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Abstract

Bayesian inference (BI) of phylogenetic relationships uses the same probabilistic models of evolution as its precursor
maximum likelihood (ML), so BI has generally been assumed to share ML’s desirable statistical properties, such as largely
unbiased inference of topology given an accurate model and increasingly reliable inferences as the amount of data
increases. Here we show that BI, unlike ML, is biased in favor of topologies that group long branches together, even when
the true model and prior distributions of evolutionary parameters over a group of phylogenies are known. Using
experimental simulation studies and numerical and mathematical analyses, we show that this bias becomes more severe as
more data are analyzed, causing BI to infer an incorrect tree as the maximum a posteriori phylogeny with asymptotically
high support as sequence length approaches infinity. BI’s long branch attraction bias is relatively weak when the true model
is simple but becomes pronounced when sequence sites evolve heterogeneously, even when this complexity is
incorporated in the model. This bias—which is apparent under both controlled simulation conditions and in analyses of
empirical sequence data—also makes BI less efficient and less robust to the use of an incorrect evolutionary model than ML.
Surprisingly, BI’s bias is caused by one of the method’s stated advantages—that it incorporates uncertainty about branch
lengths by integrating over a distribution of possible values instead of estimating them from the data, as ML does. Our
findings suggest that trees inferred using BI should be interpreted with caution and that ML may be a more reliable
framework for modern phylogenetic analysis.
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Introduction

Statistical inference of phylogenetic relationships informs

analysis in fields as diverse as comparative genomics, epidemiol-

ogy, ecology, and evolution [1]. Bayesian inference (BI) of

phylogeny [2–4] has recently gained in popularity and appears

to have answered some long-standing phylogenetic questions [5,6].

The aim of Bayesian statistics is typically to characterize the

posterior probability distribution of a set of hypotheses, given a

body of data, a probabilistic model for the generation of that data,

and an explicit probabilistic description of prior beliefs. The chief

concern of phylogenetics, in contrast, is to produce a concrete

inference of historical evolutionary relationships and to charac-

terize the statistical support for that inference. As such, nearly all

phylogenetic analyses using BI have applied a Bayesian decision

rule to select the tree with the highest posterior probability (or a

consensus tree of all clades with posterior probability w0:5) as the

best hypothesis of phylogeny (e.g., [5,6]).

BI and its precursor maximum likelihood (ML) infer phyloge-

netic relationships using the same probabilistic models of

molecular evolution, so it has been assumed that BI, like ML

[7–9], is largely unbiased and statistically consistent given the

correct model [6,10]. A key difference between BI and ML—and a

major proposed advantage of BI [3,10–12]—is that Bayesian

methods incorporate uncertainty about ‘‘nuisance parameters’’

such as branch lengths on the topology and the parameters of the

evolutionary model; in contrast, ML requires specific values for

these parameters to be estimated from the data. When data are

limited, the ML estimates may deviate from the true values,

because the observed state pattern frequencies vary stochastically

from expectation. With larger datasets, ML yields increasingly

accurate estimates of nuisance parameter values; as sequence

length approaches infinity, the likelihood of the true phylogeny

(with the correctly estimated branch lengths) is guaranteed to

exceed that of any other phylogeny (with any branch lengths), so

long as the model is adequately parameterized and identifiable

[9,13]. In order to reduce dependence on estimates of nuisance

parameters, BI calculates the integrated likelihood of each

topology over multiple values of each parameter, weighted by a

user-specified distribution that describes the prior probability of

each parameter value [3]. Reliable prior information about

branch lengths and other model parameters is seldom available

in practice, so virtually all analyses have used ‘‘uninformative’’

diffuse prior distributions (such as branch length priors uniform

from 0 to 5 or exponential with mean 0.1, which are offered as the

default values in common software packages). Because BI
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incorporates uncertainty about nuisance parameters, it has been

favored over ML for implementing complex models with many

parameters, particularly when data are limited [3,10,12,14].

The statistical characteristics and performance of BI, particu-

larly vis-a-vis ML, have not been thoroughly evaluated. Several

criteria can be used to evaluate the reliability of phylogenetic

methods for inferring topologies. First, the asymptotic perfor-

mance of phylogenetic methods when the assumed evolutionary

model is correct has been evaluated in terms of statistical

consistency—convergence in probability on the true phylogeny,

typically with increasing support, as the amount of sequence data

increases. Consistency has been evaluated directly by mathemat-

ical proof [9,15–18] or numerical analysis [19,20], and indirectly

by analyzing simulated datasets of increasing size [21–23]. Second,

topological bias has been evaluated by determining whether a

method tends to recover a particular incorrect topology when

phylogenetic signal is absent or weak [7,19,24]. Third, efficiency—

the quantity of data required to reliably recover the true tree—has

typically been assessed by analyzing the proportion of correct

inferences using simulated datasets of variable size [25–27].

Fourth, robustness to incorrect assumptions about the underlying

evolutionary model or incorrect prior distributions—an important

practical concern, because complete and accurate a priori

knowledge of evolutionary processes is never available—has been

evaluated by examining consistency, bias, and efficiency when the

true model and prior distributions are not applied [8,23,28–32].

Other studies have examined the accuracy and behavior

of measures of statistical confidence in topological inferences

[29,32–40].

Most analyses of Bayesian phylogenetic methods have focused

on the properties of its confidence measures; the consistency, bias,

efficiency, and robustness of using BI with a Bayes decision rule to

infer topologies have not been well characterized. ‘‘Bayesian

simulations’’ have shown that, when the prior distributions

precisely match the distribution of conditions under which the

data were simulated, the average posterior probability of a group

of inferences accurately predicts the proportion of those inferences

that are correct [29,31]. Yang and Rannala [31] showed that the

choice of priors affects posterior probabilities and that vague or

uninformative priors can cause them to deviate from the fraction

of correct inferences, but they did not investigate whether the

deviation was structured to favor certain topologies. Kolaczkowski

and Thornton [32] found that the direction of this deviation in

posterior probabilities depends on the pattern of branch lengths on

the tree; when the true tree has non-sister long branches, the

posterior probability of the incorrect long branch attraction (LBA)

tree tends to be inflated. Susko [41] analyzed the distribution of

posterior probabilities in the limiting case of sequence length

approaching infinity and found that sequences generated on an

unresolved four-taxon star tree with two long branches yield

posterior probabilities that favor the resolved LBA tree. Taken

together, these studies establish that the choice of prior distribution

affects posterior probabilities and suggest that under some simple

conditions BI might exhibit topological bias.

Many questions remain open, however. First, it is not clear

whether BI using a Bayesian decision rule is significantly biased

when finite data are analyzed, when the true tree is resolved, or

when sequences generated under realistic conditions are analyzed.

Second, it is unclear why BI might be biased in favor of certain

topologies as data increases, particularly because the effects of

prior assumptions are expected to diminish as the quantity of data

increases. Third, the possibility that Bayesian simulations—in

which results are summarized over a range of evolutionary

conditions—might mask bias under specific conditions has not

been examined. Finally, the relative accuracy, efficiency, and

robustness of BI compared to ML has not been evaluated.

BI and ML implementations employ different search strategies

and different estimates of statistical confidence, so direct

comparison of phylogenetic accuracy using these two frameworks

has not been possible. To address this issue, we implemented a

novel ‘‘empirical Bayes’’ [42] method, which uses the same

Markov-chain Monte Carlo (MCMC) sampling strategy as

traditional BI but calculates the posterior probability of each tree

assuming the ML estimate of branch lengths and other parameters

(Fig. S1). Although posterior probabilities are not a meaningful

concept in a strict ML framework, our empirical Bayes approach

produces inferences identical to those generated by ML: given

uniform prior probability for each topology and an adequate

search, the tree with the highest posterior probability using our

method will always be the ML tree. BI differs from our ML/

empirical Bayes method only by integrating over branch lengths

and other model parameters, allowing us to directly compare the

performance of ML to BI and to specifically determine the effects

of incorporating parameter uncertainty on phylogenetic accuracy.

We analyzed both simulated and empirical data under a range

of controlled conditions using both BI and this novel ML

implementation. The results, together with numerical and

mathematical analyses, indicate that integrating over uncertainty

about branch lengths induces an intractable topological bias in BI

that results in reduced accuracy, efficiency, and robustness

compared to ML; they also suggest that BI is likely to be

statistically inconsistent. Although in practice BI and ML will

recover the same phylogeny across a wide range of conditions, our

findings indicate that when the two methods differ in their results,

ML is more likely to be accurate.

Results

Long Branch Attraction Bias
We first evaluated whether incorporating parameter uncertainty

using BI as commonly practiced causes topological bias under

simple but challenging evolutionary conditions [19]. We simulated

sequences using a simple model of nucleotide evolution along a

four-taxon star tree with two long and two short terminal branch

lengths (Fig. 1a). When data were analyzed using the correct

evolutionary model, ML was unbiased, recovering each possible

tree with equal frequency; the mean posterior probability for each

tree was ,1/3 at all sequence lengths, as expected for an unbiased

method [24]. In contrast, BI—using the common assumption of

uniform priors over branch lengths—inferred as the maximum a

posteriori tree the falsely resolved topology that pairs long

branches together from over 70% of replicates, with mean

posterior probability ,0.6, when sequences were of moderate

length. This long branch attraction (LBA) bias grew stronger with

increasing sequence length, as indicated by a positive slope of the

best-fit regression curve (P = 0.03). BI’s bias is not restricted to star-

tree conditions but affects phylogenetic accuracy on resolved trees,

as well (Fig. 1a). Under simple evolutionary conditions, BI

required a 25% longer internal branch than ML to recover the

correct phylogeny with 95% frequency (Table S1). These results

indicate that BI suffers from long branch attraction bias and that

this bias is caused by integrating over branch lengths. They also

establish that, under these conditions, BI is less efficient than ML

at recovering the true topology.

We conducted similar analyses using both nucleotide and amino

acid data, various prior distributions, and a range of complex and

simple evolutionary models. In all cases, BI—unlike ML—

displayed LBA bias, which grew worse with increasing data (Figs.

Bias in Bayesian Phylogenetics
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S2, S3). The bias persisted when exponential priors and any other

available distributions in MrBayes [43] were used, and some prior

distributions greatly exacerbated the bias (Fig. S4). Novel priors

that apply distinct exponential distributions to internal and

terminal branch lengths [31] did not eliminate long branch

attraction (Fig. S5a). It has been suggested that the failure of

existing MCMC algorithms to explicitly sample zero-length

branches could produce unreliable results when the true tree is a

star phylogeny [30], but BI remained biased when modified to

sample unresolved trees (Fig. S5b,c).

Increasing Bias with More Complex Models
A second proposed advantage of BI over ML is that Bayesian

MCMC provides a more reliable method for analyzing data using

complex models that incorporate evolutionary heterogeneity

among sites, such as those that use mixture models or partition

sites into independent classes [3,10,12,14]. To determine the effect

of integrating over uncertainty when sites in a sequence evolve and

are analyzed under complex heterogeneous models, we simulated

sequences with strong across-site heterogeneity in G+C content or

site-specific changes in evolutionary rates (heterotachy, represent-

ed as different branch length sets for different sites [44]). When

these data were analyzed using the correct partitioned and mixture

models, BI’s bias became considerably more severe than on

homogeneous sequences, with the LBA tree being recovered from

nearly 100% of replicates (Fig. 1b,c,d). In each case, adding more

data increased the intensity of the bias (Pv0.001), and the

posterior probability of the incorrect tree converged to 1.0. ML, in

contrast, remained unbiased in all these analyses. Using more

complex models also exacerbated the performance difference

between BI and ML on resolved trees (Fig. 1b,c,d). For example,

Figure 1. Maximum likelihood overcomes long branch attraction bias caused by integrating over parameter uncertainty. Nucleotide
sequences (500 replicates) of increasing length were generated on the topology shown with two long (0.75 substitutions/site) and two short (0.05)
terminal branches and a variable internal branch. In each row, the left two panels show the proportion of replicates from which each resolved
topology was inferred, plotted against increasing sequence length (left) or internal branch length on the true tree (right). The right two panels plot
the mean posterior probability over replicates of each resolved topology. For plots over increasing sequence length, the internal branch length was
fixed at zero. The true evolutionary model was used in all analyses. a, Sequences were generated using a simple model with no heterogeneity. b, Half
the sites evolved with elevated G+C content (45%), and the other half had reduced G+C (5%); data were analyzed using a correctly partitioned model.
c, Sequences were generated under a heterotachous model in which half the sites evolved along a tree with long terminals to B and D, while the
other half had taxa A and C with long branches; data were analyzed using a correctly partitioned model. d, Sequences were generated under the
same heterotachous model as in c and analyzed with a two-class heterotachous mixture model.
doi:10.1371/journal.pone.0007891.g001

Bias in Bayesian Phylogenetics
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when the mixture model was used to incorporate heterotachy, BI

required twice as long an internal branch to achieve the same

accuracy as ML (Table S1). These results show that using complex

models that integrate over many nuisance parameters causes BI’s

intrinsic long branch attraction bias to become more severe.

Increased Sensitivity to Model Violations
Statistical models used to infer phylogenies are simplifications of

the real evolutionary process, so analyses of real data are always

conducted using a too-simple model. To determine the relative

sensitivity of BI and ML to model violation, we simulated

sequences with two types of common model violation—hetero-

tachy and lineage-specific changes in G+C content—on a resolved

four-taxon tree with two long branches; we then analyzed these

data assuming common homogeneous models (Fig. 2). When

heterogeneity was weak, both BI and ML recovered the correct

tree with strong support; when heterogeneity of either type was

strong, both methods were biased in favor of the LBA tree.

Between these extremes, ML recovered the correct phylogeny

significantly more often than BI (Pv0.001), indicating that BI is

more sensitive to model violations. Although the advantage of ML

over BI was never greater than ,20%, we found regions of

parameter space in which ML strongly supports the correct tree,

while BI supports the LBA tree. In still other regions, BI strongly

supports the incorrect LBA tree, while ML is only weakly biased.

Bias under Empirical Conditions
The results reported above establish that BI produces biased

inferences under extreme conditions on small trees. To determine

the relative performance of BI and ML when larger phylogenetic

problems and real molecular sequence data are analyzed, we

examined a well-known case of phylogenetic error (Fig. 3a). When

eukaryote elongation factor-1a (EF1a) sequences are analyzed using

traditional ML and BI, the microsporidian Encephalitozoon cuniculi is

artifactually attracted to the long branch leading to the archae-

bacterial outgroup (the MA tree), instead of its correct placement

with fungi (the MF tree) [45,46]; previous work has shown that

unincorporated heterotachy contributes to this error [45,47]. When

we analyzed the empirical EF1a data using a homogeneous model,

both ML and BI favored the incorrect MA tree, but the support for

the incorrect tree was much stronger with BI than ML (Fig. 3b).

When a mixture model was used to incorporate heterotachy, BI

continued to prefer the incorrect MA tree, but ML recovered the

true tree with strong support. When the data were analyzed using a

partitioned model that groups sites according to rate classes inferred

by the mixture model, ML recovered the true tree, whereas BI

continued to be biased in favor of the MA tree. Under realistic

conditions, ML is therefore less susceptible to long branch attraction

than BI, and complex models—both mixed and partitioned—

perform better in an ML than a BI framework.

To determine the relative contributions of intrinsic bias, model

complexity, and model violation to BI’s poor performance in this

case, we simulated protein sequences of 500 residues along the

eukaryote phylogeny with branch lengths and model parameters

estimated from the empirical EF1a data. We found that all three

factors contribute. When data were simulated and analyzed under

a homotachous rates model, ML showed no support for the

incorrect MA phylogeny, whereas BI did support this tree, albeit

weakly (Fig. 3c). When data were simulated using a heterotachous

mixture model with parameters derived from the empirical data

and then analyzed using the same model, BI’s support for the

incorrect tree increased dramatically, while ML’s did not. Finally,

when data were simulated using the heterotachous model but

analyzed using a standard homotachous model, support for the

incorrect tree grew even stronger using BI but remained low using

ML. These results indicate that 1) the empirical branch lengths

alone are sufficient to cause bias in BI even when the underlying

evolutionary model is simple, 2) this problem is exacerbated when

the evolutionary process is complex, and 3) the stronger effect of

model violation on BI further magnifies the bias.

Bayesian Simulations
BI’s long branch attraction bias has not been apparent in recent

studies that used ‘‘Bayesian simulation’’ to generate sequence data

Figure 2. ML is less susceptible than BI to long branch attraction caused by model violations. Datasets of 5,000 nt were generated using
heterogeneous evolutionary models on a four-taxon tree with non-sister long terminal (0.75 substitutions/site) and short terminal (0.05) branch
lengths and an internal branch of 0.02, then analyzed using a simple homogeneous model. We plotted the proportion of replicates from which each
topology was recovered, as well as the mean posterior probability of each tree, as evolutionary heterogeneity increased. a, Sequences were
generated with convergent G+C content in non-sister lineages. GC heterogeneity indicates absolute increase of G+C content in the marked lineages
above ancestral baseline of 30%. b, Two classes of heterotachous sites evolved on the same topology but with different branch lengths for each class.
We varied the strength of heterogeneity by increasing from zero the proportion of sites in the first class.
doi:10.1371/journal.pone.0007891.g002
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on topologies and branch lengths drawn from probabilistic

distributions rather than under specific conditions. These studies

have found that when the prior distributions assumed for analysis

match the true distributions, the mean posterior probability of a

group of trees inferred using BI accurately reflects the fraction of

those trees that are correct [29,31]. To determine whether this

approach to evaluating accuracy might mask an underlying bias

under specific conditions, we conducted Bayesian simulations on

four-taxon trees and partitioned the results according to the pattern

of branch lengths on the true tree (Fig. 4). We found that when the

lengths of non-sister branches are more similar to each other than to

those of sister lineages (i.e., in the ‘‘Felsenstein zone’’), BI recovered

a false phylogeny significantly more often than ML, because of a

specific bias in favor of the LBA tree. In contrast, when the lengths

of sister branches were more similar to each other than to non-sister

lineages (i.e., in the ‘‘inverse Felsenstein zone’’), BI was more likely

to recover the true tree than ML, because the LBA bias favors that

tree. In this way, BI is similar to maximum parsimony, which

outperforms ML in the inverse Felsenstein zone only because it is

subject to a strong bias [24]. These results show that, even under the

ideal conditions of Bayesian simulations in which the true prior

distributions are used to analyze data, BI behaves like an estimator

that systematically overestimates the value of a parameter under a

specific set of conditions and underestimates it under the opposite

conditions: the mean of all the estimates is accurate, but the

estimates themselves are biased, a fact not apparent when only the

mean of estimates is considered.

BI can therefore have a high error rate in Bayesian simulations,

despite the correspondence between the fraction of inferences in

which some topology t is inferred and the fraction of inferences in

which t is true. This phenomenon occurs because the errors caused by

BI’s bias are equally distributed among possible topologies in a

Bayesian simulation. A simplified example of Bayesian simulation

illustrates this situation (Fig. 5). For each replicate, a phylogeny with

branch lengths is chosen from a set of sixteen possibilities that have

equal probability: on each of two four-taxon topologies (AB/CD or

AC/BD), there are eight possible sets of branch lengths, half in the

Felsenstein zone and half in the inverse Felsenstein zone. Sequence

data with the ideal pattern frequencies are generated on that tree,

which are then analyzed by ML or by BI using as a prior the true

probability distribution of the sixteen possible phylogeny/branch

length combinations. Under these conditions, ML infers the correct

tree from all replicates, for an error rate of zero. In contrast, BI infers

the correct tree only when the true tree is in the inverse-Felsenstein

zone. For all replicates in the Felsenstein zone, BI incorrectly infers

the AC/BD tree with very strong support when the AB/CD tree is

true, and it infers AB/CD when AC/BD is true. BI’s total error rate is

therefore 50%. Because Felsenstein zone conditions are equally

distributed across possible topologies, however, the frequency of

errors in favor of AB/CD exactly compensates for the frequency of

errors in favor of AC/BD, so BI accurately infers that the frequency

of each topology is 50% over all replicates.

This example illustrates how integrating over branch lengths,

even when the correct distribution is used as a prior, can result in

Figure 3. ML is less susceptible than BI to long branch attraction under empirical conditions. a, The correct eukaryote phylogeny places
the microsporidian Encephalitozoon cuniculi with the fungi, as shown. The long branch attraction (LBA) tree pairs taxa in bold. b, We analyzed
elongation factor-1a data using three evolutionary models: 1) JTT+G, Jones-Taylor-Thornton model of amino acid replacements with gamma-
distributed among-site rate variation; 2) JTT+G:6, heterotachous mixture model with 6 branch-length classes, and 3) a 6-category partitioned model,
with partitions inferred using JTT+G:6. For each model, we plot the log Bayes factor of the correct placement of microsporidia vs. the LBA tree, with
positive values indicating support for the correct phylogeny (see Methods). Label ‘inf’ indicates maximal support for the LBA clade; the correct tree
was not sampled during the MCMC run. c, We simulated 200 replicate sequence alignments of 500 residues along the tree in panel a, with branch
lengths and model parameters estimated from elongation factor-1a data. Models used to simulate and analyze datasets are indicated in the figure.
For each combination of models, we plotted the posterior probability of the incorrect LBA clade; bars indicate standard error.
doi:10.1371/journal.pone.0007891.g003
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strong bias and a very high rate of erroneous inferences. This

problematic behavior is not apparent, however, when accuracy is

measured only as the correspondence between the proportion of

replicates in which some topology is true and the proportion of

replicates from which it is inferred.

Misinterpretation of Phylogenetic Signal
Correct phylogenetic inference using likelihood-based methods

requires accurate branch length estimates. To understand how

and why incorporating branch length uncertainty causes bias, we

characterized the likelihood surface across branch lengths for

sequences with the expected pattern frequencies generated on the

star tree in Fig. 1a. As Fig. 6a shows, integrating over internal

branch lengths causes LBA. At the true internal branch length of

zero, the three possible trees have equal likelihood, but

incorporating longer internal branch lengths causes the integrated

likelihood of the LBA tree to dramatically exceed those of the

other topologies. Integrating over the long and short terminal

branches, in contrast, does not favor the LBA tree.

These results suggest that integrating over too-long internal branch

lengths causes the convergent state patterns that occur on the long

terminals to be misinterpreted as phylogenetic signal. To test this

hypothesis, we calculated the partial posterior probability for each

tree contributed by each character state pattern (Fig. 6b). When

branch lengths were fixed at their ML values, none of the patterns

produced strong support for any tree. When branch lengths were

integrated over, however, patterns such as xyxy or xyxz provided

strong support for the topology that clusters taxa with identical states.

This result occurs because, when the internal branch is longer than its

true value, the probability of such patterns is greater on the LBA

topology than on the others. The net effect of incorporating incorrect

internal branch lengths by Bayesian integration is therefore to

misinterpret convergent patterns that arise on long branches as due to

common descent. Although ML’s estimates of branch lengths may

deviate slightly from the true branch lengths due to stochastic

variation in finite data, these deviations are apparently small and do

not cause substantial topological bias.

Increasing Bias with Larger Datasets
Our observation (Fig. 1) that the biasing effect of integrating

over branch lengths grows worse with increasing sequence length

may seem surprising, because the likelihood function over branch

lengths for each topology becomes more peaked as sequence

length grows (see Fig. 6a). The relative support for one tree over

another, however, is determined by the ratio of the integrated

likelihoods for the two topologies, modified by the priors. As the

quantity of data grows, the likelihood function becomes more

peaked for all topologies, and the ratio of the integrated likelihoods

(and therefore of the posterior probabilities) in fact grows more

extreme. For a dataset of length N containing each state pattern x

at the expected frequency fx, the integrated log-likelihood of any

topology j is
P
x

Nfxlnqxj = N
P
x

fxlnqxj , where qxj is the

probability of pattern x on topology j integrated over branch

lengths b, or qxj~
Ð

P xjj,bð ÞP bð Þdb. The log-likelihood ratio of

any two trees j and k is N
P
x

fxlnqxj{
P
x

fxlnqxk

� �
. The terms

inside the parentheses—each state pattern’s frequency in the

expected data times its log-likelihood given each combination of

topology and branch lengths—do not change with sequence

length. The likelihood ratio must therefore scale exponentially

with N , and the posterior probability of the favored tree must also

increase towards the limit 1.0 as sequence length grows. If the

expected state pattern frequencies support an incorrect tree at

small sequence lengths—as our simulation experiments and

numerical analyses indicate they do for Bayesian analysis of trees

in the Felsenstein zone—then this support will grow more

extreme, not less, as the quantity of data grows.

To corroborate this analysis, we numerically estimated the

likelihood surfaces of expected datasets of increasing length, each

composed of character state patterns at their expected frequencies

given the Felsenstein-zone star tree in Fig. 1a. When branch

lengths are integrated over, the likelihood ratio in favor of the LBA

tree increases as sequence length grows (Fig. 6c), and the posterior

probability of the LBA tree rises accordingly. Maximum likelihood

estimation of branch lengths, in contrast, does not erroneously

support one tree over the others.

Discussion

Our results suggest that several of the proposed advantages of BI

over ML for choosing among hypotheses of phylogeny are false. We

found that integrating over branch length uncertainty does not

Figure 4. Bayesian integration is biased in ‘‘Bayesian simulation’’ when prior distributions are correctly specified. We simulated 5,000-nt
sequences along randomly-selected four-taxon trees with branch lengths drawn from a uniform distribution on (0,1]. a, Datasets were divided into
strong and weak Felsenstein zone (FZ) and inverse Felsenstein zone (IFZ) groups based on the pattern of branch lengths on the true tree and the
difference between branch lengths (see Methods). The proportion of replicates in each category from which ML and BI recovered an incorrect phylogeny
is shown. Bars indicate standard error. b, The proportion of datasets from which each method inferred the topology with the two longest terminal
branches as sister taxa. The label ‘‘true’’ indicates the proportion of datasets for which the true tree has the two longest branches as sister taxa.
doi:10.1371/journal.pone.0007891.g004
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improve accuracy but rather causes topological bias and reduced

efficiency. In contrast, ML was not biased on finite data, and the

asymptotically unbiased nature of ML is already well established

[9,15–17]. We found that BI’s bias grows more severe as the amount

of data increases, a particular concern in the age of phylogenomics

[48]. Although this bias is relatively weak when the evolutionary

model is simple, it becomes strong when more complex heteroge-

neous models are used, undermining the view that BI is preferable to

ML for implementing mixed and partitioned models [3,10,12,14].

Integrating over uncertainty also makes BI more susceptible than ML

to errors caused by the inevitable use of inaccurate models of

molecular evolution. ML’s advantage over BI is apparent under

empirical conditions and when small datasets are analyzed using

complex models. In practice, ML and BI are likely to produce

similar—and accurate—results most of the time, but when they differ,

BI’s inferences of topology are more likely to be due to bias than

ML’s. Our results indicate that BI will suffer from bias whenever the

true tree contains non-sister long branches, a common occurrence in

phylogenetics [46,49,50].

Unlike recent examinations of Bayesian phylogenetic approaches

[30,31,51], which highlight potential problems with current MCMC

implementations or prior distributions, our results point to problem-

atic behavior that is intrinsic to Bayesian phylogenetics. The biases we

observed cannot be alleviated with more sophisticated MCMC

algorithms or complex prior distributions. BI is biased in favor of the

LBA tree even when the correct prior assumptions are used in

‘‘Bayesian simulation.’’ A recent theoretical study showed that under

the limiting distribution for a star tree with two long branches under

the Jukes-Cantor model, the posterior probability of the LBA tree is

higher than that of any other tree, including the star tree itself,

irrespective of the specific prior distribution used for branch lengths

[41]. Our experiments reveal the cause of this bias, show that BI-

based phylogenetic inference is less accurate than ML, and establish

that BI’s bias affects accuracy on resolved trees, grows more severe

with complex models, causes recovery of an incorrect phylogeny

under empirical conditions, and makes BI more susceptible to error

induced by model violation than ML.

Our results suggest that BI using a Bayes decision rule to choose

among phylogenetic hypotheses may be statistically inconsistent.

The proof of ML’s consistency is based on the fact that when the

evolutionary model is correct and identifiable, pattern frequencies

in the data approach expectation as sequence length approaches

the limit; under such conditions, maximum likelihood estimates of

branch lengths converge on their true values, and the true

topology with the true branch lengths always has higher likelihood

than any other topology with any branch lengths [9]. This proof

cannot apply to BI, because likelihoods are integrated over a

distribution of branch lengths, the vast majority of which are

wrong. A formal demonstration that BI is inconsistent in the

Felsenstein zone is beyond the scope of this paper. However, our

numerical and mathematical analyses show that when ideal data

with the same properties as infinitely long sequences are analyzed,

BI recovers the wrong phylogeny, and support for this erroneous

topology increases as sequence length grows. Our simulations also

show that BI recovers an incorrect phylogeny with increasing

support as the amount of data increases, as expected for an

inconsistent method but not a consistent one. Together with a

previous analysis of the limiting distribution of posterior

probabilities for data generated on a star tree in the Felsenstein

zone [41], our findings provide strong, albeit circumstantial,

evidence that BI is statistically inconsistent.

Although our results suggest problems with using BI for

inferring phylogenies in practice, they do not contradict the core

rationale for Bayesian inference. Bayes’ Theorem defines posterior

probability as the probability that a hypothesis is true given the

model and the priors. If the priors on nuisance parameters match

the true values of those parameters, Bayesian choice of topology

will be unbiased and optimal, and the posterior probability of a

topology will correspond to the probability that the tree is true

given the data [32]. When the priors on nuisance parameters are

incorrect, the posterior probability no longer holds this objective

meaning, and the probability of the true topology is no longer

guaranteed to exceed that of any other topology. Nevertheless, the

posterior probability retains its purely subjective, conditional

meaning as the degree of belief a rational agent will have in the

hypothesis given whatever priors have been used. Ideally, prior

distributions would accurately represent beliefs about the likely

values of branch lengths and other model parameters before the

data are analyzed, giving posterior probabilities a subjective

meaning that is more than arbitrary. In reality, however, there is

Figure 5. Bayesian integration is biased in a simplified
Bayesian simulation. For each replicate, a topology/brach-length
combination was chosen from a discrete set of sixteen, each with equal
probability. There are two possible topologies (AB,CD) and (AC,BD); for
each, there are four combinations of long (0.75 substitutions/site) and
short (0.01) terminals, and two internal branch lengths (0.1 or 0.001, not
shown) for each combination of terminal lengths. For each replicate, an
ideal dataset with the expected state pattern frequencies was
generated given the topology and branch lengths. When these data
are analyzed using BI, with the true uniform distribution over the true
set of topology/branch-length combinations used as a prior, the
topology noted next to each tree is inferred as the maximum a
posteriori phylogeny with support .0.99. Bold text indicates incorrect
inferences; regular text, correct inferences. The chart shows the
proportion of inferences from which each topology is recovered by BI
and ML, along with the fraction of those inferences that are correct.
doi:10.1371/journal.pone.0007891.g005
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Figure 6. Integrating over branch length uncertainty causes misinterpretation of convergence as phylogenetic signal. We estimated
the likelihood surface over branch lengths for datasets with expected character state pattern frequencies on a four-taxon star tree with long branches
(0.75 substitutions/site) to termini A and C and short branches (0.05) to termini B and D. a, For each branch length, the likelihood is plotted for each
of the three resolved trees, with the other lengths fixed at their ML values. Vertical dotted lines indicate the true branch lengths used to generate
data. Likelihood functions are shown for expected datasets of N = 10,000 (top) and 100,000 (bottom). In both cases, the area under the curve for the
long-branch attraction topology (red) exceeds that for the other topologies (blue and green, which are identical). b, The partial posterior probability
of each resolved topology is shown for each character state pattern when branch lengths are integrated over (top) or fixed at their estimated values
(bottom). Character state patterns are indicated using variables representing nucleotides of the same type: for example, pattern xyxy stands for the
realizations ACAC, AGAG, ATAT, CACA,… TGTG. Results are shown for the expected 10,000-nt dataset. c, The log likelihood ratio of the long branch
attraction tree (AC) to the AB tree is shown (left panel) for expected data of increasing sequence length generated on the star phylogeny. Right panel,
corresponding posterior probability of each tree topology.
doi:10.1371/journal.pone.0007891.g006
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seldom reliable a priori information about model parameters, so it

is typical for diffuse distributions to be used. Our results indicate

that BI as currently practiced with such priors produces strongly

biased inferences of topology under certain conditions. Alternative

prior distributions [30,31] are not effective at eliminating this bias.

BI would be unbiased if and only if the true length of every branch

on any tree were known in advance and could be assigned as a prior

for that branch with probability 1.0 [32]. That is, integrating over

uncertainty would not cause bias if there were no uncertainty to

integrate over. In reality, this situation can never be realized; if it

could be, phylogenetic analysis would be unnecessary. Even if we

could somehow know the ‘‘true distribution’’ of branch lengths on the

universe of all phylogenies—that is, if the idealized circumstances of

Bayesian simulations could be made real—our results show that BI

would be systematically biased whenever some branches are arranged

in Felsenstein-zone patterns, leading to an increased rate of

topological error overall. This problematic behavior occurs because

BI’s accuracy depends upon explicit assumptions about the

distributions of branch lengths, and these assumptions are wrong

for most specific datasets even if they are correct on average. ML is

not subject to this bias, because it makes no assumptions about the

values of model parameters a priori. By inferring branch lengths from

the data with reasonable accuracy, ML approximates the ideal

situation in which branch lengths are known in advance. For

biologists seeking to accurately infer historical relationships, these

findings suggest that ML should generally lead to lower rates of error

and systematic bias compared to BI.

Another proposed advantage of BI is that posterior probabilities

provide a naturally meaningful measure of confidence in phyloge-

netic hypotheses. Integrating over uncertainty about branch

lengths, however, causes inferred posterior probabilities to deviate

radically from the probability that a tree or clade is true and, under

some conditions, to favor an incorrect tree. In contrast, an empirical

Bayesian approach using ML branch-length estimates yields

posterior probabilities that better match this intuitive expectation

[31,32,34]. The results presented here and in our prior work [32]

suggest that empirical Bayesian approaches may provide a reliable

alternative for calculating posterior probabilities of phylogenetic

hypotheses, but further research is warranted.

A major practical advantage of BI has been the speed of

MCMC-based analysis. Dramatic improvements in ML optimi-

zation methods now allow analysis of very large datasets [52,53],

although these methods calculate support measures other than

posterior probabilities. Our empirical Bayes/ML software does

calculate posterior probabilities, but it is time-consuming in its

current implementation: analysis of the simulated eukaryote data

took an average of 25 hours/dataset but only 2 hours using BI.

Future improvements may reduce the computational demands of

this approach.

There are solid philosophical arguments in favor of both

Bayesian and likelihood-based approaches to scientific inference

[54,55]. Phylogenetics, with its hierarchical branching structure,

presents a peculiar realm of statistical analysis, where mistaking

noise for signal and integrating over uncertainty about nuisance

parameters can lead to systematically biased inferences. Philo-

sophical considerations notwithstanding, our results suggest that

one of the key conceptual advantages of BI over ML makes it less

reliable in practice.

Methods

Phylogenetic Analyses
Bayesian Inference (BI) phylogenies were inferred using MrBayes

3.1.2 [43]. Priors were set at default values except for branch

lengths, which were assumed to be uniformly distributed between

zero and 10 substitutions/site. Additional branch length priors

were also explored, including uniform distributions with various

upper bounds, exponential priors with various means, and novel

priors that assign independent distributions to terminal and

internal branch lengths. For each analysis, four incrementally

heated chains were used per run, with samples taken from the cold

chain every 100 generations. The first 100 samples were excluded

as burn-in, and analyses were terminated when the standard

deviation in clade posterior probabilities between two independent

runs dropped below 0.01. The correct evolutionary models of

relative substitution probabilities, equilibrium state frequencies,

and among-site rate variation were used unless otherwise noted.

Maximum Likeihood (ML) phylogenies were inferred using novel

‘‘empirical Bayes’’ MCMC software (available for download at

http://phylo.uoregon.edu/software/eb). For each replicate, a

single cold chain was started from the neighbor joining topology

and sampled every 10 generations—without burnin—until the

average posterior probability of each tree topology remained

constant (within a margin of 0.01) for 10 samples. At each

generation, a new tree topology was proposed using a subtree-

purining-regrafting (SPR) operation, in which a randomly-selected

subtree is removed from the current topology and then re-attached

at a randomly-selected position. Branch lengths and other

parameters on this proposed topology were optimized using

Phyml [56]. Proposed topologies were accepted or rejected based

on the Metropolis criterion, assuming prior probability 1.0 on the

maximum likelihood value for each nuisance parameter and equal

prior probability on each resolved tree topology. The Hastings

ratio for this proposal mechanism is 1.0, as each possible SPR

pruning and regrafting position has an equal probability of being

selected, and proposed branch lengths are not conditional on the

current lengths. As with BI, the correct evolutionary model was

used for each analysis, unless otherwise indicated.

Partitioned Analyses were conduced using MrBayes for BI and a

pre-release version of RAxML [53] for ML. In the case of

simulated data, sites were correctly partitioned, with branch

lengths treated separately for sites in each partition. Other model

parameters were correctly assumed to be equivalent across all sites.

Priors and other analysis parameters were the same as for

homogeneous BI and ML analyses.

The Mixed Branch Length Model calculates a weighted sum of

likelihoods for multiple independent sets of branch lengths on the

tree; the likelihood of tree t given data X = (x 1, x 2, …, x m) and

branch length sets b = (b 1, b 2, …, b n) is given by

L tjXð Þ~ P
m

k~1

Xn

i~1

riP xkjt,bið Þ

where each ri is estimated from the data, and P X jt,bið Þ is the

probability of the data given branch lengths bi. Bayesian mixed

model analysis was conducted using a pre-release version of

BayesPhylogenies [57] for BI. Analyses were conducted as above,

with the exception that heated chains and multiple runs were not

used. Instead, a single cold chain was run for 100,000 generations.

Default priors were used for mixture proportions. ML mixed

model analyses were conducted as above, with branch lengths,

mixture proportions and other parameters optimized using custom

software implementing a simulated annealing algorithm [47]. The

annealing schedule used a geometric descent of 500 temperatures

from a high of 1.0 to a low of 10{5. At each temperature, 500

parameter changes were proposed, with acceptance based on the

Metropolis criterion. The empirical Bayes posterior probability of
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each of the three trees was then calculated numerically from these

point likelihoods.

Four-Taxon Simulations
We simulated a variety of nucleotide and amino acid data sets

along a four-taxon ((AB),(CD)) phylogeny with long terminal

branches (0.75 substitutions/site) leading to taxa B and D and

short terminals (0.05) leading to A and C. The internal branch

length varied from 0.0 to 0.05. Sequence length varied from 103 to

106. Evolutionary models used to simulate nucleotide data included

the JC69 model, JC69 with 25% invariant sites, JC69 with gamma-

distributed among-site rate variation (8 discrete category approx-

imation, shape parameter a = 0.5), K80 (transition/transversion

ratio = 10.0), F81 (80% G+C), and HKY85 (transition/transver-

sion = 10.0, G+C = 80%). Amino acid sequences were simulated

using the empirical JTT model. For each set of conditions, 500

replicate sequence alignments were generated.

We also simulated sequences along the ((AB),(CD)) phylogeny

with heterogeneous evolutionary pressures across either sites or

lineages. Across-site heterogeneity included 1) conditions in which

1/2 of sites had 45% G+C, while the other 1/2 had 5% G+C, and

2) conditions in which a proportion p of sites had long terminal

branches (0.75) leading to taxa B and D and short terminal

branches (0.05) leading to A and C, while the remaining sites had

long branches A and C and short branches B and D. We varied

the mixture proportion p from 0.0 (no heterogeneity) to 0.5

(maximal heterogeneity). For across-lineage heterogeneity, we

simulated nucleotide sequences with 30% G+C content; in non-

sister lineages B and D, G+C content was increased by a variable

amount, from no G+C increase up to a maximal increase of 70%

(producing sequences with 100% G+C).

Eukaryote Elongation Factor 1a (EF1a) Analyses
We analyzed the Micro* data set of ref. [45] using homotachous

ML and BI, as described above. Mixed branch length model

analyses were conducted in both ML and BI frameworks using

previously described software [47]. In the case of ML, simulated

annealing was used to optimize the tree topology and all model

parameters. The annealing schedule used a geometric descent of

1000 temperatures starting from 1.0 and ending at 10{5. At each

temperature, 1000 parameter changes were attempted, with

acceptance based on the Metropolis criterion. Topology proposals

included TBR, SPR, and NNI. The best-fit number of branch

length classes (n) was estimated using the Akaike Information

Criterion (AIC) [58].

The same parameter and tree proposal mechanisms were used

for BI analysis. Priors were uniform over resolved topologies and

uniform on (0,10] for branch lengths. The MrBayes default

prior—U[0.05,200]—was used for the shape parameter of the

gamma distribution. A flat Dirichlet prior was assumed for the

mixture proportions (r).

ln-Bayes Factors (lnBFs) of the correct Microsporidia+Fungi

(MF) tree to the artifactual Microsporidia+Archaebacteria (MA)

tree were calculated assuming equal priors on both tree topologies

as lnBF MF=MAð Þ~lnPP MFð Þ{lnPP MAð Þ, where lnPP :ð Þ is

the log of the posterior probability of either the MF or MA tree,

calculated using either ML or BI. In the case of ML analysis, the

ln-Bayes Factor (assuming equal priors over topologies) is

equivalent to the ln-likelihood ratio: lnL MFð Þ{lnL MAð Þ.
Partitioned analyses were conducted by partitioning sites based

on mixed model analysis. Using the maximum likelihood topology

inferred under the model selected by AIC, we calculated the

posterior probability that each site evolved according to each set of

inferred branch lengths. The posterior probability of branch length

set bi given site x was calculated by multiplying the proportion of

sites expected to evolve under branch length set bi (ri) by the

likelihood obtained for that branch length set (P xjt,bið Þ) and

dividing by the total likelihood summed over all branch length sets:

P bijx,tð Þ~ riP xjt,bið ÞPn
j~1 rjP xjt,bj

� � :

We used a posterior probability cutoff of 0.95 to classify sites

into categories: a site x was assigned to a particular class i if the

posterior probability of that class (P bijx,tð Þ) was greater than 0.95.

Sites not classified with w0.95 posterior probability were excluded

from the analysis. Partitioned analyses were conduced using

MrBayes for BI and a pre-release version of RAxML for ML, as

described above. Branch lengths were treated separately for sites in

each partition. Other model parameters were assumed to be

equivalent across all sites. Priors and other analysis parameters

were the same as for homotachous BI and ML analyses.

Bayesian Simulations
We performed Bayesian simulations [29] of 5,000-nt datasets

along a four-taxon phylogeny using the JC69 model. For each of

20,000 replicates, the topology was selected at random, and

branch lengths were randomly drawn from a uniform distribution

on (0,1]. For each dataset, we calculated the strength of branch

length heterogeneity as h~1{
s1zs2ð Þ=2

l1zl2ð Þ=2
, where s1 and s2 are

the two shorter terminal branch lengths on the topology, and l1
and l2 are the two longer terminal branches. We used the type and

degree of branch length heterogeneity to divide data sets into five

classes. 1) Strong Felsenstein zone (FZ) replicates had long

terminal branches in non-sister lineages with branch length

heterogeneity w0.75. 2) Weak FZ replicates had non-sister long

branches with branch length heterogeneity between 0.75 and 0.25.

3) Balanced replicates had branch length heterogeneity v0.25. 4)

Weak inverse Felsenstein zone (IFZ) data had sister long terminal

branch lengths with branch length heterogeneity between 0.25

and 0.75, and 5) strong IFZ data had sister long branches with

heterogeneity w0.75.

For the simplified example of Bayesian simulation, the generating

conditions included two topologies—(AB,CD) and (AC,BD). On each

topology, there were eight possible branch length sets, comprised of

two possible internal branch lengths (0.0001 or 0.1) and four possible

sets of terminal branch lengths, each of which included two long

(0.75) and two short (0.01) branches: A and B long, C and D long, A

and C long, or B and D long. For each generating condition, an ideal

pseudo-dataset—in which the frequency of each state pattern

matches expectation given the JC69 model—was prepared by using

Phyml to calculate the probability of each state pattern. For data

generated under each condition, the exact likelihood of all 16 possible

conditions, assuming the correct evolutionary model, was calculated

as follows. The pattern-specific likelihood P xjt,bð Þ) of each possible

combination of topology t and branch lengths b given a single site with

each state pattern x and the true model was calculated using Phyml.

The likelihood at all sites with pattern x in a dataset of size N was then

calculated as

lnL t,bjXð Þ~
X
x[X

N|f xð Þ|lnP xjt,bð Þ:

The total log-likelihood given a dataset of length 10,000 sites was

calculated as the sum of the pattern-specific log-likelihoods over all
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patterns. From these likelihoods, the ML/empirical Bayes posterior

probability of each topology was calculated using a point prior that

places prior density 1.0 on the ML branch lengths for that topology,

with priors for the two topologies matching the true generating

conditions. The BI posterior probability of each topology was

calculated by integrating over all eight branch length sets for that

topology, using a prior distribution in which the probability of each

topology and each branch length set on that topology matched the

true generating conditions. Performance was evaluated over an ideal

set of Bayesian simulations in which each generating condition

appeared at its expected frequency.

Likelihood Surface Estimation
We generated datasets of 1000 to 10 million nucleotides having

the expected state pattern frequencies, given a four-taxon star tree

with two long (0.75) and two short (0.05) branch lengths. We used

Phyml and the JC69 model to calculate the expected frequency of

each possible character state pattern (f xð Þ) as described above. We

characterized the likelihood surface of each possible resolved tree

using numerical integration over branch lengths. The probability of

each pattern and the total log-likelihood over all patterns was

calculated for each combination of branch lengths on each possible

four-taxon topology was calculated as described above for the

simplified Bayesian simulation. For each topology, the likelihood

surface was sampled using a branch length interval of 0.001 across a

range of values giving significant likelihood. The internal branch

was sampled between 0.0 and 0.04; long terminal branch lengths

were sampled between 0.7 and 0.85, and short terminals were

sampled between 0.03 and 0.06, inclusive. To reduce the

computational burden of this experiment, branches with equivalent

simulated lengths were assumed to be equal, reducing the

dimensionality of the likelihood space. Integrating over larger

intervals and all four terminal lengths independently had negligible

effect on support for different topologies (data not shown).

Likelihood values were arbitrarily scaled so that the maximum

likelihood across all topologies and branch length values was 1.0.

Supporting Information

Table S1 Bayesian integration (BI) requires more phylogenetic signal

to recover the correct tree than maximum likelihood (ML). For each

panel in Figure 1, we calculate the BL95-the internal branch length at

which the correct phylogeny is recovered from 95% of replicates-for BI

and ML using logistic regression: 1/{1 + e‘[(x2c)s]}, where x is the

internal branch length; c is the internal length at which 50% accuracy

is achieved, and s is the slope of the curve.

Found at: doi:10.1371/journal.pone.0007891.s001 (0.02 MB

PDF)

Figure S1 Maximum likelihood and Bayesian MCMC samplers

differ in how they deal with nuisance parameters. a, In traditional

Bayesian MCMC, proposals are made by altering the tree

topology, branch lengths and/or other model parameters. The

likelihood of the proposed state is compared to that of the current

state and either accepted or rejected. The algorithm proceeds by

iteration, and samples of the current state are taken at fixed

intervals. The proportion with which a given topology is sampled

provides an estimate of the tree’s posterior probability. b, In

maximum likelihood MCMC, only topology changes are pro-

posed. Model parameters (including branch lengths) are then

optimized on the proposed topology using maximum likelihood

before comparing the proposed tree to the current tree and either

accepting or rejecting the proposal.

Found at: doi:10.1371/journal.pone.0007891.s002 (0.02 MB

PDF)

Figure S2 Various evolutionary models produce long branch

attraction bias when Bayesian integration (BI) is used; maximum

likelihood (ML) is unbiased. The proportion of 500 replicates from

which each possible resolved tree was recovered and mean

posterior probability of each tree is plotted for BI and ML. Bars

indicate standard error. Different evolutionary models were used

to simulate data of 5,000 and 50,000 nucleotides on a star tree

with two long (0.75 substitutions/site) and two short (0.05)

terminal branches. Analyses were conducted using the true model

in each case. The proportion of invariant sites for JC69+I was

0.25. The shape parameter (alpha) for JC69+G8 was 0.5. The

transition/transversion ratio for K80 and HKY85 was 10.0. The

G+C content for F81 and HKY85 was 80%.

Found at: doi:10.1371/journal.pone.0007891.s003 (0.03 MB

PDF)

Figure S3 Bayesian integration (BI) is biased when protein data

are analyzed; maximum likelihood (ML) is unbiased. The

proportion of 500 replicates from which each possible tree was

recovered and mean posterior probability of each tree are plotted;

bars indicate standard error. Sequence data of 5,000 and 50,000

amino acids were simulated on an unresolved star tree with two

long (0.75 substitutions/site) and two short (0.05) terminal

branches using the JTT model. Analyses were conducted using

the true model.

Found at: doi:10.1371/journal.pone.0007891.s004 (0.02 MB

PDF)

Figure S4 Bayesian integration is biased when various branch

length prior distributions are used. Exponential priors with mean

values from 10‘-5 to 10.0 substitutions/site (left) and uniform

priors with lower bound 0.0 and upper bounds from 1.0 to 100

were used on branch lengths. The proportion of 500 replicates

from which each tree was recovered and mean posterior

probability are plotted, with bars indicating standard error. Data

were simulated using the JC69 model; the topology was

unresolved, with two long terminal branch lengths (0.75

substitutions/site) and two short terminals (0.05). The true model

was used to analyze data.

Found at: doi:10.1371/journal.pone.0007891.s005 (0.03 MB

PDF)

Figure S5 Non-standard prior distributions do not alleviate long

branch attraction when Bayesian integration is used. Data were

simulated using the JC69 model and an unresolved topology with

two long (0.75 substitutions/site) and two short (0.05) terminal

branch lengths. The true evolutionary model was used to analyze

data. The proportion of replicates from which each possible

resolved tree was recovered and mean posterior probability for

each tree are shown; bars indicate standard error. a, Analyses

were conducted using different prior distributions for internal and

terminal branch lengths (ref. 1). The prior on the internal branch

length was exponential with mean 10‘-5; the exponential prior on

terminal lengths had mean 0.1. b, We altered the branch length

proposal mechanism of MrBayes v3.1.2 to allow proposals of zero-

length branches on each topology. Data were analyzed using a

branch length prior uniform on [0,10]. c, Analyses were conducted

using a Bayesian method that explicitly samples unresolved trees

(ref. 2). Equal prior probability (0.25) was placed on the three

possible resolved trees and the unresolved star tree. To estimate

topological bias, recovery of the star tree as the best-supported

topology was scored as 1/3 recovery of each resolved phylogeny,

and the posterior probability for the star tree was equally

distributed among the resolved trees for each replicate.

Found at: doi:10.1371/journal.pone.0007891.s006 (0.03 MB

PDF)
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