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Abstract

Telomerase is a multi-subunit enzyme that reverse transcribes telomere repeats onto the ends of linear eukaryotic
chromosomes and is therefore critical for genome stability. S. cerevisiae telomerase activity is cell-cycle regulated; telomeres
are not elongated during G1 phase. Previous work has shown that Est1 protein levels are low during G1 phase, preventing
telomerase complex assembly. However, the pathway targeting Est1p for degradation remained uncharacterized. Here, we
show that Est1p stability through the cell cycle mirrors that of Clb2p, a known target of the Anaphase Promoting Complex
(APC). Indeed, Est1p is stabilized by mutations in both essential and non-essential components of the APC. Mutations of
putative Destruction boxes (D-boxes), regions shown to be important for recognition of known APC substrates, stabilize
Est1p, suggesting that Est1p is likely to be targeted for degradation directly by the APC. However, we do not detect
degradation or ubiquitination of recombinant Est1p by the APC in vitro, suggesting either that the recombinant protein
lacks necessary post-translational modification and/or conformation, or that the APC affects Est1p degradation by an
indirect mechanism. Together, these studies shed light on the regulation of yeast telomerase assembly and demonstrate a
new connection between telomere maintenance and cell cycle regulation pathways.
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Introduction

Telomeres are unique protein-DNA complexes found at the

termini of linear eukaryotic chromosomes. These regions are

critical for protecting chromosomes against nucleolytic digestion

and for distinguishing normal chromosome ends from internal

double-strand breaks. Loss of telomere function causes end-to-end

fusions that result in anaphase bridge-breakage cycles and

catastrophic genomic instability [1]. While the majority of the

telomere is comprised of tandem G/T-rich double-stranded DNA

repeats, the terminus exists as a short 39-overhang throughout the

cell cycle [2,3]. After passage of the replication fork in late S phase,

the 39-overhangs are transiently increased in length, at least in part

due to exonucleolytic digestion of the 59-strand [2–5]. Telomerase,

a ribonucleoprotein complex, can extend these 39-overhangs by

reverse transcription, while the conventional lagging-strand DNA

replication machinery is thought to fill in the 59-gap [6].

S. cerevisiae telomerase contains three dedicated protein subunits

(Est1, Est2 and Est3) [7–9] and an intrinsic RNA (TLC1)

containing the template for nucleotide addition [10]. The 1.2 kb

TLC1 RNA acts as a scaffold, providing separate binding sites for

telomerase subunits Est1p and Est2p, the Sm protein complex,

and the Ku heterodimer [11]. Association of the 7-member Sm

complex is critical for RNA maturation [12], while Ku binding is

important for nuclear retention of the RNA and efficient

telomerase recruitment to telomeres [13–15]. Est2p, a reverse

transcriptase [16], and TLC1 RNA are sufficient for in vitro activity

and are thus considered the catalytic core of the enzyme [17]. Both

Est1p and Est3p are regulatory or accessory proteins since each is

dispensable in vitro but required in vivo to maintain telomere length

[7–9,17]. The Est3p regulatory subunit is recruited to the complex

through direct interactions with Est1p and Est2p, and stimulates

telomerase activity in vitro [18,19].

Est1p binds TLC1 RNA via three secondary structural elements

within sub-helix IVc: a pentanucleotide bulge, an adjacent internal

loop, and a single-stranded region at the base of the sub-helix

[20,21]. In addition to its interaction with the RNA, Est1p is also

important for the recruitment of telomerase to the telomere

through a direct interaction with the telomeric single-stranded

DNA binding protein, Cdc13p [22–26]. The Est1 protein

undergoes proteasome-dependent cell cycle-regulated destruction

in G1 phase, thereby preventing telomerase complex assembly

during G1 phase when telomerase is not active at telomeres [27].

Protein destruction by the proteasome is regulated through the

attachment of the small polypeptide ubiquitin to target molecules.

Such ubiquitin-dependent protein degradation is accomplished

through a multi-step process: the ubiquitin moiety is activated by

an E1 activating enzyme, transferred to an E2 conjugating
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enzyme, and finally, covalently attached to lysine residues present

within a target protein that is bound to an E3-ligase. Multiple

rounds of this process result in polyubiquitinated proteins that are

subsequently delivered to the 26S proteasome for degradation.

Temporal coordination of ubiquitination and proteolysis of key

regulatory proteins is critical for unidirectional progression of the

cell cycle [28]. One of the well-studied poly-ubiquitinating E3

complexes with this role is the Anaphase Promoting Complex

(APC).

The APC is a multi-subunit E3 ubiquitin ligase that is critical for

transit through the cell cycle. Although the core subunits are

constitutively expressed [29–31], APC functionality oscillates,

exhibiting no activity in S and G2 phase, and high activity during

mitosis and G1 phase [32]. The APC utilizes two evolutionarily

conserved, WD40-domain containing activators, Cdc20p/Fizzy

and Cdh1p/Hct1/Fizzy-related [33–35]. These activators bind

directly to substrates via degradation motifs [36–39], the best

characterized being the Destruction box (D-box: an arginine and

leucine separated by any two amino acids, RxxL) and KEN-box

[40–42]. The binding of these activators to the APC core particle

is tightly regulated: Cdc20p associates when cyclin-dependent

kinase (CDK/Cdc28p) activity is high in mitosis, while Cdh1p

association is inhibited by phosphorylation and therefore occurs

when CDK activity is low at the end of mitosis through G1 phase

[43–45]. The direct binding of pseudosubstrate inhibitors and

degradation of activator proteins also contribute to temporal

regulation of APC activity [46]. APCCdc20p is critical during

mitosis when specific recognition and subsequent destruction of

the separase inhibitor (securin/Pds1p) results in cohesin cleavage,

and thus sister-chromatid separation [35,47]. APCCdh1p activity

promotes exit from mitosis and ensures that CDK levels remain

low, allowing for loading of replication origins with initiation

proteins prior to the beginning of S phase, when CDK activity

increases [46,48,49].

Est1p undergoes cell cycle-regulated degradation during G1

phase, thereby preventing Est3p recruitment and telomerase

complex assembly [27]. Here we present evidence that Est1

protein levels oscillate during the cell cycle through an APC-

dependent mechanism in vivo. Degradation requires three se-

quences in Est1p that match the D-box consensus, consistent with

direct recognition of Est1p by the APC. However, recombinant

Est1 protein is not degraded or ubiquitinated by the APC in vitro,

suggesting that Est1p either lacks the necessary structure or

modification(s) that influence APC recognition in vivo or is an

indirect target of the APC. Because Est1p stimulates association of

Est3p with the telomerase complex, these results shed light on the

regulation of yeast telomerase biogenesis and demonstrate an

additional connection between telomere maintenance and cell

cycle regulation pathways.

Results and Discussion

Est1p is Stabilized in Early S phase
The telomerase recruitment protein, Est1p, undergoes degra-

dation in G1 phase but not G2/M phase [27]. To more

thoroughly examine the temporal regulation of Est1 protein

levels, cells expressing MYC13-tagged EST1 from its endogenous

locus were arrested at three points in the cell cycle: G1 with the

mating pheromone, alpha-factor; early S with the ribonucleotide

reductase inhibitor, hydroxyurea; and late G2/M with the

microtubule destabilizing agent, nocodazole. The efficiency of

arrest was confirmed to be greater than 95% in each experiment

by flow cytometry (Figure S1) and observation of bud index (data

not shown). As expected, Est1-MYC13p was readily detected in

whole-cell extract from asynchronously growing cells but not in

the untagged control strain, indicating specificity of the MYC-

antibody (Figure 1A, lanes 1 and 2). In agreement with previous

observations [26,27], endogenously expressed Est1-MYC13p was

undetectable in G1 phase and abundant in G2/M-arrested cells

(Figure 1A, compare lanes 3 and 5). Similar to G2/M-arrested

cells, Est1-MYC13p was readily detected from early S-arrested

cells (Figure 1A, lane 4), suggesting that Est1 protein levels increase

as cells enter S phase.

Although EST1 transcript levels are ,3 fold lower in G1 phase

than during G2/M [50,51], we have previously shown that

differential protein stability is an important factor determining

Est1p levels during the cell cycle [27]. To examine the kinetics of

Est1p degradation at different points in the cell cycle, protein half-

life was determined using a standard promoter shut-off assay.

Following a brief induction of HA3-EST1 expression from the

GAL1-promoter, both transcription and translation were inhibited

and protein abundance was examined over time. As shown in

Figure 1B, and in agreement with published work [27], HA3-Est1p

was rapidly degraded during a G1 phase arrest, but was more

stable during a G2/M phase arrest [27]. In accordance with the

steady state protein levels (Figure 1A), over-expressed HA3-Est1p

was also stable when cells were arrested in early S phase with

hydroxyurea (Figure 1B, middle). Quantification of these assays

confirmed a statistically significant increase in protein half-life

during early S and G2/M phase as compared to G1 phase

(Figure 1C; p-values = 1.161025 and 1.161026, respectively).

Together, these results suggest that Est1p is rapidly degraded

during G1 phase, stabilizes in early S phase, and remains stable

through G2/M phase.

Est1p is More Stable in G1 phase when APC Activity is
Compromised

The pattern of Est1p degradation during the cell cycle is

reminiscent of that observed for targets of the E3-ubiquitin ligase

complex, APC. As a comparison, levels of the B-type cyclin Clb2p,

a known APC substrate [52,53], were monitored within the same

extracts utilized for Est1p detection. As expected, Clb2p was

undetectable in G1 and robustly detected in both S and G2/M

arrested cells (Figure 1A and 1B). In addition to confirming the

efficiency of cell cycle arrest, these results led us to hypothesize that

Est1p degradation depends upon APC function.

We monitored the degradation rate of over-expressed HA3-

Est1p in alpha-factor arrested cells expressing the temperature-

sensitive (ts) allele cdc16-123. This allele renders the APC non-

functional at the restrictive temperature of 37uC and exhibits

proteolysis defects with known APC substrates [52,53]. A strain

harboring the cdc16-123 allele was transformed with a comple-

menting CEN vector expressing wild-type CDC16 under control of

its endogenous promoter (denoted CDC16) or an empty-vector

(denoted cdc16-123). Using the promoter shut-off assay described

above, the average half-life of over-expressed HA3-Est1p was

greater in the cdc16-123 strain than in the complemented strain

(Figure 2A and 2C) and trended toward significance with a p-value

of 0.08. Therefore, we wanted to verify the relevance of this trend

by examining other strains that compromise APC function in vivo.

Although APC activity is critical for cell viability, several

subunits of this large E3 ubiquitin ligase are encoded by non-

essential genes (e.g. Apc9p, Mnd2p, and Swm1p). Proteolysis of

known APC substrates is minimally compromised in apc9D and

mnd2D cells, suggesting that these two subunits exhibit substrate-

specific effects or have minor contributions to full APC function.

However, proteolysis of known APC substrates securin/Pds1p,

Clb2p, Cdc5p, and Ase1p is decreased in swm1D cells, indicating a

The APC Regulates S. cerevisiae Est1p Degradation
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greater contribution to full APC activity [54,55]. Using the

promoter shut-off assay, the half-life of over-expressed HA3-Est1p

was determined in apc9D, mnd2D, or swm1D cells arrested in G1

phase with alpha-factor (Figure 2B and 2D). HA3-Est1p was

significantly more stable during G1 phase in swm1D cells than in

wild-type cells (p-value = 0.0002), while the rate of degradation

was unaffected by the deletion of either apc9 or mnd2 (p-

values = 0.49 and 0.84, respectively). Endogenously expressed

Clb2p was detected in the same swm1D samples, but was

undetectable from apc9D or mnd2D samples (Figure 2B and data

not shown), confirming the predicted phenotype of these strains.

Thus, like known APC targets, normal Est1p degradation during

G1 phase requires Swm1p function.

During G1 phase, the APC is associated with the activator

protein Cdh1p. Like SWM1, CDH1 is non-essential, most likely

because securin and B-type cyclins, essential substrates of the APC,

are sufficiently targeted by the mitotic activating factor, Cdc20p

[56]. We examined the protein half-life of Est1p in cdh1D cells

arrested in alpha-factor. Since deletion of cdh1 results in cyclin

accumulation that leads to bypass of the alpha-factor arrest

[34,48,57], these analyses were performed in a clb2D background

to prevent cells from moving into S phase. Consistent with the

results obtained in swm1D cells, over-expressed HA3-Est1p was

significantly stabilized in clb2Dcdh1D cells arrested in G1 phase (p-

value = 0.003; Figure 2B and 2D, compare to clb2D). While clearly

increased in comparison to the wild-type strain, the half-life of

Est1p in alpha-factor arrested swm1D (T1/2 = 23+/22.5 mins) or

clb2Dcdh1D (T1/2 = 25+/24.3 mins) strains was lower than that of

the corresponding WT strain arrested with hydroxyurea (T1/

2 = 33+/25.8 mins; p-values 0.04 and 0.06, respectively) or

nocodazole (T1/2 = 33+/23.7 mins; p-values 0.01 and 0.03,

respectively). These differences are consistent with the retention

of partial APC activity in these viable strains. Collectively, these

experiments support the hypothesis that the APC plays a role in

the G1-specific degradation of Est1p.

CDH1 is Required for the Cell-cycle Oscillation of Est1
Protein Levels

The loss of Est1p during an alpha-factor arrest (Figure 1A)

could be over-emphasized due to the artificial length of G1 phase.

To confirm the kinetics with which Est1p levels fluctuate as cells

enter and traverse an unperturbed G1 phase, we examined levels

of endogenously expressed Est1-MYC13p after release of cdc15-2

cells from mitotic arrest. CDC15 encodes a protein kinase required

for mitotic exit and incubation of cdc15-2 cells at the restrictive

temperature of 37uC results in cell cycle arrest in late anaphase/

telophase [58]. Because CDK activity is elevated and the Cdc14p

phosphatase is sequestered in the nucleolus and unable to

dephosphorylate Cdh1p [43–45,59], APCCdh1p is not active

during the cdc15-2 arrest. In contrast, the observation that cdc15-

2 arrested cells have separated chromosomes indicates that

APCCdc20p is active and able to mediate Pds1p proteolysis prior

to the arrest point. cdc15-2 cells were incubated at the restrictive

temperature until 95% of the population was arrested with the

characteristic ‘‘dumbbell’’ morphology and then released from the

arrest by shifting back to the permissive temperature of 23uC.

Samples were harvested every 20 mins following release. Syn-

chrony of the release was monitored by analysis of Clb2p levels,

Figure 1. Est1p is unstable in G1 phase, but stable in early S and G2/M phases. (A) Endogenously expressed Est1p-MYC13p levels during cell
cycle arrests. Strains YKF800 (untagged; lane 1) and YKF801 (EST1-MYC13; lanes 2–5) were grown asynchronously at 30uC to mid-log phase and then
left untreated (asynchronous) or arrested by addition of a-factor, hydroxyurea, or nocodazole, as indicated. When 95% of the population was
arrested, as monitored by the bud-index, cells were harvested. Whole-cell extract was prepared and western blotted using anti-MYC, anti-Clb2p, and
anti-Actin antibodies, as indicated. (B) Half-life of HA3-Est1p during cell cycle arrests. Strain YKF802 containing plasmid pVL242RtoA (PGAL1-HA3-EST1)
was grown asynchronously at 30uC to mid-log phase and arrested with a-factor, hydroxyurea, or nocodazole, as indicated. When 95% of the
population was arrested, as monitored by the bud-index, expression of HA3-EST1 was induced with addition of galactose and then subsequently
repressed (after 1 hour) with glucose and cycloheximide (time 0). Samples from cells harvested at the indicated times were western blotted with anti-
HA, anti-Clb2p and anti-Actin antibodies, as indicated. An induced asynchronous sample of strain YKF806+ pVL242RtoA (clb2D; left panel), served as a
negative control for Clb2p and positive control for HA3-Est1p detection. An uninduced asynchronous sample of strain YKF802+ pVL242RtoA (Raff; left
panel) served as a positive control for Clb2p detection and negative control for HA3-Est1p specificity. A non-specific background band is indicated by

. (C) Quantification of data shown in (B), as described in Materials and Methods. The calculated half-lives were averaged from independent
biological replicates: aF (a-factor), n = 7; HU (hydroxyurea), n = 4; NOC (nocodazole), n = 4. Error bars are standard deviation from the mean. Both HU
and NOC are statistically different from aF by two-tailed t-test (p-values 1.161025 and 1.161026, respectively) as denoted by *.
doi:10.1371/journal.pone.0055055.g001
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observation of the bud index (Figure S2), and flow cytometry (data

not shown).

In agreement with published reports, endogenous Clb2p levels

decreased upon release from the cdc15-2 arrest [34,60,61], with the

lowest point of expression at 40 to 60 mins (Figure 3A).

Approximately 50% of cells show the first evidence of bud

formation 60 mins after release (Figure S2), consistent with the

interpretation that the trough of Clb2 expression corresponds to

G1 phase. Examination of Est1-MYC13p levels within these same

samples revealed a similar pattern; the lowest point of expression

occurred 40–60 mins after release from the cdc15-2 block

(Figure 3A). Four independent biological replicates were done to

demonstrate the reproducibility of this G1 phase decrease for both

Clb2p and Est1-MYC13p (Figure 3A). The expression of both

proteins at 40 and 60 mins after release was significantly decreased

from the protein levels observed at the cdc15-2 arrest (p-values for

Clb2p: 6.061025 and 1.761024, respectively; p-values for Est1-

MYC13p: 3.761024 and 1.961024, respectively).

Figure 2. APC function is required for normal Est1p degradation during G1 phase. (A) HA3-Est1p stability increases when APC function is
compromised. Western blots of Est1p stability assays from strain K4438 (cdc16-123) harboring pKF600 (GAL1-HA3-EST1) plus either a complementing
vector pRS416-CDC16 (labeled ‘‘CDC16’’) or an empty vector pRS416 (labeled ‘‘cdc16-123’’) were conducted as described in Materials and Methods. An
uninduced sample (Raff) served as a negative control for HA3-Est1p specificity. (B) HA3-Est1p is stabilized in APC deletion mutants. Western blots of
Est1p stability assays from strains YKF802 (Wild Type), YKF803 (apc9D), YKF804 (mnd2D), YKF805 (swm1D), YKF806 (clb2D) and YKF807 (clb2Dcdh1D)
containing pVL242RtoA (PGAL1-HA3-EST1) were conducted as described in Materials and Methods. For YKF805 (swm1D), an uninduced asynchronous
sample (Raff) served as a positive control for Clb2p detection and negative control for HA3-Est1p specificity, while an uninduced asynchronous
sample of strain YKF806 (clb2D) served as a negative control for Clb2p detection. (C) Quantification of results shown in (A). Bars represent the average
HA3-Est1p half-life from three independent biological replicates. Error bars are standard deviation of the mean (p-value = 0.08 by two-tailed t test). (D)
Quantification of results shown in (B). Bars represent the average HA3-Est1p half-life from independent biological replicates: n = 3 for all strains except
clb2Dcdh1D, where n = 4. Error bars are standard deviation from the mean. By two-tailed paired t-test, there is a significant difference between the
control (WT) and swm1D (p-value 0.0002) but not between WT and apc9D (p-value 0.49) or mnd2D (p-value 0.83). There is a significant difference
between the control (clb2D) and clb2Dcdh1D strains (p-value 0.003). Significant differences are denoted by *.
doi:10.1371/journal.pone.0055055.g002
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Although the pattern with which Clb2p and Est1p declined in

abundance after cdc15-2 release was very similar, only Clb2p

showed a large increase in expression at the end of the time course

(100 mins) compared to the starting protein level. We attribute this

behavior to the previous observation that a fraction of Clb2p

undergoes APCCdc20p-dependent degradation [61], which would

be expected to have occurred prior to the cdc15-2 arrest.

Therefore, the starting protein levels observed for Clb2p at the

cdc15-2 arrest may already be partially reduced, with additional

degradation attributable to APCCdh1p activity. The failure of Est1p

to accumulate above the starting amount by the end of the time

course suggests that Est1p may not undergo degradation in late

mitosis, prior to the cdc15-2 arrest point.

Since Cdh1p plays a role in Est1p degradation during G1 phase

(Figure 2B and 2D), we hypothesized that deletion of this APC-

activator would abrogate the protein oscillation pattern observed

from cells released from a cdc15-2 arrest. A cdh1D cdc15-2 strain

was incubated at restrictive temperature until .95% of the cells

were arrested and then released by lowering the temperature. As

monitored by both the bud index (Figure S2) and flow cytometry

(data not shown), the cells proceeded into the next cell cycle

similarly to wild type, with the emergence of small buds beginning

at 60 mins after release. Consistent with published work, Clb2p

levels no longer decreased during transit through G1 phase in

cdh1D cells (Figure 3B; [34]). Importantly, Est1-MYC13p also did

not exhibit a decline in protein levels as cells proceeded through

G1 phase following release from the cdc15-2 arrest (compare

Figure 3A and 3B). We attribute the increase in Est1-MYC13p and

Clb2p over their respective starting amounts (time 0) to result from

the combination of lack of degradation and additional transcrip-

tion/translation as cells exit the arrest [27,50,51,62,63]. Based on

the preceding analysis of protein levels as cells exit mitosis and

enter the following S phase, we conclude that Est1p likely

undergoes proteolysis solely during G1 phase, stabilizes as cells

transit through S phase, and remains stable through mitosis.

Furthermore, APCCdh1p is the primary regulator of the G1 phase-

specific proteolysis of Est1p.

Mutation of cis-acting Sequences Stabilizes Est1p in G1
Phase

The data presented thus far demonstrate that the APC

influences the G1 phase-specific degradation of Est1p. However,

these experiments do not address whether Est1p is a direct

substrate of the APC. Substrates of the APC are recognized

through specific degron motifs such as the Destruction box (D-box:

sequence RxxL) and KEN box [40–42]. If Est1p is a direct target

of APCCdh1p, we would predict EST1 to encode specific degron(s)

important for the recognition and subsequent proteolysis of Est1p.

Examination of the amino acid sequence of Est1p revealed the

presence of six putative D-boxes positioned in pairs throughout the

protein (Figure 4A). To test if any of these putative D-boxes has a

role in Est1p degradation during G1 phase, we mutated the

important arginine (R) and leucine (L) residues of each consensus

sequence to alanine (A) and determined protein half-life using a

promoter shut-off assay in cells arrested with alpha-factor.

Individual mutation of putative D-boxes 1, 2, and 4 stabilized

the protein during G1 phase while no significant increase in half-

life was observed upon mutation of putative D-boxes 3, 5, or 6

(Figure 4B and Figure S3A; data not shown). Because the degron

motifs occurred in pairs, we also asked whether mutating each pair

of putative D-boxes (1+2, 3+4, or 5+6) would further inhibit

proteolysis. Consistent with the single D-box data, combined

mutation of 1+2 or 3+4 resulted in stabilization of the protein, but

the effect was not additive. No stabilization was observed upon

mutation of D boxes 5+6 (Figure 4B and Figure S3A). The extent

to which the half-life increased for either the single or combined

mutations was not statistically different from the half-life observed

during a nocodazole (G2/M phase) arrest, suggesting that the loss

Figure 3. Cell-cycle oscillation of Est1p requires Cdh1p. (A) Est1 protein levels oscillate through the cell cycle. Strain YKF808 (cdc15-2 EST1-
MYC13) was grown asynchronously at 23uC to mid-log phase and shifted to the restrictive temperature (37uC) for 3.5 hrs. When 95% of the cells were
arrested, as monitored by bud-index (Figure S2), the culture was returned to the permissive temperature (23uC; time 0). Whole-cell extract was
prepared from samples harvested every 20 mins following release and western blotted using anti-MYC, anti-Clb2p, and anti-Actin antibodies, as
indicated. YCM191 (cdc15-2) served as the untagged (No MYC) control for Est1-MYC13p and was harvested following the 37uC incubation period. Est1-
MYC13p and Clb2p intensity at each time were normalized to input (actin) and starting amount (time 0). Bars represent the average of four
independent biological replicates for Est1-MYC13p (light) and Clb2p (dark); error bars are standard deviation of the mean. (B) Deletion of CDH1
perturbs the oscillation of Est1-MYC13p through the cell cycle. Strain YKF809 (cdc15-2 cdh1D EST1-MYC13) was treated as in (A), except the bars
represent the average of three independent biological replicates.
doi:10.1371/journal.pone.0055055.g003
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of a single D-box motif is sufficient to stabilize the protein in G1

phase.

To corroborate the results obtained with the specific point

mutations described above, we also monitored the half-life of

several deletion variants of Est1p. Deletion of the C-terminal 300

amino acids (denoted CD300 in Figure 4A) removes putative D-

boxes 5 and 6, previously shown not to contribute to Est1p

degradation during G1 phase (Figure 4B). Consistent with that

conclusion, the half-life of Est1pCD300 remained unchanged

compared to the full-length protein, suggesting that putative D-

boxes 5 and 6 are not degron motifs (Figure 4C and Figure S3B).

A larger C-terminal deletion (CD500) did not express well; we

were therefore unable to examine the stability of an Est1p peptide

containing only D-boxes 1 and 2 (data not shown). We next

created systematic deletions from the N-terminus of EST1 to assess

the influence of D-boxes 1 and 2 on Est1p degradation. The N-

terminal boundaries of D-boxes 1 and 2 are located at amino acid

19 and 41, respectively (Figure 4A). We constructed five N-

terminal deletions: est1ND7, est1ND15, est1ND25, est1ND35, and est1ND50.

Examination of the protein half-life via promoter shut-off assay

revealed no stabilization with the smallest deletion (Est1pND7), but

the half-lives of Est1pND25, Est1pND35, and Est1pND50 were

increased (Figure 4C and Figure S3B). Again consistent with the

lack of additivity previously observed, loss of putative D-box 1

(Est1pND25 and Est1pND35) was equivalent in effect to loss of both

putative D-boxes 1 and 2 (Est1pND50). The extent of stabilization

observed in the deletion variants was similar to that observed with

the point mutations (compare Figure 4B and 4C). Est1pND15 was

more stable than the full-length protein even though no portion of

a predicted D-box was deleted with this construct (Figure 4C and

Figure S3B). Since this deletion retains only 3 amino acids N-

terminal to the beginning of D-box 1, we attribute this stabilization

to misfolding of D-box 1 and disrupted recognition by APCCdh1p.

However, it is possible that a novel degron motif exists between

amino acids 7 and 15. These results are consistent with Est1p

being a direct substrate of the APC and suggest that EST1 encodes

three degron motifs (D-boxes 1, 2, and 4) important for

recognition and subsequent degradation during G1 phase.

Neither Proteolysis Nor Ubiquitination of Recombinant
Est1p by the APC Occurs in vitro

The analyses described above suggest that Est1p undergoes G1-

specific degradation that is dependent upon direct recognition of

degron motifs within the protein by APCCdh1p. To examine the

direct effect of APCCdh1p on Est1p, we monitored degradation of

recombinant Est1p using Xenopus laevis egg extracts either without

(APC inactive) or with (APC active) human Cdh1 supplementa-

tion. Recombinant Drosophila cyclin B served as a positive control

for APC-mediated degradation, while firefly luciferase served as

the negative control. As expected, luciferase remained stable while

cyclin B was efficiently degraded in the presence of Cdh1

(Figure 5A). However, there was no observed degradation of

recombinant Est1p when Cdh1 was added (Figure 5A).

To eliminate the possibility of cross-species incompatibility, we

also tested whether Est1p is ubiquitinated by APCCdh1p in vitro

when all components of the assay are either purified from S.

cerevisiae or are recombinant proteins of S. cerevisiae origin. 35S-

Figure 4. Est1p degradation in G1 phase requires three destruction boxes (D-boxes). (A) Schematic of EST1 shown to scale. EST1 contains
six putative D-boxes with sequence RxxL (boxes labeled 1–6). Deletion of the C-terminal 300 amino acids (CD300) results in a truncated protein that
removes putative D-boxes 5 and 6. The N-terminal 52 amino acids are shown, with putative D-boxes 1 and 2 outlined. Upward pointing black
triangles represent the position of the indicated N-terminal deletion. (B) D-boxes 1, 2, and 4 contribute to Est1p degradation. YKF802 containing
pKF600 (GAL1-HA3-EST1) plasmids expressing either wild-type EST1 (WT) or the D-box (DB) mutated (RxxL to AxxA) est1 alleles indicated were treated
as in Figure 1B, except strains were arrested with a-factor. Bars represent the average HA3-Est1p half-life for three independent biological replicates;
error bars are the standard deviation of the mean. Using a two-tailed t-test, there is no significant difference from WT for D-box 3 (p-value 0.833) or D-
boxes 5+6 (p-value 0.104). D-box 1 (p-value 0.027), D-box 2 (p-value 0.012), D-boxes 1+2 (p-value 0.001), D-box 4 (p-value 0.001) and D-boxes 3+4 (p-
value 0.002) are significantly different than WT, denoted by *. (C) Deletion of D-box 1 or 2 stabilizes Est1p during G1 phase. YKF802 containing
pKF600 plasmids expressing either wild-type EST1 (WT) or the est1 deletion variants indicated (CD300, ND7, ND15, ND25, ND35 or ND50) were treated
as in (A). Bars represent the average HA3-Est1p half-life for independent biological replicates: n = 3 for each variant except ND50, where n = 4. Error
bars are standard deviation from the mean; significance is denoted by *. By a two-tailed t-test, there is no significant difference between WT and
CD300 (p-value 0.445) or ND7 (p-values 0.188). The half-lives observed for ND15 (p-value 0.0003), ND25 (p-value 0.008), ND35 (p-value 0.005) and
ND50 (p-value 0.02) are significantly different from WT.
doi:10.1371/journal.pone.0055055.g004
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labeled substrates synthesized in rabbit reticulocyte lysate (RRL)

were incubated with methylated-ubiquitin and recombinant

Cdh1p in the presence (+) or absence (2) of purified S. cerevisiae

APC complexes (Figure 5B). Methylated-ubiquitin prevents poly-

ubiquitin chain formation; thus, substrate ubiquitination results in

two observable changes: 1) loss of signal corresponding to the

unmodified protein and 2) appearance of a ladder of higher

molecular weight bands indicative of covalent attachment of a

single ubiquitin moiety to individual lysines. S. cerevisiae securin/

Pds1p, previously shown to undergo APCCdh1p-dependent ubiqui-

tination in vitro [64], served as a positive control. As expected,

Pds1p was ubiquitinated in a manner dependent upon addition of

both purified APC and recombinant Cdh1p [indicated by the

ladder of higher molecular weight species and loss of the

unmodified signal (Figure 5B, lane 2)]. In contrast, Est1p was

not detectably ubiquitinated in this assay (Figure 5B, compare

lanes 3 and 4).

Experiments designed to detect substrate ubiquitination in vivo

are challenging because the ubiquitinated forms represent a small

fraction of the total protein, are rapidly degraded by the

proteasome, and are acted on by deubiquitinating enzymes

(Dubs). Despite using techniques designed to limit these concerns

[65,66], we have not detected ubiquitination of overexpressed

Est1p in vivo (data not shown). However, these analyses have not

been exhaustive and do not rule out the possibility that a critical

pool of Est1p undergoes ubiquitination in vivo.

The lack of APCCdh1p-dependent ubiquitination or degradation

of Est1p in vitro using two different assays contrasts with our

identification of degradation motifs in Est1p that resemble those

utilized by APCCdh1p in other substrates and that are required for

Est1p degradation during G1 phase (Figure 4). One possibility is

that modifications of Est1p influence recognition by APCCdh1p

in vivo and that these modification(s) are not appropriately

mimicked upon expression of Est1p in RRL. Although much of

the regulation of APC-mediated degradation occurs through direct

modulation of APC activity, post-translational modification of

substrate molecules has been found to affect recognition by the

APC in several cases including Cdc6, securin, and Aurora A

[46,67–70]. While it was recently reported that Est1p is not

detectibly phosphorylated in vivo [18], the presence of other post-

translation modifications has not been addressed. We also cannot

exclude the possibility that recombinant Est1p is mis-folded,

precluding recognition by APCCdh1p in the in vitro assays.

An alternate possibility is that the amino acids required for

Est1p degradation in vivo (Figure 4) do not mediate direct

interaction with APCCdh1p, but are instead required for recogni-

tion by a currently unidentified ubiquitin ligase or protease.

Because our results provide strong evidence that Est1p degrada-

tion depends upon APCCdh1p function (Figures 2 and 3), we would

need to postulate that the effect of the APC is indirect. For

example, Est1p may be targeted for degradation via a mechanism

that itself is under positive regulation by the APC, reminiscent of

cohesin cleavage by separase after Pds1/securin degradation via

APCCdc20p [71].

Previous work has shown that Est1p regulates the assembly of

the telomerase complex in vivo. However, even in the presence of

abundant Est1 protein and telomerase complex assembly,

telomerase is unable to elongate telomeres during G1 phase

[27]. This observation suggests that additional regulatory mech-

anisms prevent inappropriate telomerase activity. A role for the

Rif2 protein in G1-specific telomerase inhibition was recently

reported [72]. However, these results do not rule out an additional

regulatory role for Est1p degradation during G1 phase. In this

light, it is intriguing that all of the D-box stabilizing mutations

(Figure 4) cause telomere shortening when expressed under control

of the endogenous promoter in est1D cells (Figure S4). While this

observation suggests that the stabilization of Est1p during G1

phase may be deleterious, we cannot rule out the possibility that

the mutations affect other aspects of Est1p function.

In summary, our in vivo results are most consistent with a model

in which Est1p levels oscillate through the cell cycle, undergoing

G1-specific degradation that is dependent upon APCCdh1p-

mediated recognition of specific degron motifs within the protein.

Reduced Est1p levels during G1 phase are in turn predicted to

restrict the assembly of the active telomerase complex [27].

Although we cannot rule out misfolding of the recombinant

protein as an explanation for the lack of Est1p degradation in vitro,

these results raise the intriguing possibility that additional

regulatory events modulate Est1p abundance in a manner that

depends upon APC function.

Materials and Methods

Ethics Statement
All work with Xenopus laevis was approved by the Institutional

Animal Care and Use Committee (IACUC) at Vanderbilt

University Medical Center (protocol #M/07/143) and was

carried out in accordance with their policies and guidelines.

Xenopus laevis were maintained by the Division of Animal Care

(DAC) at Vanderbilt University’s Animal Care Facility, which

provides both veterinary and husbandry services. Animals were

monitored on a daily basis by the DAC for signs of morbidity (e.g.

Figure 5. Est1p is not a target of the APC in vitro. (A) Est1p is not degraded by the APC in vitro. X. laevis egg extract (2 CDH1) was activated by
the addition of in vitro transcribed human Cdh1 to obtain APC-activated extract (+ CDH1). 35S-labeled substrate proteins (S. cerevisiae Est1p, D.
melanogaster Cyclin B, or firefly luciferase) were incubated with either inactive (2 CDH1) or activated extract (+ CDH1) as described in Materials and
Methods. Samples were removed at the indicated times, separated by gel-electrophoresis and exposed to a phosphor-imager screen. (B) Est1p is not
ubiquitinated in vitro. 35S-labeled substrates (S. cerevisiae Est1p and Pds1p) were incubated with Ubc4p (E2 ligase), recombinant S. cerevisiae Cdh1p,
and methylated-ubiquitin in the absence (2; lanes 1 and 3) or presence (+; lanes 2 and 4) of purified S. cerevisiae APC complexes. Reactions were
separated by gel electrophoresis and detected by autoradiography film. Black arrows indicate the unmodified protein. The vertical line indicates the
region where ubiquitin-conjugated forms of Pds1p migrate.
doi:10.1371/journal.pone.0055055.g005
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lethargy, open sores, and excessive skin shedding). Animals with

these symptoms were subsequently euthanized by anaesthetic

overdose with 0.05% Benzocaine absorbed through the skin,

consistent with recommendations from the Panel on Euthanasia of

the American Veterinary Medical Association.

Yeast Strains and Plasmids
S. cerevisiae strains used in this study are summarized in Table

S1. All gene disruptions were created using PCR-mediated gene

disruption [73]; primer sequences are available upon request. The

bar1D::hisG in K1534 [48]was replaced by amplification of the

bar1D::kanMX4 cassette from the yeast knockout collection [74]

(Open Biosystems) to yield YKF800. The bar1D::hisG of K1534,

MAY6810 and MAY6812 [53] was replaced using the hphMX4

cassette from pAG32 [75] to yield YKF802, YKF806, and

YKF807, respectively. YKF803, YKF804, and YKF805 were

constructed by amplification of the apc9, mnd2 and swm1 gene

disruption cassettes (xxx::kanMX4) from the yeast knockout

collection and integrated into YKF802. A MYC13 epitope tag

was incorporated at the C terminus of the endogenous EST1 locus

using plasmid pRS416-EST1-MYC13-hphNT1 [derived from

pFA6a-13MYC-kanMX6 [76], pYM16 (hphNT1) [77] (Euroscarf),

and pRS416 [78]; details of plasmid construction available by

request]. Digestion of this plasmid with SacI and KpnI yielded a

linear DNA molecule containing homology upstream and

downstream of the EST1 chromosomal locus to allow one-step

gene replacement. Transformation of this fragment into strains

YKF800 and YCM191 yielded YKF801 and YKF808, respec-

tively. YKF809 was created by PCR-amplification of the

cdh1D::KANR allele from MAY6812 and introduction into

YKF808 by one-step gene replacement. To yield YKF810, the

endogenous EST1 locus was deleted in YKF802 by PCR-based

gene deletion using plasmid pFA6a-kanMX6 [76].

Plasmids used in this study are summarized in Table S2.

Plasmid pKF600 is derived from pVL242RtoA [27] and differs by

the arrangement of restriction sites to facilitate cloning of mutant

alleles. Individual D-box mutations (RxxL R AxxA) were

constructed by site-directed mutagenesis using the SOEing

method [79] and cloned into pKF600 to yield the indicated

pKF600-DB plasmids. Simultaneous mutation of D-boxes 1+2,

3+4, or 5+6 was achieved by site-directed mutagenesis using a

single mutant plasmid as the template in the PCR reaction.

Deletion alleles of EST1 were created by PCR amplification of a

portion of EST1 followed by insertion into pKF600. Plasmid

pRS416-EST1 was created by PCR amplifying the EST1

upstream promoter region, open reading frame (ORF), and

downstream terminator region and cloning into pRS416. Mutant

est1 alleles were introduced by subcloning from the pKF600 vector

series, to yield the indicated pRS416-DB and ND plasmids. The

CDC16 complementing plasmid was created in two steps: one

primer pair amplified the promoter region and first-half of the

CDC16 ORF while a second primer pair amplified the second-half

of the CDC16 ORF and terminator. These two fragments were

sequentially cloned into pRS416 to yield the complementing

vector, pRS416-CDC16. To create plasmid pKF601, the EST1

ORF was PCR-amplified and cloned into pCS2FA2R [derivative

of pCS2; gift from Laurie Lee] at restriction sites FseI and AscI.

The EST1 ORF was PCR-amplified and cloned into pcDNA3.1-

Hygro (Invitrogen) at restriction sites BamHI and XbaI to yield

pKF602.

Determination of Est1p Steady-state Levels During Cell
Cycle Arrest

Strains YKF800 (bar1D) and YKF801 (bar1D EST1-MYC13)

were grown asynchronously at 30uC to OD600 < 0.5 and either

left untreated (asynchronous) or treated with a-factor (0.5 mM final

concentration; Zymo Research), hydroxyurea (15 mg/ml) final

concentration; Sigma Aldrich), or nocodazole (10 mg/ml noco-

dazole in DMSO to a final concentration of 10 mg/ml; Sigma

Aldrich) for a minimum of 2.5 hrs. When 95% of the population

exhibited the characteristic morphologies, cells were harvested and

whole-cell extract prepared as described [80]; protein concentra-

tions were determined by Bradford assay (Bio-Rad). Equal amount

of protein extract (100–150 mg) were separated by 10% Tris-

Glycine (Bio-Rad) and 7% NuPAGE Bis-Tris (Invitrogen) gels and

transferred to Hybond P (GE Healthcare). Each membrane was

blocked with 5% milk/phosphate-buffered saline pH 7.4 with

0.05% Tween (PBS-T) followed by incubation with primary

antibodies overnight at 4uC. Antibody dilutions were as follows:

Clb2-1:6000 dilution rabbit polyclonal y-180 (Santa Cruz); Actin-

1:1200 goat polyclonal C-11 (Santa Cruz); 1:1000 mouse

monoclonal mAbcam8224 (Abcam); and MYC-1:333 murine

monoclonal Ab.1 (OP10L, EMD Biosciences). Bis-Tris gels were

utilized for Est1-MYC13p detection because the protein co-

migrated with a background band that could not be resolved

using the 10% Tris-glycine gels. Secondary antibodies were

1:10000 dilutions of peroxidase-conjugated goat anti-mouse

[Millipore], goat anti-rabbit [Millipore], and donkey anti-goat

[sc-2020; Santa Cruz]. ECL Plus Western Blotting Detection

system (GE Healthcare) was used for detection.

For flow cytometry analysis, cells were treated as described in

[81], except that samples were digested overnight with RNase A at

37uC instead of pepsin. Fluorescence and light scattering were

monitored for 10,000 cells using a 5-laser BD LSRII. To eliminate

any size-bias, samples were not gated and all events are plotted in

the histograms presented.

Over-expressed Sst1p Stability Assays and Half-life
Quantification

Strains YKF802 (wild type), YKF803 (apc9D), YKF804 (mnd2D),

YKF805 (swm1D) containing plasmid pVL242RtoA (GAL1-HA3-

EST1) or variants of pKF600 (GAL1-HA3-EST1: WT; DB1; DB2;

DB1+2; DB3; DB4; DB3+4; DB5+6; CD300; ND7; ND15; ND25;

ND35; ND50) were assayed as described in [27], except using

hydroxyurea (15 mg/ml final concentration; Sigma Aldrich)

where indicated. For temperature-sensitive experiments, K4438

(cdc16-123) containing plasmid pKF600 and either a complement-

ing vector (pRS416-CDC16) or empty vector (pRS416) were

assayed as in [27], except for growth in 2% (w/v) raffinose media

lacking leucine and uracil (-Leu -Ura) and a shift to the restrictive

temperature (37uC) at the time of galactose addition. Samples

were separated on 10% tris-glycine SDS-PAGE gels (Bio-Rad) and

transferred to Hybond P (GE Healthcare). Membranes were

blocked with 5% milk/phosphate-buffered saline pH 7.4 with

0.05% Tween (PBS-T) followed by incubation with primary

antibodies (HA: 1:500 dilution [murine monoclonal HA.11;

Covance]; Clb2 and Actin, as above) overnight at 4uC. Secondary

antibodies and detection system are as described above. For half-

life determination, the signal obtained for HA3-Est1p at each time

point was corrected for input (actin), normalized to the starting

amount (time 0), base-e log-transformed, and plotted against time.

The slope was determined using a linear best-fit line and used to

calculate the half-life by T1/2 = ln(2)/slope, as described in [82].
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cdc15-2 Block and Release
1000 ml cultures of strains YKF808 (cdc15-2 EST1-MYC13) and

YKF809 (cdc15-2 cdh1D EST1-MYC13) were grown asynchronously

at 23uC to OD600 < 0.4 and then shifted to the restrictive

temperature (37uC) in an air incubator for 3.5 hrs or until .95%

of the population was arrested in mitosis, as determined by

observation of the bud index. Cultures were released from the

cdc15-2 arrest by rapid cooling in an ice water bath to 23uC (time

0) and returned to a 23uC air incubator for the remainder of the

experiment. Samples (125 ml) were harvested at 20 min intervals

following release and whole-cell extract was prepared as described

[80]. Synchrony of the release was monitored by bud-index and

flow cytometry. YCM191 (untagged; cdc15-2) was grown as above

and harvested following incubation at 37uC. Equal amounts of

protein (120 mg), as determined by Bradford assay (Bio-Rad), were

analyzed by Western blotting as described above. Est1-MYC13p

and Clb2p signal intensity at each time point was normalized to

protein input (actin) and starting amount (time 0). Samples from

each assay were analyzed by Western blot two to three times and

the quantified results were averaged to give yield a value for that

independent assay. Averages determined from the independent

biological replicates (WT = 4, cdh1D = 3) were subsequently

averaged to yield the values reported in Figure 3. Standard

deviation of the mean was determined across the independent

biological replicates.

In vitro Assays of Est1p Stability/ubiquitination
Xenopus laevis egg extracts were prepared in a manner similar to

that previously described [42,83]. Briefly, eggs from Human

chorionic gonadotropin (HCG)-injected, pregnant mare serum

gonadotropin (PMSG)-primed frogs were collected and washed in

16 Marc’s modified ringer (MMR) solution. Eggs were dejellied

with 2% cysteine and then washed into extract buffer (XB) and XB

containing protease inhibitors. A 30 sec packing spin at 1000 rpm

at 2uC was performed, followed by a crushing spin at 13,000 rpm

for 5 min at 2uC. The cytoplasmic layer was collected and

subjected to a clarifying spin also at 13,000 rpm for 5 min at 2uC.

The clarified cytoplasmic layer was collected. After addition of

protease inhibitors, energy mix [83] and cytochalasin B, extracts

were either frozen in liquid nitrogen (2 CDH1) or activated with

addition of in vitro transcribed human Cdh1-MYC6 RNA (+
CDH1) for 2 hrs at room temperature prior to flash freezing, and

stored in liquid nitrogen. An anti-MYC Western blot confirmed

successful translation of Cdh1-MYC6 RNA. 35S-labeled substrates

(S. cerevisiae Est1p, Drosophila Cyclin B, and firefly luciferase) were

produced using the TNT Sp6 Quick coupled in vitro transcription/

translation (IVT) kit (Promega). Additional Cdh1-MYC6 protein

was produced using the TNT Sp6 High-Yield Wheat Germ

Protein Expression System (Promega), added (2 mL) to tha-

wed+CDH1 extract, and incubated at room temperature for

15 mins. Inactive (2 CDH1) and active (+ CDH1) extracts (10 mL)

were incubated at room temperature with 1–2 mL recombinant

substrates, energy mix, and ubiquitin (Sigma). Samples (2 mL) were

taken at 0, 30, 60 and 90 mins and frozen in liquid nitrogen.

Samples were separated on 10% Tris-glycine (Bio-Rad) SDS-

PAGE gels, fixed, dried and exposed to a phosphor-imager screen.

APC/C ubiquitination assays were adopted and modified from

[84]. 35S-labeled substrates and unlabeled S. cerevisiae Cdh1 were

prepared using TNT T7 Quick coupled in vitro transcription/

translation (IVT) (Promega). Each ubiquitination reaction con-

tained approximately 10 ng of APC/C, 1 ml of 35S-labeled

substrate, and 2 ml of Cdh1 in a 10 ml reaction volume with

40 mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.6 mM DTT, 2.7 mM

ATP, 6.6 mg of methyl-ubiquitin, 500 ng of Ubc4, 200 ng of

ubiquitin aldehyde (Enzo Life Science), 2 mM LLnL (N-acetyl-

Leu-Leu-Norleu-aldehyde; Sigma). Reactions were incubated at

room temperature for 60 mins and were analyzed by 8% SDS-

PAGE. Gels were fixed and stained with Coomassie Blue followed

by drying and exposure to BioMax MR Film (Kodak).

Southern Blotting
Strain YKF810 (est1D) containing pRS416-EST1 was grown in

non-selective media, plated on 5-fluroorotic acid (5-FoA) to select

for loss of the complementing plasmid, and then transformed using

the standard lithium acetate method with an empty vector

(pRS416), complementing plasmid (pRS416-EST1), or variants

of pRS416 expressing mutant est1 alleles (DB1; DB2; DB1+2;

DB3; DB4; DB3+4; ND15; ND50). Independent transformants

were restreaked three times on selective media and then grown in

liquid culture. DNA was extracted by glass bead lysis [85], digested

with XhoI, and Southern blotted as described in [86].

Supporting Information

Figure S1 Flow cytometry of arrested cells. Example of the

typical flow cytometry histograms resulting from S. cerevisiae strains

used in this study left untreated (asynchronous; Asyn.) or arrested

as indicated. The profile of hydroxyurea-blocked cells is nearly

indistinguishable from that observed upon treatment with a-factor,

consistent with an early S phase arrest in the vast majority of cells.

(TIF)

Figure S2 Cells released from the cdc15-2 arrest proceed

synchronously into the next cell cycle. Budding index of cells

collected at the indicated times after release from the cdc15-2 arrest

(Figure 3). Results are from a single WT (light) and cdh1D (dark)

assay and indicate the percentage of cells with visible buds. This

result is representative of the pattern observed from the cdc15-2

arrest and release assays.

(TIF)

Figure S3 Est1p degradation in G1 phase depends upon specific

degron motifs. (A) Western blots of Est1p stability assays from

strain YKF802 containing pKF600 (GAL1-HA3-EST1) plasmids

expressing the D-box (DB) mutated (RxxL to AxxA) est1 alleles

indicated (DB1; DB2; DB1+2; DB3; DB4; DB3+4; DB5+6),

treated as in Figure 1B (a-factor). (B) Strain YKF802 containing

pKF600 plasmids expressing the deletion variants indicated

(CD300, ND7, ND15, ND25, ND35 or ND50) were treated as in

(A). Results are quantified in Figure 4.

(TIF)

Figure S4 Stabilized alleles of Est1p fail to complement an est1

deletion. Independent isolates from strain YKF810 (est1D)

harboring plasmids pRS416 (empty vector: ev), pRS416-EST1

(EST1), or the est1 alleles indicated (DB1; DB2; DB1+2; DB3;

DB4; DB3+4, ND15; ND50) were propagated for .100

generations. DNA was extracted, digested with XhoI, Southern

blotted, and probed with a randomly labeled telomeric DNA

probe. Y9-elements and telomere fragments from Y9-containing

chromosomes are indicated. Positions of molecular weight markers

(M) are indicated in kilobases (kb). Alleles partially compromised

for function have telomere fragments that are shorter than the

wild-type control while severely compromised alleles result in the

formation of telomerase-negative survivors characterized by Y9-

element amplification and/or heterogeneous telomere length

(smears throughout the lane).

(TIF)

Table S1 S. cerevisiae strains used in this study.
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