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Abstract

Pancreatic cancer is a deadly disease, and new therapeutic targets are urgently needed. We previously identified DNA
amplification at 7q21-q22 in pancreatic cancer cell lines. Now, by high-resolution genomic profiling of human pancreatic
cancer cell lines and human tumors (engrafted in immunodeficient mice to enrich the cancer epithelial fraction), we define a
325 Kb minimal amplicon spanning SMURF1, an E3 ubiquitin ligase and known negative regulator of transforming growth
factor b (TGFb) growth inhibitory signaling. SMURF1 amplification was confirmed in primary human pancreatic cancers by
fluorescence in situ hybridization (FISH), where 4 of 95 cases (4.2%) exhibited amplification. By RNA interference (RNAi),
knockdown of SMURF1 in a human pancreatic cancer line with focal amplification (AsPC-1) did not alter cell growth, but led
to reduced cell invasion and anchorage-independent growth. Interestingly, this effect was not mediated through altered
TGFb signaling, assayed by transcriptional reporter. Finally, overexpression of SMURF1 (but not a catalytic mutant) led to
loss of contact inhibition in NIH-3T3 mouse embryo fibroblast cells. Together, these findings identify SMURF1 as an amplified
oncogene driving multiple tumorigenic phenotypes in pancreatic cancer, and provide a new druggable target for
molecularly directed therapy.
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Introduction

Pancreatic ductal adenocarcinoma (hereafter, pancreatic can-

cer) is nearly always fatal, with a five year survival rate less than

5% [1]. It is often disseminated at diagnosis, and can metastasize

widely. Early detection can improve survival, but surgical resection

is rarely curative [2]. Pancreatic cancer is also largely resistant to

conventional chemotherapy. Therefore, new therapies are urgent-

ly needed. In particularly, it will be important to discover and

validate new targets for molecularly-directed therapy.

The molecular genetics of pancreatic cancer are in part known

[3,4]. Somatic activating mutations of KRAS (sometimes occurring

with gene amplification) are found in .90% of pancreatic cancers.

Also common are inactivating mutations/deletions of tumor

suppressors CDKN2A (.95% of cancers), TP53 (50–75%), and

SMAD4 (also known as DPC4) (55%), an effector of TGFb-

mediated growth inhibition. Other gene mutations, each occurring

in less than 5% of cancers, impact these and other core cancer

signaling pathways [5].

Genomic profiling studies, by array-based comparative genomic

hybridization (array CGH), have begun to catalogue DNA

amplifications and deletions, pinpointing and revealing novel

pancreatic cancer genes (e.g. [6,7]). Among altered loci, we and

others previously identified 7q21-q22 as a site recurrently

amplified in pancreatic cancer [8–13]. Here, we narrow that

locus, and characterize SMURF1 as an oncogene product

promoting cell invasion and anchorage-independent growth.

Results

SMURF1 is focally amplified in pancreatic cancer
We had previously identified recurrent amplification at 7q21-q22

in pancreatic cancer cell lines, using CGH on cDNA microarrays

[12]. To further delimit the amplicon, and pinpoint the resident

oncogene(s), we now carried out additional genomic profiling of a

collection of 22 pancreatic cancer cell lines and 58 early-passage

pancreatic cancer xenografts, using high-resolution 244K Agilent

CGH arrays. The 7q21-q22 locus was focally amplified (tumor/

normal ratios .3-fold) in 1 of 22 (4.5%) cell lines (AsPC-1), and in 1 of

58 (2%) xenografts. Including lower-level gains (ratios .1.3 fold),

gain/amplification spanning 7q21-q22 was found in 6 of 22 (27%)

cell lines, and in 19 of 58 (33%) xenografts.
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Four specimens (the AsPC-1 cell line, and three xenografts) had

genomic profiles that were particularly informative in delimiting

the amplicon boundaries within 7q21-q22 (Fig. 1A). The smallest

common region of gain spanned just 325 Kb within cytoband

7q22.1, and contained just two RefSeq [14] genes, SMURF1

(SMAD specific E3 ubiquitin protein ligase) and KPNA7

(karyopherin alpha 7). SMURF1 is a known inhibitor of TGFb
signaling (by promoting degradation of its receptor TGFbRI, and

signaling mediator SMAD4 [15,16]), a pathway frequently

disrupted in pancreatic cancer. Given an obvious connection to

pancreatic carcinogenesis, we therefore focused subsequent efforts

on SMURF1.

Consistent with an oncogenic role, SMURF1 transcript

(measured by microarray) was significantly elevated in cell lines/

xenografts with 7q22.1 gain/amplification (as were several co-

amplified neighboring genes) (Fig. 1B). To evaluate SMURF1

amplification in primary pancreatic tumors, we also carried out

FISH on a tissue microarray containing 105 pancreatic cancer

cases. Four of 95 (4.2%) evaluable cases exhibited SMURF1

amplification (locus/centromere ratio .2.5) (Fig. 1C), comparable

to our CGH findings for early-passage xenografts. We were unable

to identify a suitable antibody and staining conditions to evaluate

SMURF1 expression by immunohistochemistry.

SMURF1 amplification promotes cell invasion and
anchorage-independent growth

To evaluate possible oncogenic functions of SMURF1, we first

used RNAi to knockdown SMURF1 expression in the relevant

context of gene amplification, using AsPC-1 cells. Transfection of

four different small interfering RNAs (siRNAs), or a pool of the

four together, each led to reduced SMURF1 protein levels (by

Western blot), compared to a non-targeting siRNA pool (Fig. 2A).

Knockdown of SMURF1 did not alter cell proliferation, measured

by WST-1 assay (Fig. 2B,C), and by BrdU incorporation (Fig. 2D),

but led to significantly decreased cell invasion through Matrigel,

measured by Boyden chamber assay (Fig. 2E). Decreased invasion

was seen with each of the four siRNAs targeting distinct SMURF1

sequences, while the growth rate of the cells remained unchanged

within the same time period (Fig. 2C), strongly supporting the

specific role of SMURF1 in the invasiveness phenotype.

Given its known, antagonistic function in the TGFb pathway,

we also sought to evaluate the effect of SMURF1 knockdown on

TGFb signaling, using a TGFb responsive transcriptional reporter

(p3TP-Lux) [17]. Knockdown of SMURF1 did not enhance

TGFb pathway-mediated transcription in AsPC-1 cells (Fig. 2F).

Of note, however, AsPC-1 cells (like most pancreatic cancers)

harbor a mutated SMAD4, here SMAD4 (R100T) [18], charac-

terized to be inactivating [19,20]. Therefore, AsPC-1 cells are

likely incapable of a TGFb pathway transcriptional response.

More generally, these findings suggest that the main effect(s) of

SMURF1 amplification/overexpression are likely mediated

through pathways distinct from TGFb signaling.

To evaluate longer-term phenotypes, we also stably transfected

a short hairpin RNA (shRNA) targeting SMURF1. Stable

knockdown of SMURF1 in AsPC-1 cells, confirmed by Western

blot (Fig. 3A), significantly reduced anchorage independent growth

(soft agar colonies), compared to a non-targeting shRNA control

(Fig. 3B).

We also sought to evaluate the effect of siRNA knockdown in

other pancreatic cancer cell lines. We chose two cell lines, BxPC-3

cells which (like AsPC-1 cells and most pancreatic tumors) have

mutated SMAD4 (here by homozygous deletion) [21], and Hs700T

cells which are wildtype for SMAD4 and have an intact TGFb
growth-inhibitory pathway (Fig. S1). Notably, neither of these lines

harbors focal amplification of SMURF1 (AsPC-1 cells are the only

established line with focal amplification), nor elevated SMURF1

protein levels (Fig. 4A). Knockdown of SMURF1 (validated by

Western blot; Fig. 4B) led to modestly reduced cell proliferation in

BxPC-3 cells (Fig. 4C), and more so in TGFb-growth inhibitory

pathway-intact Hs700T cells (Fig. 4D). SMURF1 knockdown also

resulted in reduced cell invasion in BxPC-3 cells (Fig. 4E), though

not significantly so. However, given that SMURF1 is neither

focally amplified nor overexpressed in these lines, a simple

explanation for the discordant phenotypes (compared to AsPC-1)

is that SMURF1 may not function as an oncogenic driver in these

cell contexts.

Finally, in complementary, overexpression studies, we trans-

fected SMURF1 cDNA (expressed from a CMV promoter) into

NIH-3T3 mouse fibroblasts. Overexpression of SMURF1, con-

firmed by Western blot (Fig. 5A), led to a significant loss of contact

inhibition (i.e. increased foci), compared to a vector control

(Fig. 5B). Notably, transfection of a catalytically-inactive mutant of

SMURF1 (C699A) [22] did not reduce contact inhibition (Fig. 4B),

indicating that this oncogenic activity is dependent on the E3

ubiquitin protein ligase activity of SMURF1.

Discussion

Here, we set out to pinpoint and discover the oncogene driving

7q21-q22 amplification in pancreatic cancer. High-resolution

genomic profiling of pancreatic cancer cell lines and early-passage

xenografts defined a 325 Kb minimal amplicon spanning

SMURF1. Transcript levels of SMURF1 were elevated in

specimens with gain/amplification, and by FISH we confirmed

SMURF1 amplification in primary pancreatic cancers. Using

complementary approaches of knockdown (in focally-amplified

AsPC-1 cells) and overexpression (in NIH-3T3 cells), we

determined that SMURF1 amplification/overexpression does not

alter cell proliferation, but promotes cell invasion, anchorage-

independent growth, and loss of contact inhibition, of which at

least the latter is dependent on its catalytic activity.

SMURF1 was initially an intriguing oncogene candidate

because of its known connection to TGFb signaling. The TGFb
pathway, at least early in tumor development, is growth sup-

pressive [23]. Normally, TGFb binds to its receptors (TGFbRI,

TGFbRII), leading to the phosphorylation of signal transducers

SMAD2/SMAD3, which then shuttle to the nucleus and in

complex with SMAD4 mediate transcription. Key transcriptional

responses include induction of CDKN2B (p15Ink4b) and CDKN1A

(p21Cip1), and repression of MYC, together leading to G1 cell-

cycle arrest. The TGFb growth suppressive pathway is commonly

disrupted in pancreatic cancer, most often through mutation/

deletion of SMAD4, but also through inactivation/loss of TGFbRI

and TGFbRII [4].

SMURF1 is a HECT-domain E3 ubiquitin ligase (E3 ubiquitin

ligases carry out the third and substrate-specific step in protein

ubiquitination). SMURF1 promotes the nuclear export of TGFb
pathway inhibitor SMAD7 (increasing its availability), and the

destruction of TGFbRI and SMAD4 (through ubiquitination-

mediated degradation) [15,16]. All these activities should serve to

antagonize TGFb signaling, and together provide a strong

rationale for SMURF1 amplification/overexpression in pancreatic

cancer. It was notable then, that SMURF1 knockdown in AsPC-1

cells did not enhance TGFb-pathway transcription (though

perhaps not surprising, given the inactivating mutation of SMAD4).

Therefore, the oncogenic activities of SMURF1 must act at least in

part independently of its functions in TGFb signaling (at least at

the pathway level of SMAD4). To this end, SMURF1 has also

SMURF1 Amplification in Pancreatic Cancer
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Figure 1. Focal amplification of 7q22.1 in pancreatic cancer spans SMURF1. (A) A minimal amplicon is defined by four pancreatic cancer
specimens (AsPC-1 and three xenografts). Starting from bottom: chr 7 ideogram; Heatmap of DNA copy number (red indicates gain) for the four
specimens across the 7q21-q22 region (91–101 Mb); Scatter plot of DNA copy number log2 ratios across 7q21.3-q22.1 (96–100 Mb), overlaid with the
cghFLasso [34] called ratios (red line); Screen shot of the corresponding locus from the UCSC genome browser. The dashed lines bracket the 325 Kb
minimal amplicon, which spans SMURF1. (B) SMURF1 is overexpressed when gained/amplified. Box plots show 25th, 50th (median) and 75th percentile
transcript levels (assayed by Agilent 44K array) for specimens with (red) or without (gray) 7q21-q22 gain, for SMURF1 and its nearest gene neighbors.
Note, KPNA7 was not represented on the array. *, P,0.05; **, P,0.01; ***, P,0.001 (Mann-Whitney U-test). (C) FISH reveals SMURF1 amplification in
primary pancreatic cancers. Shown are two pancreatic cancers with SMURF1 amplification (center, and right), along with a non-amplified control
(BxPC3 cells, left). SMURF1 locus probe (red); control chr 7 centromere (CRP7) probe (green).
doi:10.1371/journal.pone.0023924.g001
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been shown to dissolve tight junctions (by degradation of RhoA)

during epithelial-mesenchymal transition [24], and focal adhesions

(by degradation of talin heads) to potentiate cell migration [25].

Additional studies should clarify the key SMURF1 substrates

linked to invasiveness and anchorage-independent growth in

pancreatic cancers with 7q22 amplification.

During the progress of this work, two other studies character-

ized the 7q21-q22 amplicon in pancreatic cancer. Suzuki et al. [26]

by genomic profiling of cell lines identified the amplicon in AsPC-

1 cells, with the amplicon peak spanning 11 genes. Further efforts

focused on two genes, TRRAP and SMURF1, with significantly

elevated expression when amplified. However, in contrast to our

study, they reported that knockdown of SMURF1 inhibited AsPC-

1 cell proliferation. Notably, though, they evaluated only one

siRNA. Given our results that four independent siRNAs knocked

down SMURF1 levels comparably and decreased invasion without

affecting cell proliferation, we suggest that their finding might

reflect a non-specific or specific off-target RNAi effect. Indeed,

growth inhibition is a common non-specific effect, triggered by a

type I interferon response to siRNA [27]. Suzuki et al. went on to

Figure 2. SMURF1 knockdown in amplified AsPC-1 cells reduces invasion but not growth. (A) Four different siRNAs targeting SMURF1,
and a pool of all four, lead to reduced SMURF1 levels (by Western blot) compared to a non-targeting control siRNA pool). Residual SMURF1 levels,
here normalized to GAPDH, are indicated. (B) SMURF1 knockdown (using siRNA pool) does not reduce cell proliferation/viability, measured by WST1
assay, and done in triplicate (mean +/2 1SD shown). (C) SMURF1 knockdown using four different siRNAs does not significantly alter cell proliferation/
viability, measured three days post transfection. Done in triplicate (mean +/2 1SD shown). (D) SMURF1 knockdown does not reduce cell-cycle
progression (S-phase), measured by BrdU incorporation (1.5 hr and 4 hr pulse labeling), done in triplicate (mean +/2 1 SD shown). (E) SMURF1
knockdown (using siRNA pool and individual siRNAs) inhibits cell invasion through Matrigel. Boyden chamber assay done in triplicate and harvested
three days post transfection (mean +/2 1SD shown); *, P,0.05 (Student’s t-test). (F) SMURF1 knockdown does not enhance TGFb pathway-mediated
transcription. AsPC-1 cells were co-transfected with siRNAs and p3TP-Lux reporter, done in triplicate, and firefly/Renilla luciferase ratios shown (mean
+/2 1SD shown). Panc1 cells (with wildtype SMAD4) +/2 TGFb serve as a positive control.
doi:10.1371/journal.pone.0023924.g002
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show that SMURF1 overexpression in two pancreatic cancer cell

lines enhanced colony growth on tissue culture plastic. Nonethe-

less, our findings based on knockdown in the physiologically-

relevant context of focal SMURF1 amplification suggest that the

main oncogenic function of SMURF1 relates to promoting cell

invasiveness rather than proliferation.

In another recent study, Laurila et al. [28] by FISH analysis of

cell lines delimited the 7q21-q22 amplicon to 0.77 Mb spanning

10 genes (including SMURF1), but focused their efforts on ARPC1A

and ARPC1B, subunits of the Arp2/3 complex functioning in actin

polymerization. Using RNAi, they found that knockdown of either

reduced cell motility, and knockdown of ARPC1A also reduced cell

invasion. Though our minimal amplicon excluded ARPC1A and

ARPC1B, it is nonetheless possible that their amplification

contributes to motility/invasion in tumors where they are

amplified. It is not uncommon to find multiple driver oncogenes

within tumor amplicons (e.g. ref. [29]). Indeed, our own studies do

not resolve whether KPNA7, within our 325 Kb minimal

amplicon, might also have an oncogenic role (along with

SMURF1).

To summarize, by genomic profiling and functional analysis we

identified SMURF1 as an amplified oncogene driving cell

invasiveness in pancreatic cancer. Perhaps of most significance,

as an enzyme SMURF1 represents a tractable drug target. Other

E3 ubiquitin ligases have been linked to cancer, and because of

their substrate specificity E3 ubiquitin ligases are thought to be

attractive targets for therapy [30]. Indeed, several small molecule

inhibitors (including against MDM2, a regulator of TP53) are

presently being evaluated [31]. Our findings identify SMURF1 as

a possible new target for molecularly-directed therapy against the

devastating disease of pancreatic cancer.

Materials and Methods

Specimens
Pancreatic cancer cell lines, described previously [12], and

NIH-3T3 cells were obtained from the American Type Culture

Collection (Manassas, VA). Pancreatic cancer xenografts, which

effectively enrich the tumor epithelial fraction for DNA analysis,

were generated as described [32] at the Johns Hopkins Hospital,

with approval from the Institutional Review Board (IRB) (protocol

ID 05-04-14-02) and Animal Care and Use Committee (protocol

ID MO05M466). Briefly, a 1 mm3 piece of the primary tumor was

soaked in Matrigel (Collaborative Biomedical Research), then

implanted subcutaneously in a nu/nu mouse. Engrafted tumors

were harvested when they reached 1–2 cm in diameter, and tumor

cell enrichment confirmed by H&E-stained frozen section. DNA

and RNA were isolated using the Qiagen (Valencia, CA) AllPrep

kit. Eleven of the 48 xenografts were previously profiled by lower-

resolution CGH on cDNA arrays [6].

Array CGH
CGH was done using Agilent (Santa Clara, CA) catalogue 244K

CGH arrays. DNAs were labeled as described [33], then

hybridized (vs. a pool of eight sex-matched normal leukocyte

DNAs) following the manufacturer’s instructions. Arrays were

scanned using an Agilent G2505B scanner, and data extracted and

normalized using Agilent Feature Extraction software (version 9.1)

with default settings. Copy number alterations were called using

cghFLasso [34], and low-level gains and higher-level ampli-

fications defined by cghFLasso tumor/normal ratios .1.3 and

.3.0, respectively. CGH data detailed herein are available at

GEO (GSE19852); a complete description of the dataset is in

preparation.

Expression profiling
Expression profiling was done using Agilent catalogue 44K

Whole Human Genome arrays. RNAs were labeled using the

Quick Amp Labeling kit (Agilent), then hybridized (vs. a universal

RNA reference pool of 11 cancer cell lines [35]) following the

manufacturer’s instructions. After scanning and data extraction (as

above), expression data were normalized (mean-centered) by array

and by gene, and mean-centered log2 ratios reported.

FISH
A tissue microarray containing 105 pancreatic ductal adeno-

carcinoma cases (archived at Stanford University, and used with

Figure 3. Knockdown of amplified SMURF1 in AsPC-1 cells
reduces anchorage-independent growth. (A) A stably transduced
shRNA targeting SMURF1 leads to reduced SMURF1 levels (by Western
blot) compared to a non-targeting control shRNA. Residual SMURF1
levels, here normalized to GAPDH, are indicated. (B) Stable SMURF1
knockdown reduces anchorage-independent growth (i.e. soft agar
colonies). Assay done in triplicate (mean +/2 1SD shown); *, P,0.05
(Student’s t-test).
doi:10.1371/journal.pone.0023924.g003

SMURF1 Amplification in Pancreatic Cancer

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23924



IRB approval) was previously described [6]. Probe labeling and

FISH were performed using Vysis (Downers Grove, Illinois)

reagents according to the manufacturer’s protocols. A locus-

specific BAC mapping to SMURF1 at 7q22.1 (RP11-62N3;

BACPAC Resources Centre, Oakland, CA) was labeled with

SpectrumOrange, and co-hybridized with SpectrumGreen-la-

beled chr 7 centromere probe (CEP7; Vysis). Slides were

counterstained with DAPI, and imaged using an Olympus

BX51 fluorescence microscope with Applied Imaging (San Jose,

CA) Cytovision 3.0 software. Twenty-five tumor cells were scored

per case, and amplification defined as an average SMURF1/

CEP7 ratio .2.5.

Figure 4. Analysis of SMURF1 knockdown in other pancreatic cancer lines. (A) Western blot analysis of endogenous SMURF1 protein levels
in a panel of pancreatic cancer cell lines. Note that SMURF1 is highly expressed only in the 7q22.1-amplified AsPC-1 cell line. Two different exposures
of the SMURF1 blot are shown; GAPDH serves as a loading control. (B) Western blot verification of SMURF1 knockdown (by SMURF1-targeting siRNA
pool, compared to non-targeting control siRNA pool) in BxPC-3 and Hs700T cells. (C) Cell proliferation/viability assayed (by WST-1) in BxPC-3 cells
following SMURF1 siRNA-mediated knockdown (compared to non-targeting control). Assay done in triplicate (mean +/2 1SD shown); *, P,0.05
(Student’s t-test). (D) Cell proliferation/viability assayed in Hs700T cells, as above. (E) Cell invasion assayed (by Boyden chamber) in BxPC-3 cells
following SMURF1 knockdown (compared to non-targeting control). Assay done in triplicate (mean +/2 1SD shown). Note, the reduced proliferation
observed with SMURF1 knockdown in Hs700T cells precluded an assay of cell invasion (where invaded cell numbers at 72 hrs are influenced by
doubling times).
doi:10.1371/journal.pone.0023924.g004
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siRNA transfections
On-TARGETplus siRNAs targeting SMURF1, along with a

negative control siRNA pool (ON-TARGETplus siCONTROL

Non-targeting Pool), were obtained from Dharmacon (Lafayette,

CO). Sequences of siRNAs are listed in Table S1. AsPC-1 cells

were grown at 37uC in complete media of RPMI-1640 (Invitro-

gen, Carlsbad, CA), 10% FBS, 50 U/ml penicillin, and 50 U/ml

streptomycin. For transfection, 150,000 cells were seeded per 6-

well plate well, and transfected using Lipofectamine 2000 reagent

(Invitrogen) according to the manufacturer’s protocol. Cells were

transfected with a final concentration of 50 nM siRNA for 6 hrs.

Western blot
Cells were lysed in 16RIPA buffer supplemented as described

[6]. Forty mg total protein lysate was electrophoresed on a 4–15%

polyacrylamide gel, then transferred to PVDF membrane and

blocked in TBST-T with 5% dry milk. Antibodies were used as

follows: anti-SMURF1 rabbit polyclonal antibody (H-60; Santa

Cruz Biotechnology, Santa Cruz, CA) at 1:500 dilution; anti-

GAPDH rabbit polyclonal antibody (Santa Cruz Biotechnology) at

1:5,000 dilution; HRP-conjugated anti-rabbit IgG (Pierce, Rock-

ford, IL) at 1:20,000 dilution. Detection was done using an ECL

kit (GE Healthcare, Piscataway, NJ), and intensities quantified by

densitometry using Scion Image software (Scion Corporation,

Fredrick, MD).

Cell growth and invasion assays
Cell proliferation/viability was quantified by colorimetry based

on the metabolic cleavage of the tetrazolium salt WST-1 in viable

cells, according to the manufacturer’s protocol (Roche, Indianap-

olis, IN). BrdU incorporation was determined by colorimetric

ELISA using the BrdU Cell Proliferation Assay, according to the

manufacturer’s protocol (Cell Signaling Technology, Danvers,

MA). Invasion was quantified by Boyden chamber assay (BD

Biosciences, San Jose, CA). Briefly, 24 hrs after transfection,

50,000 cells were plated into 24-well Matrigel-coated inserts with a

0.5% to 10% FBS gradient. Seventy-two hrs later, cells were fixed,

stained with crystal violet, and cells traversing the membrane

counted. All assays were done as triplicate transfections, and all

experiments were repeated at least once with similar results.

TGFb transcriptional reporter assay
Cells were co-transfected with 4 mg p3TP-Lux (Addgene,

Cambridge, MA), a TGFb responsive firefly luciferase reporter

containing three consecutive TPA response elements (TREs) and a

portion of the plasminogen activator inhibitor 1 (PAI-1) promoter

region [17], along with 0.4 mg pRL-TK (Promega, Madison, WI)

expressing Renilla luciferase as an internal normalization control.

Luciferase activity was assayed 48 hrs after transfection (by

Lipofectamine 2000) using the dual luciferase reporter assay

system (Promega, Madison, WI). Reporter activity is expressed as

the ratio of firefly/Renilla. Assays were done as triplicate

transfections, and repeated at least once with similar results.

Anchorage-independent growth
A pGIPZ shRNAmir construct targeting SMURF1

(V2LHS_229724), along with a non-targeting pGIPZ shRNAmir

control, were obtained from Open Biosystems (Huntsville, AL). To

create stably-transduced AsPC-1 cell pools, lentiviral constructs

(along with Trans-lentiviral packaging mix plasmids) were

transfected into 293TN producer cells (System Biosciences,

Mountain View, CA), and supernatant packaged virus transduced

into AsPC-1 cells following the manufacturer’s instructions (Open

Biosystems’ Trans-lentiviral GIPZ packaging protocol). Two days

post-infection, 1 mg/ml puromycin (Invitrogen) was added to the

culture medium, and cells selected for 14 days. Anchorage

independent growth was assayed by colony formation in soft

agar. Briefly, 10,000 cells were embedded in a 6-well plate well

within a top layer of 0.36% agarose in complete media, over a

layer of 0.48% agarose in complete media. Cells were grown for

14–21 days, then visible colonies counted after staining with

0.015% Neutral Red solution. Assays were done as triplicate

transductions, and repeated at least once with similar results.

NIH-3T3 focus formation assay
Full-length human SMURF1 cDNA expression vector,

pcDNA3.1-SMURF1 was a kind gift from Di Chen (University

of Rochester Medical Center, Rochester, NY), and the parent

vector pcDNA3.1 was purchased from Invitrogen (Carlsbad, CA).

A catalytic mutant SMURF1 (C699A) [22] was engineered using

the QuickChange XL II Site-Directed Mutagenesis Kit from

Stratagene (La Jolla, CA), with the following mutagenic primers:

59-CGTGGAGGAGACCGCCGGGTTTGCTGTGG -39 (de-

Figure 5. SMURF1 overexpression in NIH-3T3 cells leads to loss
of contact inhibition. (A) Transfection of SMURF1 cDNA, or a catalytic
mutant of SMURF1 (C699A) (SMURF1m), leads to overexpression (by
Western blot) compared to empty vector control. SMURF1 overexpres-
sion levels, normalized to GAPDH, are indicated. (B) SMURF1 (but not
SMURF1m) overexpression in NIH-3T3 cells leads to loss of contact
inhibition (i.e. increased foci formation). Assays done in triplicate (mean
+/2 1SD shown); *, P,0.05 (Student’s t-test).
doi:10.1371/journal.pone.0023924.g005
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generate, mutated bases denoted by bold text) and 59-CCACAG-

CAAACCCGGCGGTCTCCTCCACG-39. Fifty thousand cells

were seeded per 60 mm plate, and 8 mg of plasmid was transfected

by Lipofectamine 2000 reagent (Invitrogen) according to the

manufacturer’s protocol. Two days after transfection, cells from

each 60 mm plate were re-plated into two 10 cm plates and grown

to confluence over 28 days. Visible foci were counted after

methanol fixation and Giemsa staining. Assays were done as

triplicate transfections, and repeated at least once with similar

results.

Supporting Information

Table S1 siRNA sequences targeting SMURF1.
(PDF)

Figure S1 Hs700T cells display TGFb-induced growth
inhibition. Hs700T cells were plated, and then 2 ng/ml TGFb
(or vehicle control) added and cell proliferation/viability assayed

(by WST-1) daily. Assays were done in triplicate (mean +/2 1SD

shown); *, P,0.05; **, P,0.01; ***, P,0.001 (Student’s t-test).

Consistent with intact TGFb growth inhibition, no deletions

spanning SMAD4 (244K Agilent CGH array data; not shown) and

no point mutations of SMAD4 (Illumina RNAseq analysis; not

shown) were identified.

(EPS)
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