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Abstract

Background: Stem cell antigen-1 (Sca-1 or Ly6A) is a glycosyl phostidylinositol (GPI)-anchored cell surface protein associated
with both stem and progenitor activity, as well as tumor initiating-potential. However, at present the functional role for Sca-
1 is poorly defined.

Methodology/Principal Findings: To investigate the role of Sca-1 in mammary tumorigenesis, we used a mammary cell line
derived from a MMTV-Wnt1 mouse mammary tumor that expresses high levels of endogenous Sca-1. Using shRNA
knockdown, we demonstrate that Sca-1 expression controls cell proliferation during early tumor progression in mice.
Functional limiting dilution transplantations into recipient mice demonstrate that repression of Sca-1 increases the
population of tumor propagating cells. In scratch monolayer assays, Sca-1 enhances cell migration. In addition, knockdown
of Sca-1 was shown to affect cell adhesion to a number of different extracellular matrix components. Microarray analysis
indicates that repression of Sca-1 leads to changes in expression of genes involved in proliferation, cell migration, immune
response and cell organization.

Conclusions/Significance: Sca-1 exerts marked effects on cellular activity and tumorgenicity both in vitro and in vivo. A
better understanding of Sca-1 function may provide insight into the broader role of GPI-anchored cell surface proteins in
cancer.
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Introduction

Stem cell antigen-1 (Sca-1 or Ly6A) is a member of the Ly6

family of glycosyl phostidylinositol (GPI)-anchored cell surface

proteins. Sca-1 has been long associated with murine stem/

progenitor cells [1] and is localized to lipid rafts where it regulates

signaling complexes [2]. Functional studies using Sca-1-null mice

have revealed several phenotypes. Interferon-stimulated hemato-

poietic stem cells (HSCs) upregulate Sca-1 in a Stat1-dependent

manner. Additionally, minor defects in lineage skewing were

observed in the hematopoietic system of Sca-1-null mice.

Osteoporosis and reduced muscle size were observed in aging

Sca-1-null mice. Moreover, Sca-1 is necessary for matrix

metalloproteinase (MMP) activity during muscle repair.

Initial studies in the mammary gland showed that Sca-1+ cells

have increased regenerative capacity compared to Sca-12 cells [3].

Subsequent studies involving purified mammary stem cells with

repopulating activity using CD24 in combination with CD29 (b1

integrin) or CD49f (a6 integrin) indicated that these cells express

low levels of Sca-1 [4,5]. Instead, CD24high luminal progenitor

cells were shown to differentiate into Sca-1+ estrogen receptor (ER)

expressing cells and Sca-12/ER2 cells [6].

When Sca-1 or other Ly6 family members are upregulated on

tumor cells they are commonly associated with an aggressive

phenotype [7]. Sca-1+ cells are expanded in mammary tumors

induced by Wnt/b-catenin pathway [8,9]. Despite its association

with stem/progenitor cells, little is known about the biological

function of Sca-1. To address this question in the context of

mammary tumor development, we used a cell line derived from

primary tumors of MMTV-Wnt1 transgenic mice, which retained

high expression of Sca-1 and could be transplanted into the

cleared fat pad of syngenic mice. We found that Sca-1 promotes

cell migration and decreases cell adhesion in vitro and regulates

tumorigenicity upon transplantation. Furthermore, Sca-1 regulates

gene expression in multiple pathways involved in tumor

progression. This study demonstrates that modulating Sca-1

expression has profound effects on cellular function and tumor

development.

Results

Sca-1 promotes cell migration
Sca-1 is localized to lipid rafts [2] similar to urokinase

plasminogen activator receptor (UPAR), another well-character-
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ized Ly6 family member. UPAR regulates adhesion, migration

and angiogenesis in breast cancer [10]. Therefore, we asked

whether Sca-1 regulates cell migration using a mammary tumor

cell line (Wnt1-YL), derived from primary MMTV-Wnt1 tumors.

Previous studies [4,8] revealed high levels of Sca-1 expression in

MMTV-Wnt1 induced hyperplasia and tumors, and we were able

to develop several cell lines from these tumors. The Wnt1-YL cells

uniformly express high levels of Sca-1 as detected by flow

cytometry (Figure 1A). We then knocked down Sca-1 surface

expression using shRNA lentiviral technology. A shift in mean

fluorescence intensity revealed Sca-1 surface expression was

reduced ,30-fold in the Wnt1-YL-shSca1 (shSca-1) as compared

to control cells transduced with an shRNA targeting luciferase

(shLuc) (Figure 1A). This reduction in Sca-1 expression did not

alter cell growth as assessed by a growth curve over the period of 4

days (Figure 1B). When cell migration was assessed using a wound

healing scratch monolayer assay, shSca-1 cells exhibited a

significantly slower cell migration at 12–24 hours, (Figure 1C

and D). A rescue experiment was next performed by re-

introduction of a Sca-1 expression construct containing an altered

shRNA-binding site, to rule out off-target effects of the Sca-1

shRNA. Re-expression of Sca-1 reversed the migration phenotype,

demonstrating the specificity of the shRNA knockdown (Figure 1C

and D). This was also demonstrated independently by microarray

analysis in which Ly6a, but not other Ly6 family members, was

selectively knocked down by these shRNAs (Table S1). An early

lag phase between 0–12 hours was observed in these rescue

experiments where there is a significant difference between the

Figure 1. Repression of Sca-1 delays cell migration. Flow cytometry analysis of Sca-1 surface expression, representative histograms (A). Growth
curve of shLuc (blue), shSca-1 (red) and shSca-1+Sca-1 (black) cells (B). Images of scratch monolayer migration assay at times 0, 12, and 24 hours (C–
K), representative images of 3 experiments performed in triplicate. shLuc (C–E), shSca-1 (F–G), and shSca-1+Sca-1 (I–K), scale bars = 200 mm. Cell
migration graph (L). shLuc (blue), shSca-1 (red), shSca-1+Sca-1 (black), * represents statistical significance compared to shLuc control, (* = p,.05,
*** = p,.001).
doi:10.1371/journal.pone.0027841.g001
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shLuc control cells and the shSca-1+Sca-1 rescued cells; however,

this delay was overcome by 18 hours. Notably, the cells appeared

to migrate collectively as a sheet of cells rather than as single cells.

Sca-1 regulates cell adhesion
We hypothesized that the delay in migration in the shSca-1 cells

was attributed to alterations in cell adhesion. In order to determine

if Sca-1 regulates cell adhesion, we evaluated the adhesion of the

Wnt1-YL cells to a panel of extracellular matrix (ECM) proteins

(collagen I, collagen IV, fibronectin, laminin, and vitronectin).

shSca-1 cells showed increased adhesion to fibronectin, collagen I,

collagen IV, and laminin compared to control cells (Figure 2A). In

rescue experiments, adhesion of shSca-1+Sca-1 cells to collagen I,

collagen IV, and fibronectin returned to levels similar to the shLuc

control cells (Figure 2A). The increase in adhesion to laminin was

enhanced in shSca-1+Sca-1 cells (Figure 2A). Additionally, each

group exhibited relatively weak adhesion to vitronectin, however,

the shSca-1+Scal-1 cells showed reduced adhesion compared to

control cells (Figure 2A). These results suggest that delayed

migration exhibited by shSca-1 cells may be due to increased cell

matrix interactions. To investigate the possible cause for these

altered adhesive properties, we evaluated the surface expression of

integrins (receptors for ECM proteins) by flow cytometry. We

analyzed a panel of integrins (a2, a3, a5, a6, aV, b1, b3, and b4)

expressed in normal mammary epithelial cells. a2, a5, a6, aV and

b1 were all expressed (Figure 2B–F); however, only a5-integrin

showed a difference in expression level between the shSca-1 and

control cells. a5-integrin expression increased 1.7 fold in shSca-1

cells (Figure 2C). Notably, a6 and b1, which bind laminin as a

heterodimer were expressed at high levels as compared to their

respective isotype controls (Figure 2D, F). Interestingly, these

receptors have also been used to isolate cancer stem cells in p532/

2 mammary adenocarcinomas [11]. These data do not rule out

the possibility that integrin activity rather than expression may be

altered by Sca-1. Alternatively, integrins that were not evaluated

may be aberrantly expressed accounting for the differences in cell

adhesion.

Repression of Sca-1 increases tumor propagation ability
and accelerates tumor growth

We next determined if the alterations in migration and adhesion

in Sca-1-deficient cells would influence tumor propagation and

growth in vivo. To determine if the repression of Sca-1 effects

tumor outgrowth, shSca-1 or shLuc cells were transplanted into

the cleared mammary fat pad of 3–4 week old syngenic recipient

mice, at concentrations ranging from 500–10,000 cells. Limiting

dilution transplantation revealed that shSca-1 cells display a 9-fold

increase in tumor propagating potential (1/654) as compared to

shLuc control cells (1/5963; p..001) (Table 1, [12]). A

significantly greater number of shSca-1 tumors were observed at

lower cell concentrations 2000-500 cells (Table 1).

We subsequently studied tumor latency with injections of

10,000 cells, since both knockdown and control cell lines efficiently

Figure 2. Sca-1 repression leads to increased adhesion to
collagen I, collagen IV and fibronectin. Cell adhesion of 100,000
cells/well coated with fibronectin, vitronectin, laminin, collagen I or
collagen IV comparing shLuc (open bars), shSca-1 (grey bars) and shSca-
1+Sca-1 (black bars). (A). Relative adhesion was normalized to a BSA
control, (* p,.05, ** p,.01, *** p,.001), mean6SEM of three
experiments performed in triplicate. Flow cytometry analysis of integrin
expression a2, a5, a6, aV, b1 (B–F, respectively) representative
histograms.
doi:10.1371/journal.pone.0027841.g002
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develop tumors at this concentration. shSca-1-derived tumors had

a median latency of 2 weeks as compared to 5 weeks for shLuc-

derived tumors (Figure 3A). To determine if the accelerated tumor

development was due to increases in proliferation in the shSca-1

cells or increased cell death in the shLuc control cells, tumor

sections were stained for BrdU and a TUNEL assay, respectively.

This was investigated in both early histological lesions and in

palpable tumors. When mammary fat pads were harvested 2

weeks following transplantation, and early lesions analyzed, 10%

of the shLuc tumor cells were BrdU-positive in comparison to

shSca-1 tumor cells in which 20% were BrdU-positive (Figure 3B–

C, F). However, in established tumors this two-fold difference in

proliferation was not observed, and approximately 20% of the cells

were BrdU-positive cells in both groups (Figure 3D–F). Neither

early lesions nor established tumors showed differences in cell

death (Figure S1), suggesting that the difference in latency was

attributed to a transient increase in proliferation in the early

lesions. These data are consistent with the limiting dilution

transplantation results and suggest that knockdown of Sca-1

influences tumor initiation in this model, but appeared to have

little effect in established tumors.

To determine the histological characteristics of these tumors, we

performed immunostaining for mammary epithelial markers (K5,

K8, pan-Keratin). Interestingly, hemotoxylin and eosin staining

showed a mesenchymal (spindle-shaped) morphology distinctly

different from the transgenic MMTV-Wnt1 tumors from which

the cell line was derived. The tumors were positive for basal

marker K5 (Figure 4), while only a small percentage of the cells

were positive for luminal keratin marker K8, further suggesting a

divergence from the parental MMTV-Wnt1 tumors, which

expressed both basal and luminal keratins [8].

Identification of differentially expressed genes
To determine the potential mechanisms by which Sca-1

regulates cell migration, adhesion, and tumor development, we

performed an Affymetrix mouse genome 430A 2.0 array on cDNA

comparing shLuc and shSca-1 from cells grown in vitro. The array

identified 448 unique genes (574 Affymetrix probe sets) with

p,0.01 and fold change .1.5 (Table S1). One hundred and

twenty six genes were upregulated, and 322 genes were

downregulated (Figure 5A). Importantly, Sca-1 was the only Ly6

family member on the chip that was significantly downregulated.

Differences in gene expression of several genes were verified by

qRT-PCR analysis (Figure S2). Repression of Sca-1 lead to the

upregulation of several inflammatory chemokines: chemokine (c-c

motif) ligand 2 (Ccl2), Ccl7, chemokine (c-c motif) ligand 5 (Cxcl5).

Table 1. Repression of Sca-1 increases tumor outgrowth
potential and tumor propagating cell frequency.

Tumor Take Rate

No. Cells Injected shLuc (%) shSca-1 (%) p-value

10,000 9/10 (90) 11/11 (100) ns

5,000 5/12 (42) 9/9 (100) p,.01

2,000 4/10 (40) 13/14 (93) p,.01

1,000 1/10 (10) 6/7 (86) p,.01

500 1/11 (9) 7/13 (54) p,.01

Tumor Propagating
Cell Frequency

1/5963 cells 1/654 cells

doi:10.1371/journal.pone.0027841.t001

Figure 3. Repression of Sca-1 accelerates tumor growth by a
transient increase in proliferation. Tumor latency plot comparing
shLuc (blue line) and shSca-1 (red line) (A). BrdU staining of early lesions
(B,C) and established tumors (D,E). Bar graph of BrdU staining of shLuc
(open bars) and shSca-1 (grey bars) in early lesions and tumors (F)
(** p,.01).
doi:10.1371/journal.pone.0027841.g003
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Additionally, repression of Sca-1 altered the expression of genes

involved in proliferation, cell movement, cell-cell signaling and cell

organization (Figure 5B).

Discussion

Sca-1 is widely accepted as a stem/progenitor cell marker in

normal mouse tissues [3,13–15]. However, Sca-1eGFP/eGFP mice

did not exhibit a reproducible phenotype on mammary gland

development in our laboratory (unpublished data). Previous

studies have shown that Sca-1 positive cells are expanded in

Wnt/b-catenin induced mammary tumors [8,9]. Additionally, a

Ly6 family member, Ly-6D is upregulated in a variety of murine

tumors and triple-negative breast cancers [16]. Despite these

associations there is limited knowledge of functional role of Sca-1.

Our findings indicate that Sca-1 plays an important role in

mammary tumorigenesis as revealed using a novel cell line derived

from MMTV-Wnt-1 mouse mammary tumors. First, Sca-1

promotes cell migration and affects cell adhesion to several

ECM substrates in vitro. Second, Sca-1 regulates the frequency of

tumor propagating cells and tumor cell proliferation in early

lesions. These studies point to epithelial-ECM interactions as

mediators of Sca-1 function; however, direct effects on down-

Figure 4. Wnt1-YL tumors express basal epithelial marker K5.
Immunohistochemical staining of early tumor lesions of shLuc- and
shSca-1-derived tumors. Hemotoxylin and eosin staining (A–B), Keratin
5 (C–D), Keratin 8 (E–F), pan-Keratin (G–H).
doi:10.1371/journal.pone.0027841.g004

Figure 5. Gene expression analysis of shLuc and shSca-1 cells.
Heat map of differentially expressed genes between shLuc and shSca-1
cells (A) up-regulated genes (yellow) and down-regulated (blue). Table
of pathways enriched in Sca-1 deficient cells (B).
doi:10.1371/journal.pone.0027841.g005
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stream signaling and their relationship to tumor latency have not

yet been determined.

There are several plausible explanations for our observations.

First, Sca-1 may directly (or indirectly) interact with integrins

modulating their ability to heterodimerize and bind ECM

proteins, and/or modulating the strength of integrin-ECM

interactions. The increased expression of a5-integrin in shSca-1

cells likely accounts for the increased adhesion to fibronectin via

the a5b1 heterodimer. a5-integrin has been implicated as a

suppressor of metastasis and a6-integrin promotes metastasis in

breast cancer cell lines [17]. Since both of these integrins are

expressed at similar levels in the Wnt1-YL cells, further

investigation is required to fully define the relationship between

Sca-1 and the role of integrins in this system. Next, Sca-1 may

interact with non-integrin receptors such as growth factor

receptors that cooperate with integrin signaling [18–20]. Alterna-

tively, Sca-1 may alter interactions with cell surface receptors that

act independently of integrin signaling. Additionally, Sca-1 may

regulate the activation of MMPs leading to the release/activation

of growth factors stimulating proliferation of tumor cells as

observed in skeletal muscle cell regeneration [21].

The Wnt1-YL cells exhibited collective cell migration as a sheet

in a scratch monolayer assay. In transwell migration assays,

evaluating single cell migration across a porous membrane we did

not show statistically significant differences in migration (data not

shown). Furthermore, when the cells were seeded in matrigel

(laminin-rich matrix) for a 3D morphogenesis/invasion assay the

cells did not exhibit differences in terms of acini/colony formation

frequency, size, morphology or invasive properties (data not

shown). These observations suggest that Sca-1 is responsible for

subtle changes in cell-cell and cell-ECM interactions in this cell

line. Deciphering these subtleties in the context of cell migration

and invasion may require further investigation of this cell line on

matrices of single ECM substrates.

Interestingly, repression of Sca-1 alters chemokine expression,

influencing the recruitment of inflammatory infiltrates. Since

immune cells influence many processes including angiogenesis, cell

invasion, matrix remodeling, interactions between tumor cells and

the immune system have become of increasing interest in the past

decade. Immune cells in both the innate and adaptive immune

systems have proved to be important in tumor development and

metastasis [22–25]. Chemokine secretion from shSca-1 cells may

recruit immune cells with pro-tumor activities accounting for the

accelerated tumor growth. Furthermore, Sca-1 not only regulates

chemokine expression, but Wnt1-YL cells grown in culture show

differential secretion of both cytokines and chemokines (data not

shown). Also, insulin degrading enzyme (Ide-1), a protein that

physically interacts with Sca-1 to regulate differentiation skeletal

muscle cells [2], was down regulated in shSca-1 cells. Ide-1

catalyzes the degradation of mitogenic peptides attenuating

proliferative signals. Reduction in this activity may also account

for proliferative response seen the shSca-1 tumor development.

Additionally, Fgf20, a Wnt/b-catenin target gene, was up

regulated in response to Sca-1 repression. Cooperation between

the Wnt/b-catenin and FGF signaling pathways has been reported

in human cancers and our laboratory has previously shown a

strong association leading to rapid proliferation upon simultaneous

activation of these pathways [20]. Thus, Sca-1 potentially regulates

multiple aspects of tumor development. The impact of these

changes in mRNA expression needs to be determined with regard

to protein expression and activity to better understand the role of

Sca-1 in tumorigenesis.

Recently, Upadhyay and colleagues showed that Sca-1

inhibited TGF-b signaling by disrupting the heterodimerization

of the TGF-b receptors and repressing expression of Gfd10, a

TGF-b ligand, in a mammary adenocarcinoma cell line induced

by medroxyprogestrone (MP) and 7,12-dimethylbenz(a)anthra-

cene (DMBA) [26]. Their tumor outgrowth data indicate that

repression of Sca-1 reduces tumorigenicity or outgrowth

potential as observed in normal mammary epithelial cells.

Similarly, another report shows delayed tumor development in

MP/DMBA induced tumors in Sca-1 knock-out mice [27]. In

this case, the delay in tumor development was attributed to the

upregulation and activation of PPARc. In contrast, our data

indicate that Sca-1 may restrict cell growth. There are several

explanations for these discrepancies. First, the tumors were

developed under different conditions likely driven by different

signaling pathways, which have been shown to yield very

different tumor histopathologies [8]. Second, the relative level of

Sca-1 on the cell surface is likely to govern how Sca-1 regulates

signaling activities [1]. This may also account for the lack of

overlapped genes in the microarrays when comparing the data of

Upadhyay et. al. and our data set. Yuan et. al. only shared 15

genes in common with our data set with a p,0.01 and a fold

change .1.5 (Table S2). These genes were all upregulated, but

did not reveal an enrichment of a common functional pathway.

Since the tumor cell models employed in the two studies were

developed using different methods, it is likely that they express

Sca-1 at different levels. Furthermore, it is unlikely that the

efficiency of Sca-1 repression is the same as different shRNA

constructs were used. Cell context no doubt plays an important

role in influencing the effects of Sca-1 in tumors that may have

been derived from very different cell lineages. For instance,

CD24high/Sca12 luminal mammary epithelial cells (MECs) do

not express ER and PR and have increased in vitro progenitor

activity in contrast to CD24high/Sca-1+ luminal MECs that are

ER and PR positive with reduced in vitro progenitor activity [6].

Nevertheless, these studies highlight that Sca-1 likely regulates

multiple cellular processes.

In conclusion, we provide evidence that Sca-1 regulates multiple

cellular functions in mammary tumor cells. Our data highlight the

importance of studying Sca-1 in the context of tumor develop-

ment. To definitively differentiate the roles that Sca-1 plays in

tumor initiation and tumor progression it will be necessary to use a

conditional system in which Sca-1 can be knocked at various stages

of tumor development. Additionally, it may be necessary to

evaluate the role of Sca-1 in tumor subpopulations in models in

which tumor-initiating cells are present. Further investigations

along these lines will lead to a better understand of GPI anchored

protein functions in tumors.

Materials and Methods

Ethics Statement
Mice were maintained in accordance with the National

Institutes of Health Guide for the Care and Use of Experimental

Animals with approval from the Baylor College of Medicine

Institutional Animal Care and Use Committee (Animal Protocol:

AN-504).

Cell Line
The Wnt1-YL cell line was derived from an invasive carcinoma

(ZD2508) of an MMTV-Wnt1 FVB/n mouse. The cells were

grown in DMEM/F12 (Invitrogen) at ph 7.6, with 2% adult

bovine serum (Gemini Bio-Products), antibiotic/antimycotic (In-

vitrogen), 5 mg/ml gentimycin (Sigma), 10 mg/ml insulin (invitro-

gen) and 5 ng/mL EGF (Invitrogen).

Sca-1 Regulates Mammary Tumor Development
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Lentiviral Vectors
pLKO lentiviral vectors (Open Biosystems) with shRNA

targeting Sca-1 were used to repress expression of Sca-1. The

LeGO-Sca-1-iG2 was constructed by PCR amplifying Sca-1

cDNA from the pSport6-Sca-1 plasmid (Open Biosystems) using

the follow primers: 59-GCCGGGATCCCTGAGAGGAAGTTT-

TATCTGT-39 and 59-GCCGGAATTCTCAGAGCAAGGT-

CTGCAG-39. The PCR product was digested BamHI and EcoRI

cloned into the LeGO-iG2 expression vector.

Lentiviral Transductions
293T-packaging cells were transiently transfected with pLKO-

shRNA vectors (Open Biosystems), Gag-Pol and VSV-G plasmids

using FuGENE 6 (Roche) according to the manufacturer’s

guidelines. Forty-eight hrs after transfection, virus-containing

medium was collected from transfected 293T cells, filtered through

a 0.45-mm syringe filter, and applied to Wnt1-2508 cells. The cells

were spun at 300 g in a swinging platform rotor for 30 min. After

24 hrs, the lentiviral supernatant was removed from Wnt1-2508

cells and replaced with fresh medium. Forty-eight hrs later, cells

were trypsinized and split at a low density with the addition of

4 mg/ml puromycin (Sigma) to select for transduced cells.

Transplants
Clearance of the mammary fat pad and MEC transplantation

procedures were performed as previously described [28]. Cells

were trypsinized with 0.25% Trypsin-EDTA (Invitrogen) and

counted using a Vi-CELL XR Cell Viability Analyzer (Beckman

Coulter). The designated number of cells were washed and

resuspended in Hank’s balanced salt solution (Invitrogen). The

cells were injected into the cleared inguinal fat pad of 3–4 week old

FVB/n mice (Harlan). Tumors were allowed to develop for up to

16 weeks.

Growth Curve
Cells were plated at 50,000 cells/well in 6-well plates and

replenished with fresh medium every 48 hrs. Cells were trypsin-

ized and counted every 24 hrs 4 days using a Vi-CELL XR Cell

Viability Analyzer (Beckman Coulter).

Adhesion Assay
105 cells were seeded onto CytoMatrixTM Cell Adhesion Strips

coated with BSA, Collagen Type I and IV, Fibronectin, Laminin,

Vitronectin (Millipore) according to the manufacturer’s guidelines.

The cells were allowed to adhere for 1 hr at 37uC, non-adherent

cells were washed off with PBS, and adherent cells were stained

with 0.2% crystal violet. The relative attachment was determined

by absorbance at 560 nm on a microplate reader and all samples

were normalized to BSA coated wells. Statistical analysis was

performed by one-way ANOVA followed by Tukey’s multiple

comparisons test.

Migration Assay
Cells were grown to confluence in 6-well plates. A p1000 pipet

tip was used to make a scratch down the center of each well.

Pictures were taken on an inverted microscope (Zeiss) every 6 hrs

for 24 hrs to evaluate migration across the scratch. Following the

scratch, the cells were wash and refreshed with complete media.

Axiovision software (Zeiss) was used to measure the distance across

each scratch. For each experiment, 3 fields along the scratch of

each well were analyzed in triplicate for each sample. A two-way

ANOVA followed by Bonferroni tests was used to compare the

mean at each time point.

mRNA Real Time-PCR
cDNA templates were generated using a SuperScript II as

previously described. Quantitative PCRs were run using SYBR

Green reagent (Applied Biosystems) on a StepOnePlus thermo-

cycler (Applied Biosystems), normalized to b-actin, and fold

changes were calculated using the comparative CT (DDCT)

method using StepOne software v2.0.1 (Applied Biosystems).

Primer sequences for Sca-1, Ccl2, Ccl7, Cxcl5, Mmp-9, and

S100a8 were obtained from (Roche Applied Science).

Flow Cytometry
Cells were trypsinized, trypsin was neutralized with culture

medium containing ABS and centrifuged at 4506 g for 5 min,

and the cell pellet was resuspended in HBSS containing 2%

ABS (HBSS+). Cells were counted and separated for labeling

with antibodies. The cells were incubated primary antibodies for

20 minutes on ice, washed twice with HBSS+ and resuspended

with HBSS+ containing Sytox Blue or Sytox Red (Invitrogen) to

exclude dead cells. The cell suspensions were filtered using

40 mm filter (BD Falcon) and analyzed on a LSRII Fortessa

(Becton Dickinson). The following primary antibodies were

used: PE-conjugated (PE) rat anti-mouse Sca-1 (1:100; BD

Pharmingen), APC hamster anti-mouse/rat CD 29 (1:100;

BioLegend), FITC hamster anti-mouseCD49b (1:100;

eBioscience), PE mouse anti-human CD49c (1:100; BD

Pharmingen), PE rat anti-mouse CD49e (1:100; BD Pharmin-

gen), FITC rat ant-human CD49f (1:100; BD Pharmingen), PE

rat anti-mouse CD51 (1:100; BD Pharmingen), Alexa Fluor 647

hamster anti-mouse/rat CD61 (1:100; BioLegend), PE rat anti-

human CD104 (1:100; BD Pharmingen) and the corresponding

isotype controls.

Immunohistochemistry and Immunofluorescence
Mice were injected with 3 mg/mL BrdU (0.01 mL/g body

weight) two hrs prior to sacrifice. Tumors were harvested and fixed

in 4% paraformaldehyde for two hrs on ice. Tissues were

embedded in paraffin blocks and 6–8 mm sections were cut for

immunostaining. Sections were boiled in sodium citrate antigen

retrieval buffer for twenty minutes. Sections were blocked with a

5% BSA, 0.05% Tween-20 in PBS for immunohistochemistry and

in 10% goat serum in PBS for immunofluorescence. Primary

antibodies were incubated at 4uC overnight. BrdU (1:10; BD), K5

(1:10,000; Covance), K8 (1:5000; Univ. of Iowa), pan-Keratin

(1:5000; Sigma).

Microarray
Total RNA was isolated from cells using TRIzol Reagent

(Invitrogen) and then cDNA was made from total RNA with

SuperScript II (Invitrogen) using random primers. cDNA was

treated with RNase H (Invitrogen) to remove RNA. Microarray

analysis was done with Affymetrix MG 430 2.0 chip. Statistical

analysis was done with dChip software package (www.dChip.org),

using PM-MM model and invariant set normalization. Differen-

tially expressed genes were identified using two-sided t-test and

fold change on log-transformed data. Java TreeView represented

expression values as color maps [29]. Microarray data have been

deposited into the Gene Expression Omnibus database

(GSE30684) and followed MIAME requirements.
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Supporting Information

Figure S1 Repression of Sca-1 did not alter cell death.
TUNEL staining of tumor sections (A–E). Positive control,

DNaseI-treated shLuc tumor section (A). shLuc and shSca-1 early

lesions (B, C) and tumors (D, E).

(TIF)

Figure S2 qRT-PCR analysis of selected genes in shLuc
and shSca-1 cells. Relative mRNA expression of Sca-1, Mmp-

9, S100a8, Cxcl5, Ccl2, and Ccl7 (A–F, respectively).

(TIF)

Table S1 Differentially expressed genes in shSca-1
tumor cells. Listed are statistically significant genes with

p,0.01 and a fold change .1.5 in shSca-1 cells compared to

shLuc control cells.

(XLS)

Table S2 Upregulated genes associated with Sca-1 loss
in tumors. Listed are the statistically significant genes upregu-

lated with p,0.01 and a fold change .1.5 in both shSca-1 cells

and MP/DMBA tumors in Sca-1 knockout mice.

(XLS)
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