red) risks (see Materials and Methods). Owing to the small sample size, the intermediate and high risk groups were pooled. p-val:
significance of survival differences (log-rank test).
doi:10.1371/journal.pone.0042494.g004
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are being analyzed in clinical trials for cancer treatment, or

already approved by the FDA (such as vorinostat for cutaneous T-

cell lymphoma).

A number of genomic tests have been developed for human BC

outcome based upon GE profiles, although only a small number

have seen clinical implementation [41]. Since TP53 mutation is

Figure 5. Comparison between the 40-gene test and p53 mutation status in terms of predicting the outcome of BC. A) The AURKA,
AURKB and PLK1 genes within the 40-gene test are overexpressed in human BC with p53 mutations. Tumour samples were ordered by p53 Risk Score
as determined by the 40-gene test; risk groups are shown as low (green), intermediate (blue) or high (red) risk. Note the existence of high risk
tumours without p53 mutations. B) Comparison of patient stratification determined using the 40-gene test and p53 mutation status in the Miller BC
dataset. The survival curves of both stratification methods are shown simultaneously for the same patient dataset. p-val: significance of survival
differences (log-rank test). C) Combination of the 40-gene test and p53 mutation status for stratifying patients with BC. Patients are grouped as p53-
WT (L, I and high risk groups) or p53-MUT (low, intermediate and high risk groups). Only one sample out of 251 was classified as of low risk and p53-
MUT; this was not included in the graph. p-val: significance of survival differences (log-rank test).
doi:10.1371/journal.pone.0042494.g005
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a predictor of poor prognosis, some of these BC tests based on GE

are designed to predict TP53 mutational status [28,31]. However,

the 40-gene test discriminates poor outcome tumours with no

TP53 mutation, demonstrating its greater sensitivity than muta-

tional analysis in the detection of patients with low survival

potential. This might be the consequence of other molecular

alterations that produce p53 pathway inhibition being present,

either in the upstream regulators or downstream effectors of p53.

The BC tumours produced in the MMTV-c-myc models show

different degrees of similarity with the 682-gene signature, with

about 50% of samples returning positive Pearson correlation

values in the GSE15904 dataset (which contains 80 carcinomas).

Although this model is poorly metastatic [42,43], a signature of

metastatic potential has been described in a subgroup of its tumour

types [16]. Cooperation between p53 and c-myc may exist in

p53DEC and p53DEC;pRbDEC skin carcinomas since they over-

express c-myc targets [12]. The close similarity of BC models owed

to the expression of the SV40 T-antigen used in the C3(1)-Tag and

WAP-TNP8 mice is due to the Large T-antigen deactivating p53

and pRb. These deactivations are also likely in human basal-like

tumours since these are known to harbour p53 mutations [44], to

have a high mitotic rate, and to show the greatest expression of

proliferation genes, which are known E2F targets [45]. In

addition, an interspecies comparison of mouse BC models and

human BC samples has also shown strong similarities between

SV40-derived models and human basal-like tumours at the

genome-wide transcriptome level [46], confirming the present

results. Finally, it has recently been described that a subgroup of

carcinomas in the p53fl/fl;MMTV-cre transplant model, also with

strongly 682-gene-like signatures, show marked enrichment in

functional tumour-initiating cells in limiting dilution transplanta-

tion assays [47]. These findings further underscore the ESC

characteristics of the p53-deficient skin carcinoma model.

The molecular and pathway changes that occur between

primary carcinomas and metastases in the LAd Kras/Lkb1L/L

model have been associated with the enrichment of GE signatures

associated with the ESC phenotype, and the activation of

epithelial-mesenchymal-transition (EMT), focal adhesion and

oncogenic signalling (EGFR or ERBB2) [11]. These associations

agree with the present results: the p53DEC and p53DEC;pRbDEC

skin models both show ESC signatures as well as the deregulation

of EMT markers [12]. Whether the transition from primary to

invasive tumours in the Kras/Lkb1L/L model is facilitated by early

mutations inhibiting the p53-dependent pathway or in the p53

alleles themselves remains to be determined. Carcinomas arising

through KrasG12D expression and homozygous p53 inhibition in

the KrasLA2/+;Trp53LSL/LSL;Rosa26CreERT2 model showed a bet-

ter correlation with 682-gene than with the KrasG12D model

(which has WT p53). This agrees with the reported high

malignancy of double transgenic mouse tumours [48,49].

The results of our retrospective validation of the BC 40-gene

test in about 3000 patients from 12 different cohorts strongly

suggests its clinical usefulness, although further validation in-

volving prospective testing is required. Moreover, the validation

showed this BC test to be independent of the microarray platform

used in the datasets, as also seen for the LAd 36-gene predictor.

However, for LAd, the number of GE-based datasets for outcome

prediction testing was more limited. Nonetheless, LAd predictors

are very necessary in early stage patients if the right form of

clinical management is to be adopted. Here we show that the 36-

gene genomic-clinical predictor to be of high sensitivity in terms of

predicting good outcome in the patients in these validation

cohorts, stratifying patients of all disease stages in terms of clinical

outcome. Remarkably, this test also appeared to be of use with

FFPE-samples/qRT-PCR, again providing good patient stratifi-

cation. Further restrospective validation studies are necessary with

larger numbers of patients.

In conclusion, the present results indicate that mouse skin

carcinoma models with p53-deficiency show significant similarities

to mouse BC and LAd models with functional inhibition of p53.

These similarities can be exploited in the development of accurate

predictors of human BC and LAd clinical outcome. Additional

genomic testing to predict clinical behavior should be tried with

other cancer types associated with p53-dependent malignancy. We

already have preliminary data showing that predictors for prostate

adenocarcinoma, multiple myeloma, and glioblastoma might be

obtained.

Materials and Methods

Ethics Statement
The ethical committee of the Errikos Dunant Hospital in

Athens (Greece) approved the research performed using FFPE

blocks of carcinoma samples from lung cancer. Written informed

consent has been obtained and the investigation has been

conducted according to the principles expressed in the Declaration

of Helsinki.

Comparison of the 682-gene Signature in GEMMs of BC
and LAd
GEMMs of BC and LAd for which genome-wide transcriptome

analyses have been reported, and for which the raw data are

publicly accessible, were used as models for comparison. To

reduce artefactual similarities due to differences between micro-

array platforms, mouse datasets were selected from analyses

performed using the same Affymetrix GeneChip with which the

682-gene signature was obtained (MOE 430 2.0), or other

GeneChips that use the same probesets (MOE 430A, MOE

430A 2.0). A complete list of the GEMMs compared is described

in Table S1 [10,11,16–23]. Raw data were downloaded from the

GEO web site. Robust multichip average (RMA) [50,51] was

Table 2. Top 10 pertubagens identified through the
Connectivity Map that induce a reverse 682-signature.

Rank1 Perturbagen - cell line Mean2 Description p-val3

1 trichostatin A - PC3 20.676 HDAC inhibitor 0

2 trichostatin A - MCF7 20.600 HDAC inhibitor 0

3 vorinostat - MCF7 20.708 HDAC inhibitor 0.00006

5 0175029-0000 - PC3 20.763 nd 0.00048

6 sirolimus - MCF7 20.389 mTOR inhibitor 0.00066

7 ellipticine - MCF7 20.848 Topoisomerase II
inhibitor

0.0007

8 LY-294002- MCF7 20.499 PIK3CA inhibitor 0.00084

9 thioridazine - PC3 20.695 Dopamine
receptor inhibitor

0.00118

15 harmine - MCF7 20.842 Monoamine
oxidase inhibitor

0.00233

16 tomatidine - MCF7 20.830 ACAT1 inhibitor 0.00243

1Ranking based upon permutation analysis of the same perturbagen made in
the same cell line.
2Arithmetic mean of the connectivity scores.
3An estimate of the likelihood that the enrichment of a set of instances in the
list of all instances in a given result would be observed by chance.
doi:10.1371/journal.pone.0042494.t002
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performed for each dataset in order to obtain log2-based signal

intensity probeset values, from which z-scores (mean=0, standard

deviation = 1) were calculated. This standardization of the signal

values allowed for direct comparison between different datasets in

a single matrix. The T-values returned by Student’s t-test

comparisons between normal skin and carcinoma samples in

which the 682-gene signature was determined (GSE11990) were

used to build a centroid template. The Pearson correlation

coefficient (and the corresponding p-value) with respect to the

centroid was calculated for each mouse sample. The mean

correlation value was calculated for samples with similar genotypes

and tissue types.

Development of 40-gene and 36-gene Tests for
Predicting the Clinical Outcome of Human Cancer
The genomic predictive tests were developed in a three-step

procedure (Fig. S1). Step 1: Deregulated mouse p53-tumor genes

(i.e., compared to normal skin tissue using our GSE11990 dataset)

were selected to obtain the 682-gene signature as previously

described [12]. Step 2: Cox regression analysis was performed for

the human homologues of the mouse signature transcripts in

a discovery human cancer dataset. Step 3: Patient p53 Risk Scores

(p53RS) were calculated and receiver operating characteristic

(ROC) curves analyses performed for selected gene groups based

on Cox correlations with the clinical outcome.

Mapping from mouse to human was performed using the Ailun

web tool (http://ailun.stanford.edu/) [52]. Affymetrix HG-U133A

probesets of the human transcripts were used in subsequent

similarity analyses. For BC, the Desmedt dataset was used as

discovery dataset to obtain the predictor test (Table S2) [53].

Signal intensity values were obtained using RMA. Relative log

expression (RLE) and normalised unscaled standard error (NUSE)

plots allowed the identification of seven poor quality human

cancer samples; these were discarded (final patient number= 191).

Cox proportional hazard analysis was performed with the human

homologues of the 682-signature, using censored distant metastasis

(DM) at 5 years as the endpoint. A Cox hazard ratio of .0 is

returned if the gene is overexpressed in prometastatic tissue, and

below ,0 if underexpressed. A Wald test [54,55] was performed

to check the null hypothesis of the coefficient being 0. Transcripts

Figure 6. p53 dysfunction in molecular subtypes of human BC and LAd. Patient risk scores (p53RS) are represented depending on ER, PR
and HER2 status using the 40-gene test for breast cancer patients (A) and depending on EGFR and KRAS mutation status as calculated by the 36-gene
genomic-clinic test for lung adenocarcinoma patients (B). Each dot represents an individual sample value. Horizontal green lines represent mean
values in each sample group. Student’s Ttest analysis was done to find significant differences in score values between patient biomarker subgroups
(threshold p-val,0.05). Patients were stratified based on the risk groups as of low (green), or high-intermediate (red) risks (see Materials and
Methods).
doi:10.1371/journal.pone.0042494.g006
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showing significant correlations with DM were assigned to

probeset groups depending on their Wald values (Si): group i) Si
$3 or Si #23, group ii) Si $2.5 or Si #22.5, or group iii) Si $2

or Si #22. A p53RS formula was then developed (Fig. S2A) to

quantify the metastatic potential of each tumour, based on the

expression values and the Wald value calculated for each

transcript probeset in the Cox analysis. A similar means of

obtaining risk scores for each patient has been previously reported

for predicting the outcome of human BC [56]. The prediction

capabilities of the probeset groups were checked using ROC

Figure 7. Survival curves of human BC stratified using 40-gene test and depending on molecular subtypes. Kaplan-Meier curves of
distant metastasis-free survival (DMFS) for patients with BC depending on ER, PR and HER2 status. Patients were stratified based on the 40-gene test
as of low (green), intermediate (blue) or high (red) risk (see Materials and Methods). p-val: significance of survival differences (log-rank test).
doi:10.1371/journal.pone.0042494.g007
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curves for the discovery dataset, by calculating the AUC values or

the specificity at 100% sensitivity (Fig. S2B and C). The 40-

probeset group (hereafter referred to as the 40-gene test) (Table

S3) was selected since it showed the best AUC (0.77, p-

val = 161027) and specificity (40.1) values. Univariate Cox

regression analysis showed the p53RS value, as a continuous

variable, to be very significantly correlated with DM (p-

val = 1.4961027). The patients were stratified into three risk

groups by dividing the dataset into six p53RS percentiles (from

lower to higher values), with the 1st percentile for low risk, the 2nd

to 3rd percentiles for intermediate risk, and the 4th to 6th

percentiles for high risk. The corresponding p53RS threshold

values defining each risk group were: low ,289.27; 289.27#

intermediate ,25.33; and high $25.33.

LAd samples from early stage patients (stages IA and IB)

(n = 275) in the Shedden dataset [30] (Table S4) were used to

develop the genomic predictor following the same three-step

procedure described above (Fig. S1). Later disease stage samples

were excluded from the discovery dataset since the accuracy of the

genomic-based prediction dropped significantly when they were

included (later stage patients have usually undergone aggressive

treatments, which might affect the results). All discovery samples

met the RLE and NUSE thresholds after RMA normalization.

This dataset included 443 patients from four institutions. Overall

survival (OS) at 3 years was used as the endpoint in Cox regression

analysis of the human-mapped 682-gene transcripts. Probeset

groups showing significant associations with OS were constructed

based on Wald threshold similarities, as above. The same

approach was then used to calculate the p53RS values for each

patient (Fig. S2A). AUC and specificity values at 80% sensitivity

(Fig. S2D and E) were obtained, providing an optimal 36-probeset

group (hereafter referred to as the 36-gene test) (Table S5). The

sensitivity selected was the highest possible in order to obtain

a minimum of 40% specificity. A predictor based on clinical

variables was established using data for all patients from two

institutions represented in the Shedden dataset (HLM and MI)

(n = 254). Cox analysis was then performed using age, gender and

disease stage data since these variables are known to be correlated

with clinical outcome [30]. Before calculation, gender and disease

stage were coded using numerical values as follows: female =21,

male =+1; and stage IA= 1, IB= 2, and stage II or later = 3. Age

was deemed to be a continuous variable. Z-scores were also

Figure 8. Survival curves of human LAd stratified using 36-gene genomic-clinic test and depending on molecular subtypes. Kaplan-
Meier curves of overall survival for patients with LAd depending on EGFR and KRAS mutation status. Patients were stratified based on the 36-gene
genomic-clinic test as of low (green), intermediate (blue) or high (red) risk (see Materials and Methods). p-val: significance of survival differences (log-
rank test).
doi:10.1371/journal.pone.0042494.g008
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calculated for each variable. After Cox analysis involving OS at

3 years, a clinical risk score (CRS) was calculated for each patient

based on the Wald value for each clinical variable and the

corresponding z-score value for each patient (Fig. S5A and Table

S7). ROC analysis showed a significant association between CRS

and OS (AUC=0.66, p-val = 361024). A combination of both the

36-gene genomic and clinical tests (36-gene genomic-clinical

predictor) improved the overall accuracy within the combined

dataset (n = 373) (AUC=0.73, p-val = 9610213). This combina-

tion was established by adding the p53RS and the CRS values

(Global Risk Score or GRS). Patient stratification was performed

as for BC, by dividing the dataset into six percentiles of GRS (from

lower to higher values): the 1st percentile for low risk, the 2nd and

3rd percentiles for intermediate risk, and the 4th to 6th percentiles

for high risk. The corresponding 36-gene genomic-clinical

standardised threshold values defining each risk group were: low

,21.051; 21.051# intermediate ,20.098; and high $20.098.

Validation of the 40-gene Test as a Predictor of BC
Clinical Outcome
The test datasets used to validate the predictive genomic test

are described in Table S2 and elsewhere [28,56–66]. They

represent a total number of 2993 individual BC samples, 12

different datasets, 2 microarray platforms, and 4 different

endpoints. p53RS was calculated independently in each dataset.

For the Affymetrix datasets, signal intensity values were obtained

using RMA, and the p53RS for each patient calculated using the

40 probesets. Risk groups were defined using the above-described

thresholds. For the van de Vijver dataset (Agilent), gene

annotations for the array used (GEO identifier GPL2567) were

obtained using the Ailun web tool. Log102based expression

values were transformed to log2 values. Entrez IDs for the 40

probesets (32 total IDs) were extracted from the dataset, together

with the log2 values for each sample. Thirty two Agilent probes

were obtained corresponding to 27 unique Entrez genes. p53RS

was obtained as follows: i) The mean Wald value of genes with

more than one Affymetrix probeset was calculated, such that

each gene was associated with a single final Wald value; ii) genes

with more than one Agilent probe were independently multiplied

by the Wald value of the corresponding gene. Absolute p53RS

values were then calculated from the above 27 genes. To

compare with Affymetrix values and divide the patients into

intermediate, high and low risk groups, z-scores were calculated

for the p53RS values for the patients in the van de Vijver dataset

(Agilent) and the Desmedt discovery dataset (Affymetrix). The

use of z-scores allows equivalence to be established between

datasets with respect to the thresholds separating the risk groups.

Validation of the 36-gene Genomic-clinical Test as
a Predictor of LAd Clinical Outcome
The test datasets used to validate the predictive genomic-clinical

test are described in Table S4. The LAd microarray datasets used

included the remaining 67 samples from the Shedden dataset, 129

samples from the Nguyen dataset [67], and 117 samples from the

Tomida dataset [68], representing a total number of 313 samples,

and 2 different platforms (Affymetrix and Agilent). GRS calcula-

tion was performed independently for each dataset. For the

Affymetrix datasets, signal intensities were obtained using RMA.

For the Tomida dataset (Agilent), a normalised expression dataset

was downloaded from the GEO website (GSE13213). The p53RS

for each patient was calculated using the 36 probesets, and the

CRS calculated using clinical variables. Risk groups were defined

using the above-described thresholds for GRS. For the Tomida

dataset, gene annotations for the array used (GEO identifier

GPL6480) were obtained using the Ailun web tool. Entrez IDs for

the 36 probesets (30 total IDs) were extracted from the dataset,

together with the log2 values for each sample. Forty seven Agilent

probes were obtained, corresponding to all 30 Entrez genes. The

p53RS values were obtained as described for the 40-gene test.

Since the GRS was calculated from the z-values for p53RS and

CRS, no inter-platform transformation of absolute p53RS values

was necessary. The same thresholds are therefore valid for both

platforms.

Validation of the 36-gene Genomic-clinical Test by qRT-
PCR Using FFPE LAd Samples
Validation of the 36-gene genomic-clinical predictor was

performed in FFPE-samples from 55 patients with LAd (Table

S4). Briefly, the cancerous tissue on 4–5 slides (4 mm sections) per

patient was dissected out. These were then deparaffinated using

deparaffinisation solution (Qiagen). RNA extraction was performed

using the miRNeasy FFPE Kit (Qiagen), which includes a DNase

treatment step to avoid cellular DNA contamination. The RNA

concentration of the FFPE samples was determined using a Nano-

DropH ND-1000 UV-Vis Spectrophotometer (NanoDrop Tech-

nologies, Wilmington, DE, USA). cDNA synthesis was performed

with oligonucleotide primers specific for 30 genes within the 36-gene

signature, plus 6 housekeeping genes (ACTB, GAPDH, GUSB,

RPLP0, TBP and TFRC), using the Omniscript RT Kit (Qiagen).

qRT-PCR was performed with primers located upstream of the

corresponding cDNA-synthesis primers, using the Power SYBRH
Green PCRMaster Mix (Applied Biosystems). The sequences of all

primers used are detailed in Table S8.

qRT-PCR data normalisation was performed as previously

described [69] with some modifications. Briefly, the mean of the

housekeeping GE values was used as a reference, and a Ct value

for the 36-gene test defined for each sample. To calculate the

p53RS, the mean of the normalized GE values of the 30 non-

housekeeping genes was determined, as illustrated in Figure S5B.

The mean value for the housekeeping genes was very similar

between samples. Six samples showing no housekeeping gene

expression, or a low Ct value, were excluded from analysis. PCR-

p53RS values were standardized and the z-values combined with

those of the CRS as described above to obtain a GRS. The

threshold PCR-p53RS values used to stratify the patients were the

same as those used in the quantification of microarray-based GE.

Due to the small number of samples (n = 55), the intermediate and

high risk patients were combined to form a single group.

Overlapping between the 682-gene Signature and the
Transcriptome of Human Cancer Samples Sensitive to
Targeting Therapies
Overexpressed and underexpressed mouse genes within the

682-gene signature in the p53-deficient carcinomas were mapped

to human genes using the Ailun web tool and loaded into the

OncomineTM/Compendia database [70]. The association of the

mapped genes with the concepts of ‘‘Drug Sensitivity’’ or ‘‘Patient

Treatment Response’’ was tested using Fisher’s exact test.

Significance was set at Odds Ratio $2 and P#0.0001. We

selected for significant associations between the 682-gene signature

and the transcriptomes of cancer samples sensitive to therapies

targeting genes represented within the 40-gene signature. Alter-

natively, the overexpressed and underexpressed mouse genes

within the 682-gene, mapped to human genes, were loaded into

the Connectivity Map resource [34] (http://www.broadinstitute.

org/cmap/). In brief, this resource consists of pattern-matching
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software that compares an input gene signature to a database of

signatures from 164 small molecule bioactive compounds (dubbed

perturbagens) (85 of which are classified as pharmaceutical drugs)

and 4 cell lines: MCF7 (breast cancer), PC3 (prostate cancer),

HL60 (leukemia), SKMEL5 (melanoma). A connectivity score

from 21 to +1 is assigned based on the degree of similarity or

dissimilarity between the two signatures. Thus, a drug with a low

connectivity score has a gene signature very dissimilar to the query

signature and might be hypothesized to inhibit a pathway in

parallel with the transcription factor that generated the query

signature. Results of permutation analyses were used, in which an

estimate of the likelihood that the enrichment of a set of instances

in the list of all instances in a given result would be observed by

chance. This value is determined empirically by computing the

enrichment of one hundred thousand sets of instances selected at

random from the set of all instances in the result.

Supporting Information

Figure S1 Three-step procedure for obtaining the 40-
gene and 36-gene predictors of clinical outcome. Step 1:
Signatures were obtained after expression profiling of mouse skin

primary tumours and normal tissue. Mouse genes were mapped to

human genes. Step 2: Cox regression analysis was performed to

select tumour genes showing significant associations with survival

in human BC and LAd discovery datasets. Step 3: Subgroups of
probesets were independently tested as predictors using the p53

risk score (p53RS) formula and receiver operator curve (ROC)

analysis within the corresponding discovery datasets (Fig. S2).

(TIF)

Figure S2 Development of the breast and lung cancer
outcome predictor tests. A) p53 Risk Score (p53RS) formula.

A risk score was calculated for each patient based on the Wald

statistic and the log2 expression value for each probeset in the

discovery dataset. Receiver operator curve (ROC) analysis was

performed for selected gene groups of different size to calculate the

prediction variables of i) area under the curve (AUC) for breast

cancer (B), the AUC for lung adenocarcinoma (D), ii) and

specificity at 100% sensitivity for breast cancer (C), or at 80%

sensitivity for lung cancer (E). See Materials and Methods for

a detailed explanation.

(TIF)

Figure S3 Kaplan-Meier curves for patients with BC
and DMFS in eight datasets. Patients were stratified as of low

(green), intermediate (blue) or high (red) risk using the 40-gene test.

Numbers at the left of each plot represent the number of patients

within each risk group. p-val: significance of survival differences

(log-rank test).

(TIF)

Figure S4 Stratification and survival of patients with
breast cancer using the 40-gene test and different
endpoints. A) Relapse-free survival in the pooled datasets

(n = 978). B) Disease-free survival in the pooled datasets

(n = 395). C) Overall survival in the pooled datasets (n = 781).

Patients are stratified as being at low (green), intermediate (blue)

and high (red) risk. p-val: significance of survival differences (log-

rank test).

(TIF)

Figure S5 A) Formula for calculating human lung adenocarci-

noma risk based on clinical variables. B) Formula for calculating

human lung adenocarcinoma risk based on the 36-gene test (using

qRT-PCR and FFPE-samples).

(TIF)

Figure S6 Kaplan-Meier curves of OS for LAd patients
in three datasets. Patients were stratified as of low (green),

intermediate (blue) or high (red) risk using the 36-gene genomic-

clinical test. Survival plots are shown for patients of all stages (A, B
and C) and early stage patients (D and E). The validation patients

from the Shedden dataset do not include early stage patients. p-

val: significance of survival differences (log-rank test).

(TIF)

Figure S7 The expression of the genes represented by
the 40-gene and 36-gene signatures is dependent on p53-
expression; their expression is different in mouse
models of mammary and lung carcinoma respectively.
The same is seen in human cancer breast and lung samples. A)

Heatmap of the 40-gene signature transcripts from normal

mammary gland (green) and breast carcinoma (red) from WAP-

TNP8 transgenic mice. The middle samples, showing intermediate

expression, include mammary glands from transgenic mice at 1, 2,

3, 4 and 5 months after the induction of the SV40-transgene (and

subsequent p53 inhibition) (blue bars). Wald.0: genes over-

expressed in high risk breast cancer patients. Wald,0: genes

underexpressed in high risk breast cancer patients. B) Heatmap of

the 36-gene signature transcripts from normal lung (green) and

lung adenocarcinomas (red) from KrasLA2/+;Trp53LSL/LSL;Ro-

sa26
CreERT2

transgenic mice. The tamoxifen-induction p53 expres-

sion in adenocarcinomas is shown in the middle samples, which

show intermediate expression. Wald.0: genes overexpressed in

high risk lung adenocarcinoma patients. Wald,0: genes under-

expressed in high risk lung adenocarcinoma patients.

(TIF)

Figure S8 Inhibitory regulation by p53 (and/or pRb) of
genes overexpressed in high risk tumours as deter-
mined by the 40-gene (A) and 36-gene (C) tests is known
to occur, validating the essential role of the p53 pathway
in repressing these genes. Genes within the 40-gene (B) and

36-gene (D) signatures activate cell proliferation, and inhibit cell

differentiation and apoptosis. Genes in red are overexpressed in

high risk tumours; genes in blue are underexpressed in high risk

tumours. Red lines: direct inhibition between gene products or

cellular processes. Green lines: direct activation between gene

products or cellular processes. Dashed lines: regulation not

demonstrated to be direct. Numbers close to coloured lines:

number of PubMed publications citing interactions between gene

products (panels A and B) or biological processes (panels C and D).

Analysis performed using Pathway StudioH software from Ariadne

Genomics.

(TIF)

Figure S9 p53 mutation biomarkers within the 40-gene
signature as alternative targets for cancer treatment. A)
Response to the AURKA inhibitor MLN8237 was tested in

human cancer xenografts. Comparison of the transcriptomes of

responder and non-responder samples with the 682-gene signa-

ture. Significant transcript overlapping was observed for over-

expressed genes in both the mouse signature and the responders.

The number of responder/non-responder human tumours is

shown, as is the number of common genes, and the level of

significance for overlapping (p-val) using Fisher’s exact test. B)
Sensitivity to inhibitors of AURKB and PLK1 was tested in

a collection of human cancer cell lines. Comparison of the

transcriptomes of the sensitive and resistant lines with the 682-

gene signature. Significant transcript overlapping was observed for

overexpressed genes in both the mouse signature and the sensitive

cells. For each inhibitor, the number of sensitive/resistant cell lines
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is shown, as is the number of common genes, and the level of

significance for overlapping (p-val).

(TIF)

Figure S10 Survival curves for BC patients as predicted
by the 40-gene test and the p53 mutation genomic test. A)
Comparison of patient stratification by the 40-gene and p53

mutation status predictor tests, performed with the Miller BC

dataset. Survival curves for the same patients produced by both

stratification methods are shown. B) Combination of the 40-gene

test and p53 mutation status predictor test in the Miller BC

dataset. Patients are grouped in p53-WT-pred low, intermediate

and high risk groups, and p53-MUT-pred low, intermediate and

high risk groups. p-val: significance of survival differences (log-rank

test).

(TIF)

Table S1 Mouse mammary and lung adenocarcinoma
models used to validate the 682-gene signature.
(XLS)

Table S2 Gene expression datasets for human breast
cancer with clinical information.
(XLS)

Table S3 Probesets corresponding to the 40-gene test,
and associated Cox analysis.
(XLS)

Table S4 Gene expression datasets for human lung
adenocarcinoma with clinical information.
(XLS)

Table S5 Probesets corresponding to the 36-gene test,
and associated Cox analysis.
(XLS)

Table S6 Multivariate Cox regression analysis for the
40-gene test and p53 mutation status test.

(XLS)

Table S7 Clinical variables in the lung adenocarcinoma
clinical test, and associated Cox regression analysis.

(XLS)

Table S8 Primer sequences used for qRT-PCR valida-
tion of the 36-gene test using FFPE-samples from lung
adenocarcinoma patients.

(XLS)

Table S9 Molecular annotations of the clinical breast
cancer specimens with respect to ER, PR and HER2
status.

(XLS)

Table S10 Molecular annotations of the clinical lung
adenocarcinoma specimens with respect to EGFR and
KRAS mutational status.

(XLS)
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