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Abstract

The availability of high-throughput parallel methods for sequencing microbial communities is increasing our knowledge of
the microbial world at an unprecedented rate. Though most attention has focused on determining lower-bounds on the
a-diversity i.e. the total number of different species present in the environment, tight bounds on this quantity may be highly
uncertain because a small fraction of the environment could be composed of a vast number of different species. To better
assess what remains unknown, we propose instead to predict the fraction of the environment that belongs to unsampled
classes. Modeling samples as draws with replacement of colored balls from an urn with an unknown composition, and
under the sole assumption that there are still undiscovered species, we show that conditionally unbiased predictors and
exact prediction intervals (of constant length in logarithmic scale) are possible for the fraction of the environment that
belongs to unsampled classes. Our predictions are based on a Poissonization argument, which we have implemented in
what we call the Embedding algorithm. In fixed i.e. non-randomized sample sizes, the algorithm leads to very accurate
predictions on a sub-sample of the original sample. We quantify the effect of fixed sample sizes on our prediction intervals
and test our methods and others found in the literature against simulated environments, which we devise taking into
account datasets from a human-gut and -hand microbiota. Our methodology applies to any dataset that can be
conceptualized as a sample with replacement from an urn. In particular, it could be applied, for example, to quantify the
proportion of all the unseen solutions to a binding site problem in a random RNA pool, or to reassess the surveillance of a
certain terrorist group, predicting the conditional probability that it deploys a new tactic in a next attack.
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Introduction

A fundamental problem in microbial ecology is the ‘‘rare

biosphere’’ [1] i.e. the vast number of low-abundance species

in any sample. However, because most species in a given sample

are rare, estimating their total number i.e. a-diversity is a difficult

task [2,3], and of dubious utility [4,5]. Although parametric and

non-parametric methods for species estimation show some pro-

mise [6,7], microbial communities may not yet have been

sufficiently deeply sampled [8] to test the suitability of the models

or fit their parameters. For instance, human-skin communities

demonstrate an unprecedented diversity within and across skin

locations of same individuals, with marked differences between

specimens [9].

In an environment composed of various but an unknown

number of species, let pi§0 be the proportion in which a certain

species i occurs. Samples from microbial communities may be

conceptualized as sampling–with replacement–different colored

balls from an urn. The urn represents the environment where

samples are taken: soil, gut, skin, etc. The balls represent the

different members of the microbial community, and each color is a

uniquely defined operational taxonomic unit.

In the non-parametric setting, the urn is composed by an

unknown number of colors occurring in unknown relative

proportions. In this setting, the a-diversity of the urn [10]

corresponds to the cardinality of the set fi : piw0g. Although

various lower-confidence bounds for this parameter have been

proposed in the literature [11–14], tight lower-bounds on a-

diversity are difficult in the non-parametric setting because a small

fraction of the urn could be composed by a vast number of

different colors [15]. Motivated by this, we shift our interest to

predicting instead the fraction of balls with a color unrepresented

in the first n observations from the urn. This is the unobservable

random variable:

Un~
X

i =[fX1,...,Xng
pi~1{

X
i [fX1,...,Xng

pi,

where X1, . . . ,Xn denote the sequence of colors observed when

sampling n balls from the urn. Notice how Un depends both on the

specific colors observed in the sample, and the unknown

proportions of these colors in the urn. This quantity is very useful

to assess what remains unknown in the urn. For instance, the

probability of discovering a new color with one additional
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observation is precisely Un, and the mean number of additional

observations to discover a new color is 1=Un. We note that

(1{Un) corresponds to what is called the conditional coverage of

a sample of size n in the literature. For this reason, we refer to Un

as the conditional uncovered probability of the sample.

The expected value of Un is given by:

un~ (Un)~
X

i

pi(1{pi)
n:

Unlike the conditional uncovered probability of the sample, un is a

parameter that depends on the unknown urn composition but not

on the specific colors observed in the sample. Interest in the above

quantities or related ones has ranged from estimating the

probability distribution of the keys used in the Kenngruppenbuch

(the Enigma cipher book) in World War II [16], to assessing the

confidence that an iterative procedure with a random start has

found the global maximum of a given function [17], to predicting

the probability of discovering a new gene by sequencing additional

clones from a cDNA library [18]. We note that (1{un) is called

the expected coverage of the sample in the literature.

Various predictors of Un and estimators of un have been

proposed in the literature. These are mostly based on a user-

defined parameter r§0 and the statistics N(k,nzr), k~0, . . . ,r;

defined as the number of colors observed k-times, when r
additional balls are sampled from the urn.

Turing and Good [19] proposed to estimate un using the biased

statistic vn,0~N(1,n)=n. Posteriorly, Robbins [20] proposed to

predict Un using

vn,1~
N(1,nz1)

(nz1)
, ð1Þ

which he showed to be unbiased for un and to satisfy the inequality

f(Un{vn,1)2gv1=(nz1). Despite the possibly small quadratic

variation distance between Un and Robbins’ estimator, and as

illustrated by the plots on the left side of Fig. 1, when using

Robbins’ estimator to predict Un sequentially with n (to assess the

quality of the predictions at various depths in the sample), we

observe that unusually small or large values of N(1,nz1) may

offset subsequent predictions of Un. In fact, as seen on the right-

hand plots of the same figure, an offset prediction is usually

followed by another offset prediction of the same order of

magnitude, even 100 observations later (correlation coefficient of

green clouds, R~0:934991 and R~0:948600 on top- and

bottom-right plots).

Subsequently, for each r§1, Starr [21] proposed to predict Un

using

vn,r~
Xr

k~1

r{1

k{1

� �
nzr

k

� � :N(k,nzr): ð2Þ

Even though vn,r is the minimum variance unbiased estimator of

un based on r additional observations from the urn [22], Starr

showed that vn,r may be strongly negatively correlated with Un

when r~1 (note that Starr’s and Robbins’ estimators are identical

when r~1). Furthermore, the sequential prediction of Un via

Starr’s estimator is affected by issues similar to Robbins’ estimator,

which is also illustrated in Fig. 1, even when the parameter r is

set as large as possible, namely (nzr) is equal to the sample

size (correlation coefficient of orange clouds, R~0:996407 and

R~0:984397 on top- and bottom-right, respectively). We observe

that vn,1 and vn,r are indistinguishable in a linear scale when r%n
because, for each n,r§1, it applies that (see Materials and

Methods):

jvn,1{vn,rjƒ
2(r{1)

nz1
z

r{1

rzn{1
: ð3Þ

In terms of prediction intervals, if za denotes the a upper

quantile of a standard Normal distribution, it follows from Esty’s

analysis [23] that if N(1,n)=n is not very near 0 or 1 then

vn,0+za=2
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn,0(1{vn,0)

n
z2

N(2,n)

n2
,

r
ð4Þ

is approximately a 100(1{a)% prediction interval for Un. In

practice, and as seen in Fig. 2, when the center of the interval is of

a similar or lesser order of magnitude than its radius, the ratio

between the upper- and lower-bound of these intervals may

oscillate erratically, sometimes over several orders of magnitude.

This can be an issue in assessing the depth of sampling in rich

environments. For instance, to be highly confident that

10{5
ƒUnƒ10{3 is not of practical use because one may need

from 1000 to 100,000 additional observations to discover a new

species.

The issues of the aforementioned methods are somewhat

expected. On one hand, the problem of predicting Un is very

different from estimating un: the former requires predicting the

exact proportion of balls in the urn with colors outside the random

set fX1, . . . ,Xng, rather than in average over all possible such sets.

On the other hand, the point estimators of un are unlikely to

predict Un accurately in a logarithmic scale, unless the standard

deviation of Un is small relative to Un. Finally, the methods we

have described from the literature were designed for static

situations i.e. to predict Un or estimate un when n is fixed.

Results

Embedding Algorithm
Here we propose a new methodology to address the issues of the

methods presented in the Introduction to predict Un. Our

methodology lends itself better for a sequential analysis and

accurate predictions in a logarithmic scale; in particular, also in a

linear scale–though it relies on randomized sample sizes. Due to

this, in static situations i.e. for fixed sample sizes, our method only

yields predictions for a random sub-sample of the original sample.

Randomized sample sizes are more than just an artifact of our

procedure: due to Theorem 1 below, for any predetermined

sample size, there is no deterministic algorithm to predict Un and

ln(Un) unbiasedly, unless the urn is composed by a known and flat

distribution of colors. See the Materials and Methods section for

the proofs of our theorems.

Theorem 1 If f : ½0,1�?½{?,z?� is a continuous and one-to-one

function then the following two statements are equivalent: (i) there is a non-

randomized algorithm based on (X1, . . . ,Xn) to predict f (Un) conditionally

unbiased; (ii) the urn is composed by a known and equidistributed number of

colors.

Our methodology is based on a so called Poissonization

argument [24]. This technique is often used in allocation problems

to remove correlations [25]. It was applied in [26] to show that the

cardinality of the random set fX1, . . . ,Xng is asymptotically

Gaussian after the appropriate renormalization. Mao and Lindsay

[27] used implicitly a Poissonization argument to argue that

Extrapolation via Poissonization
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intervals such as in equation (4) have a 100(1{a)% asymptotic

confidence, under the hypothesis that the times at which each

color in the urn is observed obey a homogeneous Poisson point

process (HPP) with a random intensity. Here, asymptotic means

that the a-diversity tends to infinity, which entails adding colors

into the urn. Our approach, however, is not based on any

assumption on the times the data was collected, nor on an

asymptotic rescaling of the problem, but rather on the embedding

of a sample from an urn into a HPP with intensity 1 in the semi-

infinite interval ½0,z?). We emphasize that the HPP is a

mathematical artifice simulated independently from the urn.

In what follows, r§1 is a user-defined integer parameter. We

have implemented the Poissonization argument in what we call the

Embedding algorithm in Table 1. For a schematic description of the

algorithm see Fig. 3 and, for its heuristic, consult the Materials and

Methods section.

Suppose that a set I of colors is already known to belong to the

urn and let pI~
P

i[I pi be the coverage probability of the colors

in this set. We note that, in the context of the previous discussion,

Un~(1{pI ) with I~fX1, . . . ,Xng.
To predict (1{pI ), draw balls from the urn until r colors

outside I are observed. Visualize each observation as a colored

point in the interval ½0,z?). The Poissonization consists in

spacing these points out using independent exponential random

variables with mean one. Due to the thinning property of Poisson

point processes [28], the position Tr of the point farthest apart

from 0 has a Gamma distribution with mean r=(1{pI ). We may

exploit this to obtain conditionally unbiased predictors and exact

Figure 1. Point predictions in a human-gut and exponential urn. Plots associated with a human-gut (top-row) and exponential urn (bottom-
row). Left-column, sequential predictions of the conditional uncovered probability (black), as a function of the number n of observations, using
Robbins’ estimator in equation (1) (green), Starr’s estimator in equation (2) (orange), and the Embedding algorithm (blue, red), over a same sample of
size 50,000 from each urn. Starr’s estimator was implemented keeping nzr~50,000. Blue predictions correspond to consecutive outputs of the
Embedding algorithm in Table 1, which was reiterated until exhausting the sample using the parameter r~25. Red predictions correspond to outputs
of the algorithm each time a new species was discovered. Right-column, correlation plots associated with consecutive predictions of the conditional
uncovered probability (normalized by its true value at the point of prediction), under the various methods. The green and orange clouds correspond
to pairs of predictions, 100-observations apart, using Robbins’ and Starr’s estimators, respectively. Blue and red clouds correspond to pairs of
consecutive outputs of the Embedding algorithm, following the same coloring scheme than on the left plots. Notice how the red and blue clouds are
centered around (1,1), indicating the accuracy of our methodology in a log-scale. Furthermore, the green and orange clouds show a higher level of
correlation than the blue and red clouds, indicating that our method recovers more easily from previously offset predictions. In each urn, our
predictions used the 50,000 observations and a HPP with intensity one–simulated independently from the urn–to predict sequentially the uncovered
probability of the first part of the sample. See Fig. 4 for the associated rank curve in each urn.
doi:10.1371/journal.pone.0021105.g001

Extrapolation via Poissonization
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prediction intervals for (1{pI ) and ln(1{pI ) as follows.

Regarding direct predictions of ln(1{pI ), note that measuring

(1{pI ) in a logarithmic rather than linear scale makes more sense

when deep sampling is possible.

Theorem 2 Conditioned on I and the event pIv1, the following

applies:

(i) If r§3 then (r{1)=Tr is unbiased for (1{pI ), with variance

(1{pI )2=(r{2).

(ii) If r§1 and c~0:57721566::: denotes Euler’s constant then

{ln(Tr){cz
Pr{1

i~1 1=i is unbiased for ln(1{pI ), with varianceP?
i~r 1=i2, which is bounded between 1=r and 1=(r{1).

(iii) If r§1, 0vav1 and 0ƒaƒbƒz? are such that

ðb

a

xr{1

(r{1)!
e{xdx~(1{a), ð5Þ

then the interval ½a=Tr,b=Tr� contains (1{pI ) with exact probability

(1{a); in particular, ½ln(a=Tr),ln(b=Tr)� contains ln(1{pI )
also with probability (1{a).

We note that (r{1)=Tr is the uniformly minimum variance

unbiased estimator of (1{pI ) based on r exponential random

variables with unknown mean 1=(1{pI ). Furthermore,

(1{pI ):Tr=r converges almost surely to 1, as r tends to infinity;

in particular, the point predictors in part (i) and (ii) are strongly

consistent.

We also note that the logarithm of the statistic in part (i) under-

estimates ln(1{pI ) in average. In fact, the difference between the

natural logarithm of the statistic in (i) and the statistic in (ii) is

czln(r{1){
Pr{1

i~1 1=i, which is negative for r§2, and increases

to zero as r tends to infinity. From a computational stand point,

however, the statistics ln((r{1)=Tr) and {ln(Tr){cz
Pr{1

i~1 1=i

differ by at most 1%-units when r§51. The same precision may

Figure 2. Prediction intervals in the human-gut and exponential urn. 95% prediction intervals for the conditional uncovered probability
(black) of the human-gut and exponential urn as a function of the number of observations. Esty’s prediction intervals in equation (4) (green), and
predictions intervals based on the Embedding algorithm (blue, red), using the parameters (r,f )~(19,2:5) and (r,f )~(94,1:5) on the left and right,
respectively. Blue and red curves correspond to the conservative-lower and -upper prediction intervals for the uncovered probability, respectively.
The missing segments on the lower green-curves correspond to Esty’s prediction intervals that contained 0. Although the upper- and lower-bound of
the Esty’s intervals may be of different order of magnitude, our method produces intervals of a constant length in logarithmic scale. This length is
controlled by the user-defined parameter f . In each urn, our method predicted accurately the uncovered probability of a random sub-sample of the
50,000 observations from the urn. See Fig. 4 for the associated rank curve in each urn.
doi:10.1371/journal.pone.0021105.g002

Extrapolation via Poissonization
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be reached for smaller values of r if larger bases are utilized. For

instance, in base-10, the discrepancy will be at most 1% for r§23.

In regards to part (iii) of the theorem, we note that our

prediction intervals for (1{pI ) cannot contain zero unless a~0.

On the other hand, since the density function used in equation (5)

is unimodal, the shortest prediction interval for (1{pI ) corre-

sponds to a pair of non-negative constants av(r{1)vb such that:

ar{1e{a~br{1e{b and

ðb

a

xr{1

(r{1)!
e{xdx~(1{a): ð6Þ

Similarly, optimal prediction intervals for ln(1{pI ) follow when

are{a~bre{b and

ðb

a

xr

r!
e{xdx~(1{a), ð7Þ

with 0vavrvb (see Materials and Methods for a numerical

procedure to approximate these constants). In either case, because

f(1{pI ):Tr{rg=
ffiffi
r
p

converges in distribution to a standard

Normal as r tends to infinity, one may select in (5) the approximate

constants a~r{1{
ffiffiffiffiffiffiffiffiffiffi
r{1
p

:za=2 and b~r{1z
ffiffiffiffiffiffiffiffiffiffi
r{1
p

:za=2. With

these approximate values, if 0vza=2v

ffiffiffiffiffiffiffiffiffiffi
r{1
p

then the true

confidence c of the associated prediction intervals satisfies (see

Materials and Methods):

exp za=2
:
ffiffiffiffiffiffiffiffiffiffi
r{1
p

z
z2

a=2

2
z(r{1):ln 1{

za=2ffiffiffiffiffiffiffiffiffiffi
r{1
p

� �
{

1

12(r{1)

( )

ƒ

c

1{a
ƒexp

z3
a=2

3
ffiffiffiffiffiffiffiffiffiffi
r{1
p

( )
:

ð8Þ

Figure 3. Schematic description of the Embedding algorithm. Suppose that in a first sample from an urn you only observe the colors red,
white and blue; in particular, I~fred,white,blueg. Let m be the unknown proportion in the urn of balls colored with any of these colors i.e. m~pI . To
estimate (1{m), sample additional balls from the urn until observing r balls with colors outside I . Embed the colors of this second sample into a
homogeneous Poisson point process with intensity one; in particular, the average separation of consecutive points with colors outside I are
independent exponential random variables with mean 1=(1{m). The unknown quantity (1{m) can be now estimated from the random variable Tr .
As a byproduct of our methodology, conditional on I , if fi denotes the relative proportion of color i in the first sample then 1{(r{1)=Trð Þ|fi

predicts the true proportion of color i in the urn.
doi:10.1371/journal.pone.0021105.g003

Table 1. Embedding algorithm.

Input: r§1, a set I of colors known to be in the urn, and constants 0ƒavbƒz? that satisfy condition (5).

Output: Unbiased predictor of (1{pI ), 100(1{a)% prediction interval for (1{pI ) and an updated set I of colors known to belong to the urn.

Step 1. Assign i : ~0, j : ~0, and J : ~I .

Step 2. While jvr assign i : ~(iz1), and sample with replacement a ball from the urn. Let c be the color of the sampled ball. If c 6[ I then assign j : ~(jz1)

and J : ~J|fcg.
Step 3. Simulate Tr*Gamma(i,1), and assign I : ~J .

Step 4. Output (r{1)=Tr , ½a=Tr,b=Tr� and I .

doi:10.1371/journal.pone.0021105.t001

Extrapolation via Poissonization
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(The term on the exponential on the left-hand side above is big-O

of z3
a=2=

ffiffiffiffiffiffiffiffiffiffi
r{1
p

; in particular, the lower-bound is of the same

asymptotic order than the upper-bound.) We note that the

constants produced by the Normal approximation may be crude

for relatively large values of r, as seen in Table 2.

As high-throughput technologies allow deeper sampling of

microbial communities, it will be increasingly important to have

upper- and lower-bounds for (1{pI ) of a comparable order of

magnitude. Since the prediction intervals for this quantity in

Theorem 2 are of the form ½a=Tr,b=Tr�, and the ratio between the

upper- and lower-bound of this interval is b=a, one may wish to

determine constants a and b such that, not only (5) is satisfied, but

also

b=a~f , ð9Þ

where f w1 is a user-defined parameter. Not all values of f are

attainable for a given r and confidence level. In fact, the smallest

attainable value is given by the constants associated with the

optimal prediction interval for ln(1{pI ). Equivalently, f is

attainable if and only if

f §b�=a�, where

ðb�

a�

xr

r!
e{xdx~(1{a)

and (a�)re{a�~(b�)re{b� with a�vrvb�:

Conversely, and as stated in the following result, any value of f w1
is attainable at a given confidence level, provided that the

parameter r is selected sufficiently large.

Theorem 3 Let 0vav1 and f w1 be fixed constants. For each r
sufficiently large, there are constants 0vavbvz? such that (5) and (9)

are satisfied.

For a given parameter f , there are at most two constants

0vc1vc2vz? such that ½c1=Tr,f :c1=Tr� and ½c2=Tr,f :c2=Tr�
are prediction intervals for (1{pI ) with exact confidence (1{a).
We refer to these as conservative-lower and conservative-upper prediction

intervals, respectively. We refer to intervals of the form ½0,c0=Tr�
and ½c3=Tr,1� as upper- and lower-bound prediction intervals, respec-

tively. See Table 3 for the determination of these constants for

various values of r when a~5%.

Effect of non-randomized sample sizes
The Embedding algorithm provides conditionally unbiased

predictors and intervals for (1{pI ) and ln(1{pI ), provided that

an arbitrary number of additional observations is possible until

observing r balls with colors outside I . When dealing with fixed
sample sizes, there is a positive probability of not meeting this

condition, in which case the Embedding Algorithm is inconclusive.

In large samples however, such as those collected in microbial

datasets, the algorithm may be applied sequentially until it yields

an inconclusive prediction. In such case, the true confidence of the

prediction intervals produced by the algorithm satisfy the

following.

Theorem 4 Suppose that condition (5) is satisfied. Conditioned on I , if

r balls with colors outside I are observed in the next k draws from the urn, then

the true confidence c of the prediction interval for (1{pI ) produced by the

Embedding algorithm satisfies:

(i) if a~0 then (1{a)ƒcƒ(1{a)z ½Cwb�;
(ii) if aw0 then (1{a){ ½Nwk�ƒcƒ(1{a)z ½Cwb�, where

C is a Gamma random variable with parameters (r,1), and N is a

Negative Binomial random variable with parameters (r,1{pI ).

Table 2. Optimal versus asymptotic 95% prediction intervals.

r
Prediction
interval for

Optimal
constants

Gaussian
approximation

Relative
error *

30 (1{pI ) a~19:66173485

b~40:91013748

a~18:44527092

b~39:55472908

{6:2%

{3:3%

30 ln(1{pI ) a~20:48229580

b~42:08921485

Same as
above

{9:9%

{6:0%

120 (1{pI ) a~98:86695443

b~141:6966834

a~97:61931714

b~140:3806829

{1:3%

{0:9%

120 ln(1{pI ) a~99:77743953

b~142:7861762

Same as
above

{2:2%

{1:7%

doi:10.1371/journal.pone.0021105.t002

Table 3. Constants associated with 95% prediction intervals.

r c0 c1 c2 c3

1 2.995732274 � � 0.051293294

2 4.743864518 � � 0.355361510

3 6.295793622 � � 0.817691447

4 7.753656528 0.806026244 1.360288674 1.366318397

5 9.153519027 0.924031159 1.969902541 1.970149568

6 10.51303491 1.053998892 2.61300725 2.613014744

7 11.84239565 1.185086999 3.28531552 3.285315692

8 13.14811380 1.315076338 3.98082278 3.980822786

9 14.43464972 1.443547021 4.69522754 4.695227540

10 15.70521642 1.570546801 5.42540570 5.425405697

11 16.96221924 1.696229569 6.16900729 6.169007289

12 18.20751425 1.820753729 6.92421252 6.924212514

13 19.44256933 1.944257623 7.68957829 7.689578292

14 20.66856908 2.066857113 8.46393752 8.463937522

15 21.88648591 2.188648652 9.24633050 9.246330491

16 23.09712976 2.309712994 10.03595673 10.03595673

17 24.30118368 2.430118373 10.83214036 10.83214036

18 25.49923008 2.549923010 11.63430451 11.63430451

19 26.69177031 2.669177032 12.44195219 12.44195219

20 27.87923964 2.787923964 13.25465160 13.25465160

21 29.06201884 2.906201884 14.07202475 14.07202475

22 30.24044329 3.024044329 14.89373854 14.89373854

23 31.41481021 3.141481021 15.71949763 15.71949763

24 32.58538445 3.258538445 16.54903872 16.54903871

25 33.75240327 3.375240328 17.38212584 17.38212584

Constants associated with 95% upper-bound, conservative-lower, conservative-
upper and lower-bound prediction intervals for (1{pI ), when 1ƒrƒ25 and f ~10.

By definition, this means that

ðc0

0

xr{1

(r{1)!
e{xdx~0:95 and

ð?
c3

xr{1

(r{1)!
e{xdx~0:95.

Furthermore, the constants c1ƒc2 are solutions to the equation:

ð10c

c

xr{1

(r{1)!
e{xdx~0:95, c§0,

solved numerically with Newton’s method using Maple 13.02. This equation may

have at most two different solutions, and star (�) denotes that the equation has no
solution.
doi:10.1371/journal.pone.0021105.t003
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Thus, if the Embedding algorithm produces an output in what

remains of a finite sample size, the upper-bound prediction

interval for (1{pI ) has at least the user-defined confidence. This is

perhaps the case of most interest in applications: it allows the user

to estimate the least number of additional samples to observe a

color not seen in any sample. For the other three interval types, the

true confidence is approximately at least the targeted one if the

probability that the algorithm produces an output in what remains

of the sample is large.

Discussion

Comparisons with Robbins-Starr estimators
Note that, like Robbins’ and Starr’s estimators, our method

requires extracting additional balls from the urn to make a

prediction. However, unlike the methods of the Introduction, our

method uses only the additionally collected data–instead of all the

data ever collected from the urn–to make a prediction. In terms of

sequential analysis, this is advantageous to recover from earlier

erroneous predictions (we expand on this point in the next section,

see Fig. 1).

In what remains of this section, I~fX1, . . . ,Xng hence

(1{pI )~Un, the conditional uncovered probability of a sample

of size n. Furthermore, to rule out trivial cases, we assume that

Unv1 with positive probability i.e. the urn is composed by more

than just balls of a single color.

Part (i) of Theorem 1 provides a conditionally unbiased

predictor for Un. We can show, however, that Robbins’ and

Starr’s estimators are not conditionally unbiased for Un in the non-

parametric case when rvn=6z1. To see this argument, first

notice that jvn,r{vn,1jƒ3(r{1)=n due to the inequality (3). On

the other hand, if i is a color in the urn such that piw0 then

(vn,1jI~fig)~ 1{pi

nz1
:

As a result:

(1{pi){ (vn,rjI~fig)

~(1{pi){ (vn,1jI~fig)z (vn,1{vn,rjI~fig)

§

1

2
1{

6(r{1)

n
{pi

� �
:

Hence, if there exists a color i in the urn that makes the above

quantity strictly positive (there are infinitely many such urns,

including all urns composed by infinitely many colors, because

rvn=6z1) then vn,r cannot be conditionally unbiased for Un.

On the other hand, due to parts (i) and (ii) in Theorem 1, we

obtain (see Materials and Methods):

r Un,
r{1

Tr

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Un)

((r{1)=Tr)

s
, ð10Þ

r ln(Un),{ln(Tr){cz
Xr{1

i~1

1

i

 !
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ln(Un))

(ln(Tr))

s
, ð11Þ

where r denotes correlation and variance. Consequently, the

point predictors in Theorem 1 are positively correlated with the

quantities they were designed to predict. This contrasts with

Robbins’ estimator, which may be strongly negatively correlated

with Un. For instance, if pi~1=k for k different colors in the urn, it

is shown in [21] that the asymptotic correlation between Un and

Robbins’ estimator vn,1 is asymptotically negative when n=k
converges to a strictly positive but finite constant l. In this same

regime but provided that r%
ffiffiffi
n
p

, we can show that (see Materials

and Methods):

limsup
n??

r(Un,vn,r)ƒ
l:e{l{l:(1z3l):e{2l

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l:e{2l{l:(2zl2):e{3lzl:(1zl3):e{4l

q : ð12Þ

Since the right-hand side above is negative for all l sufficiently

small, Starr’s estimator vn,r may also have a strong negative

correlation with Un when r is much smaller than
ffiffiffi
n
p

.

A further calculation based on parts (i) and (ii) in Theorem 1

shows that

r{1

Tr

� �
~ (Un)z

(U2
n )

r{2
,

(ln(Tr))~ (ln(Un))z
X?
i~r

1

i2
:

In particular, for fixed n, the correlations in equations (10) and (11)

approach to one as r tends to infinity.

Finally, for non-trivial urns with finite a-diversity, i.e. urns

composed by balls with at least two but a finite number of different

colors, one can show for fixed r that the correlation in equation

(10) approaches
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r{2)=(r{1)

p
as n tends to infinity. Further-

more, if we again assume that pi~1=k for k different colors in the

urn and n=k converges to a strictly positive but finite constant,

then the correlation in equation (10) approaches zero from above.

As we pointed out before, in this regime, Robbins’ estimator is

asymptotically negatively correlated with Un.

Selection of parameters
There are two main criteria to select the parameter r of the

Embedding algorithm in a concrete application.

One criteria applies for point predictors. In this case,

conditioned on I , the standard deviation of the relative error of

our prediction of (1{pI ) is 1=
ffiffiffiffiffiffiffiffiffiffi
r{2
p

(Theorem 2, part (i)). To

predict (1{pI ), r should be therefore selected as small as possible

so as to meet the user’s tolerance on the average relative error of

our predictions. The same criteria applies for point predictors of

ln(1{pI ), for which the standard deviation of the absolute error is

of order 1=
ffiffi
r
p

, uniformly for all pIv1 (Theorem 2, part (ii)).

A different criteria applies for prediction intervals. In this case,

conditioned on I , the user should first specify the confidence level,

and how much larger he wants the upper-prediction-bound to be

in relation to the lower-prediction bound of (1{pI ). Since the

ratio between these last two quantities is given by the parameter f
in (9), r should be selected as small as possible to meet the user’s

pre-specified factor f for the given confidence level of the

prediction interval (Theorem 3). See Table 4 for the optimal

choice of r for various values of f when a~5%. Note that for the

selected parameter r, the constants associated with the optimal

prediction intervals are given in equations (6) and (7), see Materials

and Methods.

Simulations on analytic and non-analytic urns
We tested our methods against an urn with an exponential

relative abundance rank curve over 500 species, and an urn

ð12Þ
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matching the observed distribution of microbes in a human-gut

sample from [29]. We also analyzed a sample from a human-hand

microbiota found in [30]. The gut and hand data are part of the

largest microbial datasets collected thus far (see Fig. 4 for the

relative abundance rank curve associated with each urn). The

relative abundance rank curve, or for simplicity ‘‘rank curve’’,

associated with an urn is a graphical representation of its

composition: the height of the graph above a non-negative integer

i is the fraction of balls in the urn with the i-th most dominant

color.

The blue dots and red curves on the plots on the left side in

Fig. 1 show very accurate point predictions in log-scale of the

conditional uncovered probability (as a function of the number of

observations), when we apply the Embedding algorithm to a

sample of size 50,000 from the human-gut and exponential urn,

respectively. In both instances, the parameter r of the Embedding

algorithm was set to 25. The accuracy of our method is confirmed

by the red clouds on the plots on the right side of Fig. 1, which are

centered around (1,1). The red clouds also indicate that our

predictions recover more easily from offset predictions as

compared to Robbins’ and Starr’s (correlation coefficient of red

clouds, R~0:715451 and R~0:244014 on top- and bottom-right,

respectively). This is to be expected because the Embedding

algorithm relies only on the additionally collected data to make a

new prediction, whereas Robbins’ and Starr’s estimators use all

the data ever collected from the urn. On the other hand, the red

and blue curves in Fig. 2 show that the conservative-upper and -

lower prediction intervals of the conditional uncovered probability

(also as a function of the number of observations) contain this

quantity with high probability and, unlike Esty’s intervals, have a

constant length in logarithmic scale. The intervals on the plots on

the right side are tighter than those on the left because of the

decrease of the parameter f from 2:5 to 1:5. In each case, the

Table 4. Optimal selection of parameter r in terms of
parameter f .

f r c1 c2

80 2 0.0598276655 0.355361510

48 2 0.1013728884 0.355358676

40 2 0.1231379857 0.355320458

24 2 0.226833483 0.346045204

20 3 0.320984257 0.817610455

12 3 0.590243030 0.787721610

10 4 0.806026244 1.360288674

6 6 1.822307383 2.58658608

5 7 2.48303930 3.22806682

3 14 7.17185045 8.27008349

2.5 19 11.26109001 11.96814857

1.5 94 75.9077267 76.5492088

1.25 309 275.661191 275.949782

Constants associated with the controlled upper- to lower-bound ratio
prediction intervals for (1{pI ), when a~5%; in particular, for each f and r,
½c1=Tr,f

:c1=Tr� and ½c2=Tr,f
:c2=Tr� contain (1{pI ) with a 95% probability. For

each f , the smallest value of r for which the equation:

ðcf

c

xr{1

(r{1)!
e{xdx~0:95, c§0;

admits a solution, is reported. Numerical values where determined using Maple
13.02.
doi:10.1371/journal.pone.0021105.t004

Figure 4. Rank curves associated with the human-gut, human-hand and exponential urn. In a rank curve, the relative abundance of a
species is plotted against its sorted rank amongst all species, allowing for a quick overview of the evenness of a community. On the left, rank curves
associated with the human-gut (blue) and -hand data (green) show a relatively small number of species with an abundance greater than 1%, and a
long tail of relatively rare species. The right rank curve of the exponential urn (red) simulates an extreme environment, where relatively excessive
sampling is unlikely to exhaust the pool of rare species.
doi:10.1371/journal.pone.0021105.g004
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parameter r was selected according to the guidelines in Table 4.

We note that sequential predictions based on the Embedding

Algorithm in figures 1 and 2 were produced until the algorithm

yielded inconclusive predictions. For this reason, our predictions

ended before exhausting each sample.

In the human-hand dataset, 163 species were observed in a

sample of size 5034. To simulate draws with replacement from this

environment, we produced a random permutation of the data (see

Materials and Methods section). Using the Embedding algorithm

with parameters (r,f )~(50,2), and according to our point

predictor, 133 of the species observed in the sample represent

*98:3% of that hand environment; in particular, the remaining

*1:7% is composed by at least 30 species. Furthermore,

according to our upper-bound prediction interval, and with at

least a 95% confidence, the species not represented in the sample

account for less than 2:2% of that environment.

To test the above predictions, we simulated the rare biosphere

as follows. We hypothesized that our point prediction of the

conditional uncovered probability could be offset by up to one

order of magnitude. We also hypothesized that the number of

unseen species in the sample had an exponential relative

abundance rank curve, composed either by 10, 100 or 1000
species. This leads to nine different urns in which to test our

methods. These urns are devised such that they gradually change

from the almost unchanged urn in the bottom left corner to the

urn in the upper right, which is dominated by rare species (see

Fig. 5 for the associated rank curves). As seen on the plots in Fig. 6,

the Embedding algorithm yields very accurate predictions in each

of these nine scenarios, for all the sample sizes considered.

As seen in Fig. 7, our predictions are also in excellent agreement

with the human-gut dataset when we simulate the rare biosphere.

As expected, the conditional uncovered probability almost always

lies between the predicted bounds. We also note that the

predictions based on the Embedding algorithm are accurate even

for a small number of observations. This suggests that our

algorithm can be applied to deeply as well as shallowly sampled

environments.

Materials and Methods

Heuristic behind the Embedding algorithm
The number of times a rare color occurs in a sample from an urn

is approximately Poisson distributed. In the non-parametric setting,

a direct use of this approximation is tricky because ‘‘rare’’ is relative

to the sample size and the unknown urn composition. The

embedding into a HPP is a way to accommodate for the Poisson

approximation heuristic, without making additional assumptions on

the urn’s composition. To fix ideas, imagine that no ball in the urn is

colored black. Make up a second urn with a single ball colored

black. We refer to this as the ‘‘black-urn’’. Now sample (with

replacement) balls according to the following scheme: draw a ball

from the original- versus black-urn with probability e and (1{e),
respectively, where ew0 is a fixed but small parameter. Under this

sampling scheme, even the most abundant colors in the original-urn

are rare. In particular, the smaller e is, the closer is the distribution of

the number of times a particular set of colors (excluding black) is

observed to a Poisson distribution. This approach is not very

practical, however, because the number of samples to observe a

given number of balls from the original urn can be astronomically

large when e is very small. To overpass this issue imagine drawing a

ball every e-seconds. Draws from the original urn will then be apart

eTe seconds, where Te has a Geometric distribution with mean 1=e.

As a result: lime?0z ½eTewt�~exp({t), for tw0. Thus, as e gets

smaller, the time-separations between consecutive samples from the

Figure 5. Rank curves associated with the rare biosphere simulation in the human-gut and -hand urn. Rank curves associated with Fig. 6
(green) and Fig. 7 (blue).
doi:10.1371/journal.pone.0021105.g005
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original urn resemble independent Exponential random variables

with mean one. The black-urn can therefore be removed from the

heuristic altogether by embedding samples from the original urn

into a HPP with intensity one over the interval ½0,z?).

Simulating draws with replacement
To simulate draws with replacement using data already collected

from an environment, produce a random permutation of the data.

This can be accomplished with low-memory complexity using the

discrete inverse transform method to simulate draws–without

replacement–from a finite population [31].

Constants associated with optimal prediction intervals
To numerically approximate a pair of constants 0vavbv?

such that
Ð b

a
xke{x=k!dx~c and ake{a~bke{b, where the

integer k§1 and the number 0vcv1 are given constants,

introduce the auxiliary variable t~b=a, and note that the later

condition is fulfilled only when a~k:ln(t)=(t{1) and b~t:a. Due

to Newton’s method, the sequence (tn)n§0 defined recursively as

follows converges to the unique t that satisfies the integrability

condition, provided that t0 is chosen sufficiently close to t:

an~
k:ln(tn)

tn{1
;

bn~tn
:an;

tnz1~tn 1{
(k{1)!

ak
n
:e{an

:
ðbn

an

xk

k!
e{x dx{c

� �� �
:

Proof of Inequality (3)
First notice that

jvn,1{vn,rjƒ
N(1, nz1)

nz1
{

N(1, nzr)

nzr

����
����

z
Xr

k~2

r{1

k{1

 !

nzr

k

 ! :N(k, nzr):

ð13Þ

To bound the first term on the right-hand side above, notice

that jN(1,nz1){N(1,nzr)jƒ(r{1). As a result, since

N(1,nzr)ƒ(nzr), we obtain that:

N(1,nz1)

nz1
{

N(1,nzr)

nzr

����
����

~
N(1,nz1){N(1,nzr)

nz1
zN(1,nzr)

1

nz1
{

1

nzr

� �����
����,

ƒ

r{1

n{1
z

N(1,nzr)

nzr
: r{1

nz1
ƒ

2(r{1)

nz1
:

ð14Þ

On the other hand, to bound the second term on the right-hand

side of equation (13), define the quantity N~
Pr

k~2 k:N(k,nzr)

and notice that Nƒ

Pnzr
k~1 k:N(k,nzr)ƒ(nzr). Using that a

Figure 6. Predictions in the human-hand urn when simulating the rare biosphere. Prediction of the conditional uncovered probability
(black) in nine urns associated with a human-hand urn. Point predictions produced by the Embedding algorithm (blue), point predictions produced
by the algorithm each time a new species was discovered (red), 95% upper-bound interval (orange), and 95% conservative-upper interval (green). The
algorithm used the parameters (r,f )~(50,2). The different urns were devised as follows. For each i~0:17,0:017,0:0017 (indexing rows) and
j~10,100,1000 (indexing columns), a mixture of two urns was considered: an urn with the same distribution as the microbes found in a sample from
a human-hand and weighted by the factor (1{i), and an urn consisting of j colors (disjoint from the hand urn), with an exponentially decaying rank
curve and weighted by the factor i. See Fig. 5 for the rank curve associated with each urn.
doi:10.1371/journal.pone.0021105.g006
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weighted average is at most the largest of the terms averaged, we

obtain that:

Xr

k~2

r{1

k{1

 !

nzr

k

 ! :N(k,nzr)

~
N

nzr
:
Xr

k~2

(nzr)
r{1

k{1

 !

k
nzr

k

 ! : k
:N(k,nzr)

N
,

ƒ max
2ƒkƒr

(nzr)
r{1

k{1

 !

k
nzr

k

 ! ,

~ max
2ƒkƒr

P
k{1

i~1

r{kzi

r{kzizn
ƒ

r{1

r{1zn
,

ð15Þ

where, for the last inequality, we have used that for each k, the

associated product is less or equal to the factor associated with the

index i~(k{1). Equation (3) is now a direct consequence of

equations (13), (14) and (15).

Proof of Theorem 1
In what follows, f {1 denotes the inverse function of f .

Define M to be the set of decreasing partitions of n i.e. vectors

of the form (i1, . . . ,ik), with k§1 and i1§ � � �§ik§1 integers,

such that i1z . . . zik~n. To each possible sample (x1, . . . ,xn),
let g(x1, . . . ,xn) be the decreasing partition of n associated with the

observed ranks in the sample.

Define pI~
P

i[I pi, for each set I of colors. Part (i) in the

theorem is equivalent to the existence of a function

h :M?½{?,?� such that

½h(g(X1, . . . ,Xn))j(X1, . . . ,Xn)�~f (pfX1,...,Xng), ð16Þ

with probability one. This is because, in the non-parametric

setting, the different colors in the urn carry no intrinsic meaning

apart from being different. If there is a certain function h which

satisfies condition (16) then f {1(h((n)))~pi, for each color i such

that piw0. In particular, the set fj§1 such that pjw0g must be

finite. Furthermore, if this set has cardinality l then pj~1=l, for

each color j in the set; in particular, f {1(h((n)))~1=l. Condition

(ii) is therefore necessary for condition (i). Conversely, if condition

(ii) is satisfied and the urn is composed by l colors occurring in

Figure 7. Predictions in the human-gut urn when simulating the rare biosphere. In a sample of size 12,903 from a human-gut, 123 species
were discovered. Based on our methods, we estimate that 97 of these species represent *99:4% of that gut environment; hence, the remaining
*0:6% is composed by at least 26 species. To test our predictions of the conditional uncovered probability (black), we simulated the rare biosphere
by adding additional species and hypothesized that our point prediction could be offset by up to one order of magnitude: point predictions
produced by the Embedding Algorithm (blue), point predictions produced by the algorithm each time a new species was discovered (red), 95%
upper-bound (orange), and 95% conservative-upper interval (green). The predictions used the parameters (r,f )~(50,2). The different urns were
devised as follows. For each i~0:06,0:006,0:0006 (indexing rows) and j~10,100,1000 (indexing columns), a mixture of two urns was considered: an
urn with the same distribution as the microbes found in the gut dataset, and weighted by the factor (1{i), and an urn consisting of j colors (disjoint
from the gut urn), with an exponentially decaying rank curve and weighted by the factor i. See Fig. 5 for the rank curve associated with each urn.
doi:10.1371/journal.pone.0021105.g007
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equal proportions then the function h :M?½{?,?� defined as

h(i1, . . . ,ik)~f (k=l) satisfies condition (16).

Proof of Theorem 2
Conditioned on the set I , and the random index i used in Step 3

of the Embedding algorithm, Tr has a Gamma distribution with

shape parameter i and scale parameter 1. However, because i has

a Negative Binomial distribution, conditioned on I alone, Tr has

Gamma distribution with shape parameter r and scale parameter

1=(1{pI ). In particular, (1{pI ):Tr has probability density

function xr{1e{x=(r{1)!, for x§0. From this, parts (i) and (iii)

in the theorem are immediate. To show part (ii), notice first that

Lr~(cr{ln(Tr)) is conditionally unbiased for ln(1{pI ), where

cr~

ð?
0

ln(x):
xr{1e{x

(r{1)!
dx~

1

r{1
zcr{1:

The second identity above is due to an integration by parts

argument and only holds for r§2. However, since c1~{c, we

obtain that cr~{cz
Pr{1

i~1 1=i, for r§1. This shows that Lr is

conditionally unbiased for ln(1{pI ). To complete the proof of the

theorem, notice that Lr and ln((1{pI ):Tr) have the same

variance. In particular, (Lr)~dr{c2
r , where

dr~

ð?
0

(ln(x))2: x
r{1e{x

(r{1)!
dx~

2cr{1

r{1
zdr{1:

The last identity above holds only for r§2. Using that

d1~c2zp2=6, we conclude that dr~c2zp2=6z2
Pr{1

i~1 ci=i,

for r§1. As a result: (Lr)~p2=6{
Pr{1

i~1 1=i2; in particular,

since
P?

i~1 1=i2~p2=6, (Lr)~
P?

i~r 1=i2. The theorem is now

a consequence of the following inequalities:

1

r
~

ð?
r

1

x2
dxƒ (Lr)ƒ

ð?
r{1

1

x2
dx~

1

r{1
:

Proof of Equation (8)
Let z~za=2 and assume that 0vzv

ffiffiffiffiffiffiffiffiffiffi
r{1
p

. Observe that:

c~

ffiffiffiffiffiffi
2p
p

(r{1)r{1=2e1{r

(r{1)!
:
ðz

{z

e{x
ffiffiffiffiffiffiffi
r{1
p

ffiffiffiffiffiffi
2p
p 1z

xffiffiffiffiffiffiffiffiffiffi
r{1
p

� �r{1

dx:

The factor multiplying the previous integral is an increasing

function of r; in particular, due to Stirling’s formula, it is bounded

by 1 from above. Furthermore, from section 6.1.42 in [32], it

follows that

e
{1

12(r{1)ƒ

ffiffiffiffiffiffi
2p
p

(r{1)r{1=2e1{r

(r{1)!
ƒ1:

On the other hand, if one rewrites the integrand of the previous

integral in an exponential-logarithmic form and uses that

y{y2=2zcz,r=(r{1)ƒln(1zy)ƒy{y2=2zy3=3, for all y§

{z=
ffiffiffiffiffiffiffiffiffiffi
r{1
p

, where

cz,r~z:
ffiffiffiffiffiffiffiffiffiffi
r{1
p

z
z2

2
z(r{1):ln 1{

zffiffiffiffiffiffiffiffiffiffi
r{1
p

� �
,

one sees that

ecz,r{x2=2
ƒe{x

ffiffiffiffiffiffiffi
r{1
p

1z
xffiffiffiffiffiffiffiffiffiffi

r{1
p

� �r{1

ƒe
z3

3
ffiffiffiffiffiffiffi
r{1
p {x2=2

:

All together, these inequalities imply that

e
cz,r{

1
12(r{1)

ðz

{z

e{x2=2ffiffiffiffiffiffi
2p
p dxƒcƒe

z3

3
ffiffiffiffiffiffiffiffiffiffi
r{1
p

ðz

{z

e{x2=2ffiffiffiffiffiffi
2p
p dx,

from which the result follows.

Proof of Theorem 3
Due to the Central Limit Theorem, if c(r)~r{

ffiffi
r
p :za=4 and

b(r)~rz
ffiffi
r
p :za=4 then

lim
r??

ðb(r)

c(r)

xr{1e{x

(r{1)!
dx~1{

a

2
:

As a result, for all r sufficiently large, 0ƒb(r)ƒf :c(r), and the

integral on the left-hand side above is greater than or equal to

(1{a). Fix any such r. Since the value of the associated integral

may be decreased continuously by increasing the parameter c(r),
there is a(r) such that c(r)ƒa(r)ƒb(r) and

ðb(r)

a(r)

xr{1e{x

(r{1)!
dx~(1{a):

Define g(t)~
Ð f :t

t
xr{1e{x=(r{1)!dx, for t§0. Since g(0)~0

and, because b(r)ƒa(r):f , g(a(r))§(1{a), the continuity of g(:)
implies that there is 0ƒtƒa(r) such that g(t)~(1{a). Selecting

a~t and b~f :t shows the theorem.

Proof of Theorem 4
The proof is based on a coupling argument. First observe that

one can define on the same probability space random variables

M,N,E1,E2, . . . such that (1) M and N have Negative Binomial

distributions with parameters (r,1{pI ), but with M conditioned

to be less than or equal to k; (2) MƒN but M~N when Nƒk;

and (3) E1,E2, . . . are independent Exponentials with mean 1 and

independent of (M,N).

Let A be the event ‘‘r balls with colors outside I are observed in

the next k draws from the urn’’. Conditioned on I , we have that

c~ ½aƒ(1{pI ):TrƒbjA� and (1{a)~ ½aƒ(1{pI ):Trƒb�.
As a result:

c~
a

1{pI

ƒ

XM
i~1

Eiƒ
b

1{pI

" #
;

(1{a)~
a

1{pI

ƒ

XN

i~1

Eiƒ
b

1{pI

" #
:

Since
PM

i~1 Eiƒ
PN

i~1 Ei , and because M~N when Nƒk, we

obtain that

{ ½Nwk�ƒc{(1{a)ƒ
b

1{pI

v

XN

i~1

Ei

" #
:
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From this, the upper-bound in part (i) and both inequalities in part

(ii) follow after noticing that
PN

i~1 Ei has a Gamma distribution

with shape parameter r and scale parameter 1=(1{pI ). To show

the lower-bound in (i), we again notice that
PM

i~1 Eiƒ
PN

i~1 Ei.

In particular, if a~0 then

c{(1{a)~
XM
i~1

Eiƒ
b

1{pI

" #
{

XN

i~1

Eiƒ
b

1{pI

" #
§0:

Proof of Equations (10) and (11)
Consider random variables X and Y and a random vector Z, de-

fined on a same probability space. Assume that X is square-integrable

and conditionally unbiassed for Y given Z i.e. (X jZ)~Y .

Furthermore, assume that (Y )w0 hence (X )w0. Because Y is

also square-integrable and (X )~ (Y ), we obtain that

cov(X ,Y )~ ((X{ (Y )):(Y{ (Y ))),

~ ( (X{ (Y )jZ):(Y{ (Y ))),

~ ((Y{ (Y ))2)~ (Y ):

Hence r(X ,Y )~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Y )= (X )
p

.

Equation (10) follows by considering X~(r{1)=Tr, Y~Un

and Z~(X1, . . . ,Xn). Similarly, equation (11) follows by consid-

ering X~{ln(Tr){cz
Pr{1

i~1

1

i
and Y~ln(Un).

Proof of Inequality (12)
First note that

r(Un,vn,r)~
cov(Un,vn,r{vn,1)zcov(Un,vn,1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Un): (vn,r)
p ,

ƒ

(fvn,r{vn,1g2
)=2z (Un)=2zcov(Un,vn,1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Un): (vn,1)
p :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(vn,1)

(vn,r)

s
:

ð17Þ

Now observe that (fvn,r{vn,1g2)~O(r2=n2) because of in-

equality (13), which implies that n: (fvn,r{vn,1g2
)~o(1)

because r%
ffiffiffi
n
p

. On the other hand, because Robbins’ and

Starr’s estimators are both unbiased for un, we have

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(vn,r)
p

{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(vn,1)
p

jƒ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(fvn,r{vn,1g2
)

q
. Furthermore, ac-

cording to the proof of Theorem 2 in [21], (vn,1)~H(n{1),
therefore

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(vn,r)

(vn,1)

s
{1

�����
�����~O

rffiffiffi
n
p
� �

:

As a result, limn??
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(vn,1)= (vn,r)
p

~1. Inequality (12) is now a

direct consequence of inequality (17), and the next identities [21]:

lim
n??

n: (Un)~l:e{l{l:(1zl):e{2l;

lim
n??

n:cov(Un,vn,1)~{l2:e{2l;

lim
n??

n: (vn,1)~e{l{(1{lzl2):e{2l:
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