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Abstract

Owing to recent advances in DNA sequencing, it is now technically feasible to evaluate the contribution of rare variation to
complex traits and diseases. However, it is still cost prohibitive to sequence the whole genome (or exome) of all individuals
in each study. For quantitative traits, one strategy to reduce cost is to sequence individuals in the tails of the trait
distribution. However, the next challenge becomes how to prioritize traits and individuals for sequencing since individuals
are often characterized for dozens of medically relevant traits. In this article, we describe a new method, the Rare Variant
Kinship Test (RVKT), which leverages relationship information in family-based studies to identify quantitative traits that are
likely influenced by rare variants. Conditional on nuclear families and extended pedigrees, we evaluate the power of the
RVKT via simulation. Not unexpectedly, the power of our method depends strongly on effect size, and to a lesser extent, on
the frequency of the rare variant and the number and type of relationships in the sample. As an illustration, we also apply
our method to data from two genetic studies in the Old Order Amish, a founder population with extensive genealogical
records. Remarkably, we implicate the presence of a rare variant that lowers fasting triglyceride levels in the Heredity and
Phenotype Intervention (HAPI) Heart study (p = 0.044), consistent with the presence of a previously identified null mutation
in the APOC3 gene that lowers fasting triglyceride levels in HAPI Heart study participants.
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Introduction

The genetic architecture of most complex traits and diseases is

poorly understood. Indeed, genome-wide association studies

(GWAS’s) have identified hundreds of loci with relatively weak

effects on complex traits and diseases, leaving much of their

heritability unaccounted for [1]. This is expected (in part) since the

genotyping technology used in these studies captures primarily

common sequence variation, namely, single nucleotide poly-

morphisms (SNPs) with minor allele frequencies (MAFs) of at least

5%. Rare variants (MAF,5%), which are poorly captured by

standard GWA arrays [2], may have larger effect sizes than

common variants and may make an important contribution to

complex traits and diseases. In fact, results from large-scale

sequencing studies (n.10,000) suggest a much higher load of rare

variants than was previously appreciated and may bear on the

heritability unexplained by GWAS [3,4].

Recent advances in DNA sequencing technology have dramat-

ically increased the capacity to discover rare variants. However, it

is still cost prohibitive to sequence whole genomes (or even whole

exomes) on the scale of a GWAS, e.g., by sequencing all study

participants. For studies of quantitative traits, one strategy to

reduce cost is to sequence individuals with extreme phenotypes.

Simulation studies [5,6] and empirical studies of candidate genes

suggest that this is a powerful approach for identifying rare trait-

associated alleles. For example, this approach has been successfully

used to identify rare variants in candidate genes associated with

body mass index (BMI) [7], high-density lipoprotein (HDL) [8],

low-density lipoprotein (LDL) [9,10], and sterol absorption [9].

The power of extreme-trait sequencing or selective genotyping,

originally introduced by Lander and Botstein [11], derives from

the fact that rare trait-influencing alleles with modest to large

effects will be enriched in frequency in the upper or lower tail of

the trait distribution. The success of this strategy, however,

depends (in part) on the careful selection of traits and individuals to

sequence. In theory, the most powerful approach is to select and

sequence the most extreme individuals from each tail of the trait

distribution. In practice, however, power may be lost by

sequencing too few or too many individuals or by choosing

a suboptimal trait. To optimize the selection of traits and

individuals for an extreme-trait sequencing study, we develop

a new statistical test, the Rare Variant Kinship Test (RVKT). Our

test is designed for use in family-based studies in which individuals

have already been phenotyped – but not necessarily genotyped –

for dozens of quantitative traits relevant to human health and

disease.

Briefly, the RVKT leverages the relatedness of individuals in

family-based studies to identify quantitative traits that are most

likely to be influenced by rare variants. The premise of our test is

that rare variants with at least modest effects will be enriched in

the tails of the trait distribution and preferentially carried by

closely related individuals. Unlike complex segregation analysis,

which attempts to identify a particular mode of inheritance, our

approach makes few assumptions about the trait architecture. We
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assess the power of our test via simulation and apply it to dozens of

quantitative traits from two of our studies in the Old Order Amish

population.

Methods

Ethics Statement
All human subject research was previously reviewed and

approved by the Institutional Review Boards at the University of

Michigan and the University of Maryland. Written informed

consent was obtained from all study participants.

Overview
Here we describe the RVKT, simulations to assess power, and

applications to two family-based studies. The RVKT requires

a sample of families with pedigree and phenotype data and

assumes that each of the quantitative traits to be tested has

a narrow-sense heritability that is significantly different from zero.

The null hypothesis of the RVKT is that a given trait is purely

polygenic, meaning influenced by multiple additive, independent

loci of small effect. Under the null hypothesis, individuals in the

tail of the trait distribution carry trait-influencing alleles at many

loci. The alternative hypothesis of the RVKT is that at least one

locus of modest to large effect influences the trait, and accordingly,

that the trait-associated allele(s) is necessarily rare (the rare

variant). Under the alternative hypothesis, individuals in the tail of

the trait distribution should preferentially carry the rare variant

and thus may be more closely related when measured against the

null hypothesis.

The Rare Variant Kinship Test
For each trait, we define and calculate the RVKT statistic as the

mean of the pair-wise kinship coefficients between individuals in

the tail of the quantitative trait distribution. Tail membership is

determined by ordering individual trait values. Conditional on the

pedigrees in the sample, the kinship coefficient between two

individuals is the probability that a randomly chosen allele from

one individual and a randomly chosen allele from the other

individual at an autosomal locus are inherited identical by descent

from a recent, common ancestor. We calculate pair-wise kinship

coefficients using the matrix method described by Lange [12] and

implemented in MENDEL version 10.0.0. Since the kinship

coefficient depends only on the structure of the pedigree

connecting a pair of individuals, the RVKT requires pedigree

data but no genetic data. Thus, it can be applied before carrying

out expensive genotyping or sequencing experiments.

To assess statistical significance, we compare the observed

RVKT statistic for each trait to its expected distribution under

a purely polygenic model (the null hypothesis) (described below).

Under the alternative hypothesis, the observed RVKT statistic

may exceed its expected value, meaning individuals in the tail of

the trait distribution may be more closely related than expected

under the null hypothesis. Thus, we use a one-sided test. Because

the genetic architecture of each trait is unknown, we conduct the

RVKT for both tails of the trait distribution (upper and lower) and

multiple tail sizes. Tail size is the proportion of individuals in the

tail of the trait distribution. We then select the RVKT statistic with

the minimum p-value in each tail (pmin).

The expected distribution of the RVKT statistic depends on the

actual pedigrees and the narrow-sense heritability of the trait.

Thus, we use simulation to generate an empirical null distribution

for each trait. Specifically, using MORGAN version 3.0 [http://

www.stat.washington.edu/thompson/Genepi/MORGAN/

Morgan.shtml], we simulate 10,000 replicates of a purely poly-

genic trait with heritability equal to the narrow-sense heritability

estimated from the observed data. Simulations are done

conditional on the observed pedigrees. We calculate the RVKT

statistic for each replicate using the same tail sizes tested in the

observed data. The resulting RVKT statistics form an empirical

null distribution for each trait and tail size. From this distribution,

we determine a rejection region based on the prescribed size of the

test (false-positive rate).

Assessment of the Test by Computer Simulation
To evaluate the power of our test, we conducted gene dropping

simulations conditional on our Amish pedigrees (described below),

and for comparison, four-person nuclear families (two parents and

two offspring) with sample sizes corresponding to our Amish

studies. Specifically, we simulated a single additive, bi-allelic locus

with a trait-influencing allele frequency of 0.5, 1, 2, 3, or 4% (the

rare variant) that accounted for 2, 5, 10, 20, or 30% of the total

trait variance. In each simulation, we assumed that multiple

additive, independent genetic factors, including the rare variant,

accounted for 40, 60, or 80% of the trait variance (the narrow-

sense heritability). For each set of parameters, we simulated 1,000

replicates using MORGAN version 3.0 and tested tail sizes of 1, 2,

Table 1. Pair-wise relationships between individuals from our study of mammographic density (n = 1,481) and the HAPI Heart
study (n = 868) after pedigree trimming.

Number of Pairs

Relationship Pair Mammographic density study HAPI Heart study

Parent-offspring 276 314

Siblings 1,254 592

Grandparent-grandchild 0 21

Avuncular 1,125 732

1st cousins 4,676 1,379

1st cousins, once removed 2,993 1,508

2nd cousins 1,345 905

Other 871 807

Note – Pedigree trimming yielded 177 families with 1–44 study participants per family (average of 8) in our study of mammographic density and 138 families with 1–46
study participants per family (average of 6) in the HAPI Heart study.
doi:10.1371/journal.pone.0062545.t001

Prioritize Quantitative Traits for Sequencing
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4, 6, and 8%. For each tail size, power was calculated as the

proportion of replicates for which the RVKT statistic equaled or

exceeded the 95th percentile of the empirical null distribution, i.e.,

using a significance level of 0.05. We generated a single null

distribution (as described above) for narrow-sense heritabilities of

40, 60, and 80% and repeatedly compared each replicate under

the alternative hypothesis to this distribution.

A subset of the simulations above were conducted on pedigree

structures connecting 1,481 women from our genetic study of

mammographic density [13] and 868 men and women from the

Heritability and Phenotype Intervention (HAPI) Heart study,

a genetic and environmental study of cardiovascular risk factors

[14]. Individuals in both studies were from the Old Order Amish

population of Lancaster County, Pennsylvania. Using the exten-

sive genealogical information available from the Anabaptist

Genealogical Database [15,16], we were able to connect subjects

within each study into a single, 13-generation pedigree. Table 1

gives the number and types of pair-wise relationships after merging

in only two generations from the complete pedigree, i.e., by

merging in the parents and grandparents of all study subjects, and

trimming the resulting pedigrees using PedCut [17] with

a maximum bit size of 100. To assess the impact of pedigree

complexity on power, we repeated simulations using the complete

13-generation pedigree.

Figure 1. Top quintile of the cumulative distribution function of the RVKT statistic. Distribution is based on 1,000 replicates of a purely
polygenic trait with a narrow-sense heritability of 40% and (panels A and B) four-person nuclear families (n = 1,484) or (panels C and D) trimmed
pedigrees from our study of mammographic density (n = 1,481). Panels A and C are based on a tail size of 1% (15 individuals), and panels B and D are
based on a tail size of 8% (118 individuals). Dashed line denotes the 95th percentile.
doi:10.1371/journal.pone.0062545.g001

Prioritize Quantitative Traits for Sequencing
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Application of the Test to Empirical Data
We applied the RVKT to dozens of quantitative traits from the

two genetic studies described above, with the goal of prioritizing

traits and individuals for extreme-trait sequencing. Specifically, we

applied the RVKT to 35 quantitative traits from our study of

mammographic density (n = 1,481), including absolute measures of

the dense and non-dense area of the breast, percent breast density,

total breast size, measures of body size, reproductive and

menstrual traits, and several serum hormones and growth factors

(see Table S1). These traits, all of which are heritable, are of

interest because of their associations with breast cancer risk. Prior

to testing, we transformed each trait to approximate univariate

normality, when necessary, and adjusted for age and menopausal

status. For the hormones and growth factors, we carried out

menopausal-specific analyses using batch-specific z-scores adjusted

for age.

We also applied the RVKT to 37 quantitative traits from the

HAPI Heart study (n = 868), including measures of body size,

fasting lipid levels, and measures of vascular health and arterial

stiffness (see Table S2). These traits, which are also heritable, are

of interest because of their associations with cardiovascular disease.

Prior to testing, we transformed each trait to approximate

univariate normality, when necessary, and adjusted for age and

sex.

As in our simulations, we tested tail sizes of 1, 2, 4, 6, and 8%,

corresponding to 15, 30, 59, 89, and 118 subjects from our study

of mammographic density and 9, 17, 34, 51, and 68 subjects from

the HAPI Heart study. We then selected the RVKT statistic with

the minimum p-value (pmin) in the upper and lower tail of each

trait distribution. To control for multiple testing of traits, some of

which may be correlated, we calculated the effective number of

tests using the method described by Li and Ji [18] and applied

a Bonferroni correction to pmin, denoted pmin, corrected.

Results

Size of the Rare Variant Kinship Test
To assess power, we used simulation to generate the null

distribution of the RVKT statistic and determine the size (false-

positive rate) of the test. As expected, the cumulative distribution

function (CDF) was discrete. However, it became increasingly

discrete as the number and types of relative pairs in the tail or

sample decreased. For example, Figure 1 shows the top quintile of

the CDF for a purely polygenic trait with a narrow-sense

heritability of 40% and two sample structures: four-person nuclear

families (n = 1,484) and trimmed Amish pedigrees from our study

of mammographic density (n = 1,481). In the top quintile, the

RVKT statistic assumed 36 values for the trimmed Amish

pedigrees (Figure 1C) but only 6 values for nuclear families

(Figure 1A), assuming a tail size of 1%. None of these values,

however, coincided with the 95th percentile of the CDF. Thus, in

our power calculations below, we selected a rejection region

having size as close as possible to 0.05, without exceeding 0.05, in

order to maintain a significance level of 0.05.

Figure 2. Power of the RVKT as a function of effect size. Effect
size is the proportion of the trait variance explained by the rare variant.
Results are based on 1,000 simulations of a quantitative trait and
assume a rare variant allele frequency of 2%, a narrow-sense heritability
of 40%, and pedigrees from (panel A) our study of mammographic
density (n = 1,481) or (panel B) the HAPI Heart study (n = 868). Power is
shown for trimmed Amish pedigrees (gray bars) and the complete 13-
generation Amish pedigree (black bars). For comparison, power is also
shown for four-person nuclear families (two parents and two offspring),
with sample sizes equivalent to the sizes of our Amish studies (white
bars). The significance level was set at 0.05.
doi:10.1371/journal.pone.0062545.g002

Figure 3. Power of the RVKT as a function of the rare variant
allele frequency (RAF). Results are based on 1,000 simulations of
a quantitative trait and assume a rare variant that accounts for 5% of
the trait variance, a narrow-sense heritability of 40%, and pedigrees
from (panel A) our study of mammographic density (n = 1,481) or (panel
B) the HAPI Heart study (n = 868). Power is shown for trimmed Amish
pedigrees (gray bars) and the complete 13-generation Amish pedigree
(black bars). For comparison, power is also shown for four-person
nuclear families (two parents and two offspring), with sample sizes
equivalent to the sizes of our Amish studies (white bars). The
significance level was set at 0.05.
doi:10.1371/journal.pone.0062545.g003

Prioritize Quantitative Traits for Sequencing
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Power of the Rare Variant Kinship Test
Under the alternative hypothesis, power was generally maxi-

mized when the tail size matched the expected carrier frequency of

the rare variant (data not shown). In other words, if q denotes the

frequency of the rare variant, power was greatest for a tail size of

2(12q)q+q2. Thus, we report results below for tail sizes that

maximized power.

As expected, power of the RVKT increased as the effect size

increased, meaning as the rare variant accounted for an increasing

proportion of the trait variance. For example, using the trimmed

pedigrees from our study of mammographic density (Table 1) and

assuming a narrow-sense heritability of 40% and a rare variant

frequency of 2%, power ranged from approximately 6 to 87% for

effect sizes of 2 to 30%, respectively (Figure 2A). Similarly, based

on the trimmed pedigrees from the HAPI Heart study and the

same set of parameters, power ranged from approximately 7 to

61% (Figure 2B). As expected, power also increased as the sample

size increased (Figure 2) and/or the rare variant frequency

decreased (Figure 3). Power did not change much as the narrow-

sense heritability of the trait varied from 40 to 80% (Figure 4).

Power degraded substantially as pedigree complexity increased,

meaning as the number and types of distantly related pairs in

a sample increased. For example, consider a sample of 1,481

individuals, a narrow-sense heritability of 40%, and a rare variant

with frequency 2% and effect size 20%. Under these parameters,

power decreased from 64% for the trimmed Amish pedigrees to

26% for the complete 13-generation pedigree (grey versus black

bars in Figure 2A). In fact, power was actually higher with four-

person nuclear families (n = 1,484 individuals; white bars in

Figure 2A) than with our trimmed Amish pedigrees (75% versus

64%). Pedigree complexity also reduced power for smaller effect

sizes (Figure 2) and for pedigree structures in the HAPI Heart

study (Figure 2B).

Application of the Rare Variant Kinship Test
After evaluating the power of the RVKT via simulation, we

applied our test to dozens of quantitative traits from our two

Amish studies. Figures 5 and 6 summarize RVKT p-values (pmin)

from our study of mammographic density and the HAPI Heart

study, respectively. The RVKT statistic was nominally significant

for 8 of the 35 traits in the density study (pmin#0.05). After

correcting for multiple testing (26 effective tests), the RVKT

remained significant for 3 of the 8 traits, including free estradiol

and prolactin in pre-menopausal women and estradiol in post-

menopausal women (pmin, corrected#0.05). Similarly, in the HAPI

Heart study, the RVKT was nominally significant for 14 of the 37

traits, one of which, namely, fasting triglyceride levels, remained

significant after correcting for 22 effective tests (pmin, cor-

rected = 0.044).

In total, after multiple test correction, the RVKT statistic was

significant for 4 of 72 quantitative traits across our two genetic

studies. Table 2 gives results for each of these 4 traits for the tail

size corresponding to the smallest empirical p-value (pmin). For

example, in pre-menopausal women from our study of mammo-

graphic density, pmin, which corresponded to a tail size of 2% (14

of 728 women), was 0.0004 for prolactin. These 14 women had the

lowest batch-standardized and age-adjusted levels of prolactin and

a mean pair-wise kinship coefficient of 0.080 compared to an

expected value of 0.068 under a purely polygenic model

(approximate 95% confidence interval of 0.067 to 0.070). For

each of the other 3 traits, the RVKT statistic was also significant

when testing the lower but not upper tail of the trait distribution.

Discussion

The advantage of using the RVKT to prioritize traits and

individuals for sequencing in family-based studies is best illustrated

by results from the HAPI Heart study. In testing 37 quantitative

traits, many of which are established risk factors for cardiovascular

disease, we found significant evidence of excess relatedness

between individuals in the lower tail of the distribution for fasting

triglycerides. For tail sizes of 1 to 8%, the mean pair-wise kinship

coefficient ranged from 0.114 to 0.020, respectively, and was

significantly different from the kinship coefficient expected under

a purely polygenic model of trait architecture (p#0.05). Although

differences between significance levels were not pronounced for

different tail sizes, the significance of the RVKT was minimized

for the 17 individuals with the lowest age- and sex-adjusted

triglyceride levels, or equivalently, for a tail size of approximately

2%.

Remarkably, Pollin et al. [19] previously identified a null

mutation in the APOC3 gene (R19X) (rs76353203) with a frequency

of 0.024 that lowers fasting triglyceride levels in HAPI Heart study

participants. This mutation was discovered because it was tagged

by another SNP (rs10892151) (MAF=0.028) in the context of

a GWAS (p= 4.1610213, r2 = 0.85 between rs76353203 and

rs10892151). Had we sequenced the 17 individuals in the lower

tail of the age- and sex-adjusted triglyceride distribution, we would

have discovered APOC3 R19X since 7 of these individuals were

mutation carriers, an 8-fold enrichment compared to the ,5% of

individuals who were carriers in the overall sample. Notably, none

Figure 4. Power of the RVKT as a function of the narrow-sense
heritability. Results are based on 1,000 simulations of a quantitative
trait and assume a rare variant with an allele frequency of 2% that
accounts for 1/8th of the genetic variance and pedigrees from (panel A)
our study of mammographic density (n = 1,481) or (panel B) the HAPI
Heart study (n = 868). Power is shown for trimmed Amish pedigrees
(gray bars) and the complete 13-generation Amish pedigree (black
bars). For comparison, power is also shown for four-person nuclear
families (two parents and two offspring), with sample sizes equivalent
to the sizes of our Amish studies (white bars). The significance level was
set at 0.05.
doi:10.1371/journal.pone.0062545.g004
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Figure 5. RVKT p-values (pmin) for 35 quantitative traits from our study of mammographic density. Each bar represents the result for
a single trait. Black bars, significant (pmin#0.05); gray bars, not significant. Dashed line denotes p-value threshold corrected for multiple testing.
Before applying the RVKT, traits were transformed to approximate normality, when necessary, and adjusted for age and menopausal status, except
for the hormones and growth factors, which were standardized by batch, adjusted for age, and analyzed separately for pre- and post-menopausal
women.
doi:10.1371/journal.pone.0062545.g005
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of the 17 individuals in the upper tail of the distribution carried the

mutation.

As expected, the power of the RVKT was low for small to

modest effect sizes. In fact, the power of our test to implicate the

presence and influence of APOC3 R19X on fasting triglycerides in

the HAPI Heart study was less than 25%. As such, it cannot be

used to exclude the presence of rare trait-associated alleles, unless

these alleles account for a large proportion of the phenotypic

variance. However, when multiple medically relevant quantitative

traits are available, the RVKT may be a valuable starting point for

prioritizing traits and individuals for sequencing. For example,

even though APOC3 R19X carriers in the HAPI Heart study had

cardio-protective profiles for several lipids, including higher HDL

and lower LDL cholesterol and lower triglyceride levels, Pollin

et al. [19] discovered R19X because its tag SNP had an exclusive

genome-wide significant association with fasting triglyceride levels.

Consistent with their findings, we singled out fasting triglycerides –

out of 37 traits – as the basis for an extreme-trait sequencing study

by applying the RVKT.

The power of the RVKT is heavily influenced by the number

and types of relationships in a sample. Specifically, the power of

the RVKT increases as the number of closely related pairs

increases. In contrast, power is lost as the number of distantly

related pairs multiplies. For instance, in our simulations (Figures 2–

4), power was actually greater with the trimmed Amish pedigrees

than with the complete 13-generation pedigree, with differences as

great as 20–30% for large effect sizes. To understand why, it’s

helpful to consider the impact of trimming on the mean kinship

coefficient under the null and alternative hypotheses. Under both

hypotheses, trimming decreases the mean since individuals who

are distantly related, say third cousins, appear to be unrelated.

However, it does so to a lesser extent under the alternative

hypothesis. This is because the mean under the alternative is

dominated by closely related pairs, which are maintained regard-

less of trimming. As a result, the difference between the mean

kinship coefficient under the null and alternative hypotheses is

larger – and in turn, power is greater – with trimming than

without.

Although trimming increases power, the RVKT may actually

be conservative when pedigrees are too simple. In fact, it may be

impossible to choose a rejection region from the empirical null

distribution of the RVKT statistic such that the size of the test does

not exceed the significance level. For example, consider a single

pair of siblings from each of 741 families (n = 1,482). To obtain the

null distribution, we simulated 1,000 replicates of a purely

polygenic trait with a narrow-sense heritability of 40%. However,

when we tested a 1% tail size, we obtained only three values of the

RVKT statistic (data not shown). The largest value occurred 17

times; therefore, the smallest possible test size was 0.017. In other

words, it would have been impossible to conduct a 0.01 level test.

This problem was especially pronounced for modest sample sizes

and small tail sizes due to discontinuities in the empirical null

distribution of the mean pair-wise kinship coefficient (data not

shown).

An implicit assumption of the RVKT is that – within each

family – a specific allele at the same locus has an effect on the trait

of interest. In other words, the power of the test depends on the

extent of allelic and locus homogeneity within each family but does

not require homogeneity between families. For example, if

multiple rare variants influence a trait, then phenotypically

extreme individuals from the same family are more likely to share

the same trait-influencing alleles than phenotypically extreme

individuals from different families. Thus, the RVKT statistic may

still exceed its expected value since individuals in the tail of the

trait distribution may be more closely related than expected under

the null hypothesis. From this perspective, isolates like the Amish

are an ideal population in which to apply the RVKT and carry out

extreme-trait sequencing since many copies of the same rare trait-

associated allele are likely to be segregating within a family due to

a combination of founder effect and genetic drift.

In our simulations, we considered rare variant frequencies

ranging from 0.5 to 4%. We did so for two reasons. First, the Old

Order Amish population of Lancaster County, PA derives from

a small number of European ancestors (,300) who immigrated

nearly 250 years ago and has since increased in size to

approximately 45,000 individuals (census size) [20]. Thus, many

alleles that were initially rare or private in the ancestral

Figure 6. RVKT p-values (pmin) for 37 quantitative traits from the HAPI Heart study. Each bar represents the result for a single trait. Black
bars, significant (pmin#0.05); gray bars, not significant. Dashed line denotes p-value threshold corrected for multiple testing. Traits were transformed
to approximate normality, when necessary, and adjusted for age and sex. Traits are ordered such that highly correlated traits are closer together.
doi:10.1371/journal.pone.0062545.g006

Table 2. Rare variant kinship test (RVKT) results from two genetic studies in the Amish.

Trait Tail size (n)

Observed mean pair-wise kinship
coefficient

Expected mean pair-wise kinship
coefficient (approximate 95%
CI)d P-valued

Lower tail Upper tail Lower tail Upper tail

Prolactina 2% (14) 0.080 0.067 0.068 (0.067–0.070) 0.0004 1.0000

Free estradiola 8% (57) 0.021 0.019 0.018 (0.017–0.019) 0.0008 0.1650

Estradiolb 6% (44) 0.026 0.025 0.024 (0.022–0.025) 0.0015 0.0737

Fasting triglyceridesc 2% (17) 0.074 0.056 0.058 (0.056–0.063) 0.0020 0.7999

aBased on 728 pre-menopausal women from our study of mammographic density, and after standardizing by batch and adjusting for age, an estimated narrow-sense
heritability of approximately 24% (for prolactin) and 34% (for free estradiol).
bBased on 753 post-menopausal women from our study of mammographic density, and after standardizing by batch and adjusting for age, an estimated narrow-sense
heritability of approximately 35%.
cBased on 868 men and women from the HAPI Heart study, and after adjusting for age and sex, an estimated narrow-sense heritability of approximately 49%.
dBased on 10,000 simulations under the null hypothesis of a purely polygenic trait architecture.
doi:10.1371/journal.pone.0062545.t002
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population, e.g., MAF,0.5% in HapMap or 1KG projects, have

either been eliminated from the Amish or increased in frequency

due to founder effect and/or genetic drift. Second, even in the

presence of the allelic heterogeneity typical of non-founder

populations, the aggregate trait-associated allele frequency at

a single locus may still be greater than 0.5% and thus potentially

amenable to detection by the RVKT.

Prioritizing traits and individuals for sequencing using the

RVKT requires only pedigree and phenotype data and thus can

be done before carrying out costly sequencing experiments. This

process, however, requires accurate pedigree and phenotype data.

Likewise, it is important to consider the impact of adjusting for

covariates or stratifying the analysis by subgroups before

identifying individuals with extreme trait values. For example, in

our study of mammographic density, we found significant evidence

for the presence of rare variants influencing the dense area of the

breast in post- but not pre-menopausal women. Specifically, after

adjustment for age, pmin for the RVKT was 0.018 and 0.031 for

the lower and upper tails, respectively (see Figure S1). These

results suggest the presence of at least one variant that lowers

density and another variant that increases density in post-

menopausal women.

We developed the RVKT to inform the selection of traits and

individuals for sequencing and rare variant discovery. Predictably,

the power of our test depended – above all – on the effect size of

the rare variant. Indeed, it was underpowered to detect rare

variants unless those variants had large effects. However, our

analysis of over 70 quantitative traits from our Amish studies

suggests that the results may still be informative to prioritize

sequencing efforts.

Supporting Information

Figure S1 RVKT p-values (pmin) for quantitative traits
from our study of mammographic density stratified by
menopausal status. Each bar represents the result for a single

trait. Black bars, significant (pmin#0.05); gray bars, not significant.

Before applying the RVKT, traits were transformed to approx-

imate normality, when necessary, and adjusted for age.

(TIF)

Table S1 Trait descriptions from our study of mam-
mographic density.

(PDF)

Table S2 Trait descriptions from the HAPI Heart study.

(PDF)
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