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Abstract

Discovering all the genetic causes of a phenotype is an important goal in functional genomics. We combine an experimental
design for detecting independent genetic causes of a phenotype with a high-throughput sequencing analysis that
maximizes sensitivity for comprehensively identifying them. Testing this approach on a set of 24 mutant strains generated
for a metabolic phenotype with many known genetic causes, we show that this pathway-based phenotype sequencing
analysis greatly improves sensitivity of detection compared with previous methods, and reveals a wide range of pathways
that can cause this phenotype. We demonstrate our approach on a metabolic re-engineering phenotype, the PEP/OAA
metabolic node in E. coli, which is crucial to a substantial number of metabolic pathways and under renewed interest for
biofuel research. Out of 2157 mutations in these strains, pathway-phenoseq discriminated just five gene groups (12 genes)
as statistically significant causes of the phenotype. Experimentally, these five gene groups, and the next two high-scoring
pathway-phenoseq groups, either have a clear connection to the PEP metabolite level or offer an alternative path of
producing oxaloacetate (OAA), and thus clearly explain the phenotype. These high-scoring gene groups also show strong
evidence of positive selection pressure, compared with strictly neutral selection in the rest of the genome.
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Introduction

Discovering what genes cause a specific phenotype poses several

experimental and analytical challenges, and there are several

approaches in the literature for causal gene identification including

direct identification of causal mutations from naturally evolving

populations growing in the prescence of isobutanol [1] [2], using

transposon insertions to detect antibiotic targets [3], use of

chemical mutagenesis to produce randomly generated mutants

and subsequent high-throughput sequencing to identify key

mutation [4] [5] [6]. In particular, the method described in [6],

called phenotype sequencing, combines the last approach with

sequencing techniques to produce more information at a

substantially reduced total cost. The results of the first phenotype

sequencing experiment were further verified in the study by Minty

et al [1], which found specific causal mutations in many of the

genes identified by phenotype sequencing (and also verified

partially by [2]; see also [7]). See [8] and [9] for more on pooling

methods.

Many such methods, while successful, have substantial draw-

backs in terms of efficiency and comprehensivity of detection, total

labor required to create mutants and verify mutations as causal,

and overall cost. Unless the mutagenesis density is very low, there

can be many mutations that must be checked; if there is only a

single mutation in each mutant, causes of complex phenotypes

requiring more than one mutation may be missed. Naturally

evolved strains typically both have fewer mutations (10–20

typically) and a larger fraction of these directly contribute to the

phenotype [10] [11] [12] [13] [14] [15], with in some cases as few

as 3 mutations per strain [16] [17] or more than 40 [18]. On the

other hand, natural evolution typically involves a mixture of many

mutants competing with each other. Even small differences in

selective advantage will tend to give a winner-take-all outcome, in

which the ’’top’’ mutant takes over the culture, and other causes of

the phenotype are obscured. This can occur even over a relatively

short period of competitive culture (illustrated in Fig. 1). Hence if

mutants are allowed to compete, detection of smaller contributors

to the phenotype can be washed out by the growth of other

mutants. This means that only some of the causes of a particular

phenotype will be detected. In particular, if there is a ’’trivial’’ way

to get the phenotype, this can obscure the interesting, non-obvious

causes of the phenotype.

While mutagenesis can aid the production of mutants with the

desired phenotype, it also elevates the total number of mutations in

each strain (often 50 – 100 mutations [19] [20], of which perhaps

only one actually causes the phenotype). Dissecting these many

candidate mutations experimentally can be laborious, so we

employ statistical methods to detect which mutations are most

likely to be causal.

Given these challenges, it would be very useful to have reliable

high-throughput methods for comprehensively identifying all the
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genetic causes of a phenotype. Three features seem crucial for this

goal. First, sufficient mutagenesis coverage is required to hit all the

potential causes of the phenotype. Note that this may require

mutating two or more genes simultaneously to achieve the desired

phenotype. For a gene to be identified with any kind of statistical

significance in a high-throughput (genome-wide) analysis, the

’’target’’ set of mutations in a gene that can actually cause the

phenotype must be hit not just once but multiple times in

independent strains. Second, the different mutant strains (repre-

senting independent mutagenesis events) must be screened non-

competitively, e.g. by either picking only one colony from each

independent experiment, or by forgoing long growth rescue in

liquid medium to avoid multiple colonies arising from genetically

identical daughter cells of a single mutant. This ensures that the

different strains with the phenotype will be independent mutation

events that represent an unbiased sampling of the diverse possible

causes of the phenotype. High-throughput sequencing of the

independent mutant strains, yielding the total number of times a

gene is independently ’’hit’’ by mutations across all the strains, can

then directly reveal genes that cause the phenotype [6]. We refer

to this bioinformatic approach as ’’phenotype sequencing’’. Third,

to attain sensitive and comprehensive discovery of the causal genes,

the analysis must be able to combine signals across multiple genes

that function together, e.g. in the same pathway. When multiple

genes in a pathway can cause the same phenotype, this ’’splits’’ the

signal (concretely, the number of observed mutations) among

them, making it much harder to detect. For example, our first

phenotype sequencing analysis did not obtain a statistically

significant score for some genes that are known to cause the

phenotype, even though they were relatively highly ranked (due to

having more mutations than expected by random chance) [6].

Combining signals from multiple such genes in a pathway could

greatly improve sensitivity and hence allow for comprehensive

discovery.

As an experimental test, we sought a phenotype that involves

many pathways. We therefore chose a metabolic phenotype,

namely recovery of ability to grow on glucose by E. coli lacking the

Phosphoenolpyruvate carboxylase (PPC) enzyme. Oxaloacetate

(OAA) is an essential metabolite for the first step of the TCA cycle.

Normally, consumption of OAA to produce aspartate is replen-

ished by the PPC enzyme (converting phosphoenolpyruvate (PEP)

to OAA; see Fig. 2 for a pathway overview). In the absence of

PPC, cell growth becomes limited by the cell’s inability to produce

OAA. Hence, growing a ppc{ strain on glucose selects for

alternative ways of producing OAA.

There is a plethora of experimental data identifying multiple

pathways that can contribute to OAA production. Metabolic

engineering of the PEP-OAA node has long been studied as a way

of modifying the energy balance of the cell [21] [22] [23] [24]

[25]. For example, Phosphoenolpyruvate carboxykinase (PEPCK)

decarboxylates OAA and activates it to PEP using ATP as a

substrate. PEPCK is reversible in some organisms and the reverse

Figure 1. 1000 Simulations of the Wright-Fisher Selective Dynamics [58] of a Randomly Mutagenized Population. A. (Top) a simulation
of 26 strains of various fitnesses that grow exponentially from a founder population of individual mutants to a carrying capacity under Wright-Fisher
selection dynamics. The results of a single simulation show that one mutant dominates the population after a small number of generations. Note
diversity is lost due not only to selection, but also genetic drift. B. (Middle) As reproduction and selection proceeds, the mean number of distinct
strains decreases very quickly. On average half of the strains are lost after just 6–7 generations. C. (Bottom) Similarly, the mean Shannon entropy [59]
of the population distribution also decreases quickly. This differs from (B) in that the population proportions are also taken into account.
doi:10.1371/journal.pone.0088072.g001
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PEPCK reaction is more energy efficient than the PPC reaction

because it conserves the phosphate from PEP by generating ATP.

In E. coli, however, PEPCK is not expressed under glucose-grown

conditions and therefore the reverse PEPCK reaction cannot

substitute for PPC. Recently, with the increased focus on

renewable resources from microbes, optimization of the PEP/

OAA metabolic node has received renewed interest. Much of the

interest has focused on increasing the production of succinate (a

high value carboxylic acid of industrial relevance) in E. coli and

other microbes. In recent studies PPC has been supplemented or

replaced with pyruvate carboxylase (PYK) [26], and more often

with PEPCK [27], which increases the ATP pool of the cell. This

can lead to higher levels of succinate production from a variety of

feedstocks [28]. The use of PEPCK and the resulting higher ATP

concentration has also been exploited to increase production of

malate, OAA [29] or fumarate [30] and even the amount of

recombinantly expressed proteins [31]. Overexpressing either a

native or heterologous pepck gene is one way to compensate for the

knockout of ppc; this could be one way to rescue an OAA

auxotroph strain [27]. However, a number of other pathways

affect OAA levels and flux through the PEP node [32].

On the basis of these favorable prospects for involvement of

multiple pathways, we mutagenized a parental ppc{ strain,

screened for growth on glucose, and analyzed the resulting

Figure 2. Schematic of metabolic pathways affected by Ppc knockout (dotted line). The ppc{ strain requires additional oxaloacetate to
grow. Growth is achieved through direct synthesis of oxaloacetate by alternative pathways such as the glyoxylate shunt or pck, or through an
increase of PEP levels, which drives flux through these pathways. The top seven mutated pathways identified by pathway phenotype sequencing are
shown in red. It has been shown that Ppc knockouts cause increased flux through the glyoxylate shunt [60], consistent with our observed mutations
in AceK and IclR. Mutations in PtsI have previously been observed in response to a growth-based selection for increased succinate production, in a
scenario where Pck overexpression was also observed [27]. Similarly, deletion of ptsH, which also deactivates the PTS system and increases the
intracellular PEP pool, has also been shown to increase succinate yields [48].
doi:10.1371/journal.pone.0088072.g002

Comprehensive Detection of Causal Genes

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e88072



mutants via phenotype sequencing. Unlike previous reports, we

did not eliminate pflB [27]. PflB encodes a pyruvate-formate lyase,

which decarboxylates pyruvate to acetyl-CoA under anaerobic

conditions. Since our strain was grown aerobically the pyruvate

dehydrogenase complex is responsible for the analogous reaction

under these conditions [33]. By not restricting decarboxylation of

pyruvate we allowed for mutants that could supply OAA through

means other than PEPCK. We mutagenized the ppc{ strain and

selected for growth on glucose. By performing 24 independent

mutagenesis and selection experiments we produced 24 separate

mutant strains, identified mutations via pooled sequencing, and

identified genetic causes via by pathway-phenoseq and gene-

phenoseq.

To assess the possibility of improving detection of multiple

pathways, we developed a ’’pathway-phenoseq’’ analysis that

combines mutation signals across each specified pathway. We used

pathway information from the EcoCyc database of functionally

associated genes in E. coli [34]. We also developed bioinformatic

validation methods based on gene clustering and independent

measures of positive selection. It should be emphasized that

pathway-phenoseq seeks to identify which pathways cause a

phenotype, but not which individual mutations. So we shall focus

our analysis and assessment on its pathway scoring, not on

individual mutations.

Note that while causal variants are commonly identified via

genome-wide association studies (GWAS), such methods are not

appropriate for our dataset because GWAS studies typically rely

on thousands of case and control samples, and our samples include

one (implicit) control (the parent lacking the phenotype) and 24

independently generated mutants expressing the phenotype.

Moreover we exploit the phylogenetic star topology and muta-

genesis density resulting from independent mutagenesis experi-

ments, both of which differ greatly from a typical GWAS dataset.

Accordingly, statistical and biological assumptions of phenotype

sequencing are different than GWAS-based methods such as GSA-

SNP [35] and SNP-PRAGE [36], and so these methods, while

useful in the appropriate context, are not useful comparisons to the

phenotype sequencing statistical model. Instead we will use the

widely-known Ka/Ks selection test [37] for comparison.

Results

Sequencing of Independent Mutants
Using growth on glucose medium as a selection, 24 mutants

with the desired phenotype were produced. The genomic DNA

was pooled into 8 libraries each consisting of exactly three strains.

These libraries were tagged, combined, and sequenced in a single

lane of a high-throughput Illumina Hi-Seq sequencer. The

resulting fragments were filtered, aligned to the reference E. coli

K-12 substr. MG1655 genome sequence, and scanned for

sequence variants. Sequencing produced 145 million reads of

100 basepairs each for a total of 14.5 Gb of genomic sequence, of

which approximately 118 million reads successfully demultiplexed

(had an identifiable tag) and aligned to the reference genome.

From the pooled libraries, we identified 2157 SNPS (1450

nonsynonymous, 707 synonymous) after filtering for quality and

strand bias (see methods), yielding approximately 100 mutations

per strain. These SNPs showed a strong preference for GC-sites in

line with the mutagenesis spectrum of NTG [38]. SNPs were

detected in 1348 genes; 1012 genes had one or more nonsynon-

ymous mutations.

Pathway-Phenoseq Analysis
We developed a method for scoring individual pathways, based

on the number of non-synonymous mutations occurring in genes

in each pathway (see Method for details). As a comprehensive set

of E. coli pathway annotations, we used the EcoCyc Functionally

Associated Groups database, totalling 536 groups [24], of which

336 were hit by non-synonymous mutations in our sequencing

dataset. (For simplicity, we will refer to these EcoCyc Functionally

Associated Groups as ’’pathways’’). We applied our scoring

method (which we will refer to throughout as ’’pathway-

phenoseq’’) to all 336 pathways, and ranked them by their p-

values (Table 1). After the Bonferroni multiple hypothesis

correction, the top five pathways (containing 12 genes total) were

statistically significant.

Gene-phenoseq identified three of these genes (iclR and aceK in

pathway PD04099; malT in pathway PD00237) as statistically

significant (Table 2). Thus pathway-phenoseq detected more than

twice as many causal pathways for this phenotype, and four times

as many genes as the gene-phenoseq scoring. Even for pathways

detected by both, gene-phenoseq had a much weaker p-value

(strongest score 1:39|10{25) than pathway-phenoseq

(2:01|10{39); this is expected to be true generally whenever

signal is spread over multiple genes in a pathway.

0.1 Assessment vs. Experimental Literature
We assessed these results against pathways shown to be involved

in this specific phenotype in previous experimental literature. Fong

et al. performed natural evolution experiments on a ppc{

knockout strain selecting for the same phenotype (recovery of

the ability to grow on glucose as a carbon source) [24]. After 45

days of growth and selection, they obtained two mutant strains,

which had growth rates and glucose consumption rates very

similar to the wild type strain, more than double the ppc{ strain

on day 0. While Fong et al. did not identify the specific causal

mutations, they found that metabolic flux through the glyoxylate

shunt (aceA and aceB) increased, and also that the expression level

of these two genes increased. Two other studies found increased

flux in the glyoxylate shunt in ppc{ mutants [39], including a

rescue of such a mutant by overexpression of the shunt [40].

These data validate our top pathway hit (PD04099, aceK and

iclR), which regulates the glyoxylate shunt [41] [42], the pathway

reported by Fong et al. to be specifically up-regulated in

association with this phenotype. And a separate set of mutagenesis

studies have shown that mutations in iclR do indeed increase flux

through the glyoxylate shunt [43].

Literature assessment of the top pathways highlights two distinct

mechanisms for our growth phenotype (Fig. 2). On the one hand,

the glyoxylate shunt provides an alternative source for the cell to

make OAA (via the glyoxylate cycle, which produces two OAA

molecules for every OAA molecule it consumes). The seventh top

hit (PWY0-321) represents the phenylacetate degradation path-

way, which produces succinyl-CoA from phenylacetate [44]. This

matches the validated glyoxylate shunt mechanism for our growth

phenotype; that is, it provides an alternative source for OAA

synthesis, from phenylacetate to succinyl-CoA to OAA. On the

other hand, the literature indicate that our other pathways instead

can increase PEP levels sufficient to induce its conversion to OAA

via the PEPCK reverse reaction. For example, the second, third

and fourth top hits (CPLX0-2101, ABC-16-CPLX, and PD00237)

are all components of the maltose transport pathway, and the sixth

pathway (PTS) is a separate transport pathway that consumes PEP

to drive transport of glucose. The maltose transporter actively

transports glucose into the cell using ATP as energy, whereas other

Comprehensive Detection of Causal Genes
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glucose transporters such as PTS consume PEP [45]. So increased

maltose transporter activity and decreased PTS activity would

both increase PEP levels, and favor its reverse reaction via PEPCK

to produce OAA. This has been demonstrated by several

experimental studies: a laboratory evolution experiment selecting

for increased growth and succinate production identified muta-

tions in PTS that increased flux through PEPCK in the reverse

direction [46]. In accordance with Le Chateliers principle,

increasing the level of cellular PEP leads to higher reverse PEPCK

activity. Zhang et al. also showed that increased expression of the

galactose permease (galP), in combination with deactivation of the

PTS system, increased the PEP efficiency of glucose transport and

succinate production [27]. Indeed, a number of studies have

reported that mutations in the PEP-dependent phosphotransferase

system (PTS) lead to increased flux from PEP to OAA (and on to

succinate) [47] [48] [49]. The fifth top hit (GLYCOGENSYNTH-

PWY) is not a sugar transport pathway, but instead the glycogen

synthesis pathway. While it does not directly consume PEP, it

consumes Glucose-6P (G6P), a metabolic precursor of PEP. Loss

of (or reduced) function mutations in this pathway would boost

G6P and hence PEP levels, as well as glucose and ATP levels,

which both decrease the consumption of PEP for glucose

transport. It should be emphasized that these previous experi-

mental studies do not prove that mutations in pathways 2–7 can

cause our specific phenotype (growth of ppc{ knockout strain on

glucose), as they did not test this specific phenotype.

Bioinformatic Tests
As an additional test of the entire set of top scoring pathways,

we computed a p-value for evidence of positive selection (Ka/Ks

. 1) within this set (Table 3). Whereas the phenoseq scoring is

based on the total number of mutations in a region, the Ka/Ks is

based on the ratio of non-synonymous vs. synonymous mutations

(note that the latter are not considered by the phenoseq scoring

function). The Ka/Ks ratio for the total dataset of 2157 SNPs was

1.0026, consistent with neutral selection, as expected from random

mutagenesis. We therefore computed a p-value for the null

hypothesis that mutations in the top pathways are drawn from the

same background distribution as the total set of mutations (i.e.

neutral) using the Fisher Exact Test (see Methods for details).

The top 10 pathway-phenoseq pathways contained a total of

103 non-synonymous mutations vs. only 21 synonymous muta-

tions, yielding a p-value of 3:38|10{5. This is strong evidence of

positive selection. Even leaving out the genes detected by gene-

phenoseq (iclR, aceK, malT), the p-value is 5:12|10{3. Further-

more, this evidence of positive selection extends throughout the

top ten pathways. For example, if one leaves out pathways 6

through 10, the p-value becomes weaker (4:34|10{4, or again

leaving out iclR, aceK, malT, 0.056). Indeed the p-value becomes

stronger (smaller p-value) with each additional pathway added to the

analysis, indicating that each pathway shows evidence of positive

selection. Note that at the level of single-gene analysis, only one

gene (iclR with 19 non-synonymous mutations and 1 synonymous

mutation) could be detected as showing statistically significant

evidence of positive selection (p~3:1|10{3); other genes simply

did not have enough total mutation counts to attain significance.

Only two gene groups (combined into a single meta-gene),

PD04099 containing iclR and aceK and TRNA-CHARGING-PWY,

have a Ka/Ks value greater than one with a p-value less than 0.1

from Fisher’s exact test. The latter pathway is not obviously

connected to the phenotype and is composed of 23 genes involved

in many cellular functions.

It is interesting to ask what fraction of the genes in these

pathways show evidence of causing the phenotype. It is evident

(e.g. from the known experimentally validated genes) that real

causal genes are present far below the 0.05 significance threshold

of gene-phenoseq scoring (also found to be the case in a previous

phenotype sequencing experiment [6].) To assess this, we took the

Table 1. Top 10 gene groups ranked by pathway-phenoseq
p-value (Bonferroni corrected for 536 tests).

Group Genes p-value (phenoseq)

PD04099 aceK iclR 2:01|10{39

CPLX0-2101 malE malF malG
malK lamB

2:84|10{9

ABC-16-CPLX malF malE malG
malK

7:17|10{8

PD00237 malS malT 4:29|10{4

GLYCOGENSYNTH-
PWY

glgA glgB glgC 4:25|10{3

CPLX-155 chbA chbB chbC
ptsH ptsI

0:145

PWY0-321 paaZ paaA paaB
paaC paaD paaE
paaF paaG paaH
paaJ paaK

0:146

RNAP54-CPLX rpoA rpoB rpoC rpoN 0:53

APORNAP-CPLX rpoA rpoB rpoC 0:62

APORNAP-CPLX rpoA rpoB rpoC rpoD 0:71

doi:10.1371/journal.pone.0088072.t001

Table 2. Top 20 hits ranked by Bonferroni corrected gene-
phenoseq p-value computed on non-synonymous SNPs.

Gene p-value

iclR 1:39|10{25

aceK 8:43|10{14

malT 4:81|10{4

malE 0:045

yjbH 0:088

rplL 0:18

ydfJ 0:18

pgi 0:21

yhcA 0:78

tyrS 0:82

yjaG 0:82

yeeN 0:82

tig 0:85

glgB 0:88

fdhF 0:89

gntT 1:04

dbpA 1:11

ydfl 1:16

lysC 1:18

xylE 1:22

doi:10.1371/journal.pone.0088072.t002
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top 50 gene-phenoseq genes, and asked what pathways were

strongly enriched (Table 4). Given a top list of genes, one can

assess whether they cluster within specific subgroups of a standard

functional annotation using the hypergeometric p-value test [49].

This analysis identified statistically significant clustering within

three EcoCyc pathways. Furthermore, six of the top ten pathways

matched the top 10 pathway-phenoseq pathways. These data

indicate that at least 9 of the genes in these pathways contribute

causally to the phenotype (since they were individually detected

among the top 50 gene-phenoseq hits). Only 28 pathways

intersected the top 50 list.

Causal Mutations Analysis
Finally, we sought to estimate the number of mutations in each

group that actually help cause the phenotype (’’causal mutations’’).

In principle, one can estimate this from the observed bias towards

non-synonymous mutations (compared with that expected under

neutral selection as observed in the total dataset). Specifically, we

assume that all causal mutations must be non-synonymous,

whereas non-causal mutations are drawn from the background

mixture of synonymous + non-synonymous mutations (i.e. neutral

selection). We can then estimate the fraction of mutations in each

pathway that are causal, since the observed fraction of non-

synonymous mutations fo in a pathway will reflect the mix h of

causal vs. non-causal mutations:

fo~hz(1{h)fn

where fn~1448=2157 is the fraction of non-synonymous

mutations observed in the entire dataset (which almost exactly

matches that expected for neutral selection). Then

h~
fo{fn

1{fn

We then estimated the number of causal mutations in a pathway

as Nc~Nh, where N is the total number of mutations observed in

the pathway (Table 5). It is striking, for example, that the

estimated number of causal mutations in the top pathway (iclR +
aceK) precisely equals the number of independent mutant strains

sequenced (24). This suggests that each strain with this phenotype

was mutated once in this pathway, and though there were at least

three mutations in this pathway in each pool, we are unable to

directly verify a mutation in every strain because of the pooling of

mutant strains for sequencing. Nevertheless, given the low amount

of mutations per strain, it is statistically unlikely that any particular

gene was mutated more than once per strain. The number of

causal mutations estimated in the remaining pathways ranged

from 4 to 9, suggesting that at least one additional mutation in

these other pathways was present in each strain. For each pool of

three strains, at least three nonsynonymous mutations were

observed in the (iclR + aceK) pathway, so our data is consistent

with the hypothesis that there must be a mutation in this pathway

to achieve the phenotype.

Discussion

These data indicate that phenotype sequencing can successfully

identify genetic causes of a phenotype, directly from high-

throughput sequencing data. The top hit from both pathway-

phenoseq and gene-phenoseq (glyoxylate shunt) is validated by

previous experimental studies of this specific phenotype [39] [24]

[40]. Other top pathway hits are also supported by relevant

literature [47] [46] [48] [27], but their direct involvement in this

specific phenotype has not yet been tested experimentally. We also

emphasize that we have not proved which of our observed

mutations cause the phenotype. The purpose of pathway-

phenoseq analysis is not to identify individual causal mutations,

but rather to identify pathways that can cause the phenotype.

Our results suggest that pathway-phenoseq improves sensitivity

and comprehensive discovery of the genetic causes of a phenotype,

over gene-phenoseq. It detected a statistically significant signal for

more than two times as many pathways, and an even greater

proportion of genes. Second, our results indicate that independent

(non-competitive) mutant strains do indeed reveal a wide variety of

genetic causes of a phenotype, in this case: regulators of the

glyoxylate shunt; the maltose transport pathway; the glycogen

synthesis pathway; and the phosphotransferase system. Third, our

analysis suggests that the phenoseq approach is far more sensitive

for detecting such ’’selection loci’’ than standard measures of

selection such as Ka/Ks or dn/ds. For example phenoseq detected

a single pathway with a p-value of 2|10{39 (Bonferroni-

corrected), compared with a positive selection p-value on the

same pathway of 0.0037 (not even Bonferroni-corrected).

We now consider some further implications and challenges in

this work. First, it appears that the number of mutant strains

sequenced both in this study (24) and the previous isobutanol

tolerance study (32) are inadequate for definitively identifying all

genes that contribute to these phenotypes. That is, our results (and

other experimental studies) have shown clear evidence for a

number of genes causing this phenotype, that failed to attain

statistical significance in the gene-phenoseq scoring. In many cases

gene-phenoseq scoring ranked these genes highly, but the sample

size simply was not large enough to yield a strong p-value. This

reflects a fact about our two phenotypes which may apply

generally to many other phenotypes: they are complex, and

involve many genes, more than can be reliably detected by gene-

phenoseq with sequencing of 30 mutant strains. It also illustrates

why pathway-phenoseq is needed: in our (admitedly limited)

experience, inadequate sensitivity is the key factor limiting

discovery.

Second, the same general approach should be applicable to

other mutagens and types of mutations. As a minor example, in

the current study we did analyze promoter mutations (separately

from coding-region mutations), but did not find any significant

Table 3. Positive Selection evidence for Top 10 gene groups.

Pathway
cumulative p-
value

excluding iclR,
aceK, malT

PD04099 0.0037 N/A

CPLX0-2101 0.0044 0.28

ABC-16-CPLX 0.0027 0.28

PD00237 0.0027 0.29

GLYCOGENSYNTH-PWY 0.0020 0.19

CPLX-155 0.00043 0.056

PWY0-321 0.000068 0.011

RNAP54-CPLX 0.000043 0.0063

APORNAP-CPLX 0.000043 0.0063

APORNAP-CPLX 0.000034 0.0051

doi:10.1371/journal.pone.0088072.t003
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results (data not shown). The same basic analysis should be

applicable to deletion mutations, transposon insert events and any

other mutational process for which one can build an adequate

neutral model. In the worst case, one could simply obtain data for

a control set of strains (i.e. mutated but not screened for the

phenotype), to provide an empirical model of the mutational bias of

the set of genes, that would be used as the null (non-target) model

for scoring the results observed after phenotype screening.

Third, it seems interesting to ask how many causal mutations are

required to produce the phenotype. We have presented a very

simplistic way of estimating the number of mutations in each

pathway that are actually causal. This already seems to yield

intriguing suggestions, for example that the top pathway

(glyoxylate shunt regulation) is mutated in essentially every strain

that has the phenotype, and that this is typically accompanied by a

’’second mutation’’ in another pathway. It seems likely that more

sophisticated approaches to this question will yield useful insights.

This is but one example of exploring positive selection signals

(concretely, by taking synonymous mutations into account, which

phenoseq ignores). Another possible application of positive

selection data is suggested by our Table 3: whereas the total

mutation dataset is unequivocally neutral (Ka/Ks = 1), the top-

ranking pathways show clear evidence of positive selection (Ka/Ks

. 1). Thus, it would be interesting to determine (via a robust

probabilistic analysis) how far down the list of top-ranked

phenoseq pathways this positive selection signal goes (i.e. where

does it revert to neutrality). In principle, this could provide a

measure of the depth of phenotype selection in the dataset, distinct

from the phenoseq p-value.

Finally, we must consider organisms where pathway annotation

is lacking (compared with the high level of pathway annotation for

E. coli). In principle, any source of functional groupings of genes

(for example ’’Rosetta Stone’’, phylogenetic profiles and related

non-homology approaches) could be used, in the absence of

human-curated pathway annotations. Another interesting possi-

bility is to invert the problem: given a diverse set of easily

screenable phenotypes, one could systematically perform pheno-

type sequencing on many such phenotypes, to obtain observed

groupings of genes that appear to ’’function together’’ in the sense

of causing the same phenotype(s). Note that in contrast with a

typical ’’functional correlation’’ analysis (such as on expression

levels), even seeing a pair of genes as correlated by a single data

point (i.e. both causing one phenotype) would actually be

significant. Thus far fewer phenotypes would have to be studied

to obtain significant results, than for other functional correlation

analyses such as expression levels. Thus phenotype sequencing

could itself be used as a high-throughput method for finding

functional groupings of genes in less well studied microbial

organisms.

Methods

Bacterial Strains and Growth Conditions
For strain construction and to prepare samples for NTG

mutagenesis strains were grown in standard Luria Bertani medium

Table 4. Top 10 gene groups ranked by hypergeometric p-value (Bonferroni corrected for 28 tests).

Group Genes Genes in top 20 p-value (hypergeometric)

ABC-16-CPLX malF malE malG malK 4 0

PD04099 aceK iclR 2 0

CPLX0-2101 malE malF malG malK lamB 4 6:875|10{9

CPLX-63 torY torZ 1 0:0043

PD00237 malS malT 1 0:0043

ABC-42-CPLX alsA alsB alsC 1 0:013

APORNAP-CPLX rpoA rpoB rpoC 1 0:013

GLYCOGENSYNTH-PWY glgA glgB glgC 1 0:013

SECE-G-Y-CPLX secE secG secY 1 0:013

CPLX0-221 rpoA rpoB rpoC fecI 1 0:025

doi:10.1371/journal.pone.0088072.t004

Table 5. Estimated Causal Mutations in the Top 10 gene groups.

Group Synonymous Mutations Non-synonymous Mutations Causal Mutations

PD04099 5 34 24

CPLX0-2101/ABC-16-CPLX 6 18 6

PD00237 3 11 5

GLYCOGENSYNTH-PWY 3 10 4

CPLX-155 0 7 7

PWY0-321 1 11 9

RNAP54-CPLX/APORNAP-CPLX/APORNAP-CPLX 3 12 6

doi:10.1371/journal.pone.0088072.t005

Comprehensive Detection of Causal Genes

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e88072



[50]. Under selective conditions strains were grown in a modified

M9 medium (6 g Na2HPO4, 3 g KH2PO4, 1 g NH4Cl, 0.5 g

NaCl, 1 mM MgSO4, 1 mM CaCl2, 10 mg vitamin B1 per liter of

water) containing 1% glucose.

Mutagenesis was performed on parent strain ppc{. This strain

was generated by P1 transduction to delete ppc from E. coli strain

JCL16 (BW25113/F [traD36, proAB+, lacIq ZDM15]) [51], using

strain JW3928 from the Keio collection as a P1 donor [52]. This

strain is unable to grow on glucose minimal medium.

NTG Mutagenesis and Selections
Random mutagenesis was performed with -nitro-N-nitrosogua-

nidine (NTG) as previously described [53]. Briefly, cultures of

ppc{ were grown to exponential phase in LB medium, washed

twice with 0.1 M citrate buffer and then concentrated two-fold by

centrifugation and suspension in 0.1 M citrate buffer (pH 5.5).

Samples of 2 mL were exposed to N-nitro-N-nitrosoguanidine

(NTG) at a final concentration of 50 mg/mL for 30 minutes at

37C to reach a percentage kill of approximately 50%. The cells

were washed twice with 0.1 M phosphate buffer (pH 7.0) and

grown in LB for one hour. The cells were then challenged by

plating on glucose minimal medium and grown at 37C for 3 days.

This procedure was performed on 24 separate samples of ppc{,

each of which was plated separately to ensure genetically distinct

populations of mutants. One colony from each separate NTG

experiment was selected, restreaked on selective medium plates to

verify the phenotype and then cultured in liquid medium to obtain

genomic DNA.

DNA Library Preparation and Sequencing
Bacterial genomic DNA was prepared from 24 mutant strains

using the DNEasy kit from Qiagen using the optional RNAse

treatments. The isolated genomic DNA from the mutant strains

was pooled in 8 pools, each at a total concentration of 20ng/mL.

Equal amounts of DNA from 3 mutant strains were mixed in each

of the 8 pools. The pooled samples were then fragmented by

sonication to an average size of 100250 bp and confirmed by gel

electrophoresis. 8 tagged genomic sequencing libraries (8 different

indexes) were constructed using the TruSeq DNA Sample Prep

Oligo Kit following the low throughput protocols provided by the

manufacturer (Illumina). The final concentration of each of the 8

indexed libraries was measured by QuantiFluor assay and the 8

libraries were mixed in equal proportion at a final concentration of

10 nM. 100bp single end read sequencing was carried out on a

single lane of an Illumina Genome Analyzer HiSeq 2000

instrument by the UCLA Broad Stem Cell Research Center High

Throughput Sequencing Facility.

Pathway-Phenoseq Analysis
Short read data were aligned to the reference E. coli genome

(Genbank accession NC_000913) using Novoalign (Novocraft,

Selangor, Malaysia) in single-end mode. Sequence variants were

then called using samtools [54] mpileup and bcftools output to

VCF format. Only single nucleotide substitutions were found via

this analysis, consistent with NTG mutagenesis. We then

employed our phenoseq software package to apply a succession

of variant filters:

N We excluded variants with inadequate samtools quality scores.

Specifically, we required a QUAL value of greater than 90.

N We excluded reported variants with strong evidence of strand

bias (i.e. the evidence for the variant came primarily from

reads in one direction but not the other). Specifically, we

excluded variants with a samtools AF1 p-value of less than

10{2. This eliminated a large number of variant calls that

appear to have been sequencing errors.

N We excluded variants with samtools allele frequency estimate

greater than 50% in any given pool. Concretely, each

independent mutant strain is expected to have different

mutations, so each mutation should be present in only one

out of three of the strains mixed together in one pool.

N We excluded variants that were found in multiple tagged pools.

In all cases these were found in all 8 pools, indicating that they

were parental strain mutations (i.e. differences versus the

reference genome sequence).

We then used the EcoCyc functionally associated gene groups to

score pathways as follows:

N we only included non-synonymous mutations in the phenoseq

analysis. Specifically, we used the Pygr software package [55]

to map the Genbank CDS annotations on the reference

genome, to map mutations to CDS (gene) intervals, and to

determine their effect on the amino acid translation. Mutations

that did not map to a CDS, or did not alter the amino acid

translation, were excluded.

N CDS-mapped mutations were mapped to each EcoCyc group

using the EcoCyc database.

N The expected mutational cross-section l for each EcoCyc

group was calculated based on its GC composition, and the

total density of all observed mutations on GC sites vs. AT sites

over the whole genome.

N We computed a p-value for the null hypothesis that the

observed mutations kobs in an EcoCyc pathway were obtained

by random chance, under a Poisson model

p(K§kobsjnon{target,l)~
X?

K~kobs

e{llK

K !

These calculations were performed with the scipy.stats module

[56].

N We applied a Bonferroni correction to this p-value by

multiplying by the total number of EcoCyc pathways groups

Ne~536.

We performed positive selection tests on these EcoCyc pathway

groups as follows:

N for a given set of one or more EcoCyc pathways, we obtained

the counts Na,Ns of non-synonymous vs. synonymous

mutations in that set of pathways.

N We computed the p-value for obtaining this result under a

neutral (i.e. Ka=Ks~1), random model:

p(m§Najn~NazNs,N,M)

where N is the total number of all observed synonymous + non-

synonymous mutations in the whole genome, and M is the total

number of observed non-synonymous mutations in the whole
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genome. Specifically, we computed this p-value using the one-

tailed (’’greater’’) Fisher Exact Test in R [57].

N Note that since only a single p-value test was performed (on the

top-ranked set of pathways), no Bonferroni correction was

applied.

Similarly, we computed p-values for pathway ’’enrichment’’

among the top 50 gene-phenoseq genes using the hypergeometric

test, again computed using the Fisher Exact Test in R or scipy

[56], with a Bonferroni correction corresponding to the number of

pathways that this test was applied to.

All of our code is available under an open source license at

https://github.com/cjlee112/phenoseq. Sequence data is avail-

able at the NCBI Sequence Read Archive (accession number:

SRP018106).
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