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Abstract

Recent work suggests that global variation in toolkit structure among hunter-gatherers is driven by risk of resource failure
such that as risk of resource failure increases, toolkits become more diverse and complex. Here we report a study in which
we investigated whether the toolkits of small-scale farmers and herders are influenced by risk of resource failure in the same
way. In the study, we applied simple linear and multiple regression analysis to data from 45 small-scale food-producing
groups to test the risk hypothesis. Our results were not consistent with the hypothesis; none of the risk variables we
examined had a significant impact on toolkit diversity or on toolkit complexity. It appears, therefore, that the drivers of
toolkit structure differ between hunter-gatherers and small-scale food-producers.
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Introduction

Investigating the causes of toolkit variation is an important task

for researchers interested in the evolutionary history and adaptive

significance of human behavior. Variation in the number and

intricacy of food-getting tools is one of the more obvious aspects of

the ethnographic record [1,2], and artifacts linked to the

acquisition and processing of food dominate the archaeological

record until the Holocene [3]. Thus, to understand both the

ethnographic record and the archaeological record, we have to

identify the causes of variation in subsistence technology.

Here we report a study of the possible causes of toolkit variation

among small-scale farming and herding groups. Currently, little is

known about this topic. A number of studies have examined the

causes of cross-cultural variation in the number and intricacy of

food-getting tools used by hunter-gatherers [1,2,4–12], but the

causes of variation among the toolkits of farmers and herders have

not been examined in any detail. Farmers were included in two

previous toolkit-focused studies [2,13], but one of them did not test

any hypotheses regarding the causes of cross-cultural variation in

toolkit structure [2], and the only tools examined in the other

study were foraging implements [13]. Given that farmers and

herders have outnumbered hunter-gatherers for several millennia

and that food-production-related tools are therefore an important

part of the Holocene archaeological record, the paucity of work on

the causes of toolkit variation among farmers and herders is

problematic.

We analyzed toolkit structure using the method that has been

employed in most studies of hunter-gatherer toolkit variation

[1,2,4–11]. Introduced by Oswalt in the early 1970s [1,2], the

method focuses on tools employed directly in the acquisition of

food, which Oswalt termed subsistants. Oswalt divided subsistants

into four categories: instruments, weapons, tended facilities, and

untended facilities. Instruments are used to procure food that

cannot run away or threaten its pursuer, such as plants or sessile

animals. A digging stick is an example of an instrument. Weapons

are designed to kill or maim potential prey that can escape or may

harm its pursuer. Weapons include boomerangs, crossbows, and

harpoons. Facilities are structures that control the movement of

animals or protect them to a human’s advantage, such as a fish

weir or a livestock pen. Tended facilities require continuous

monitoring while in use (e.g., a fishhook), whereas untended

facilities are capable of functioning without a human present and

require only occasional monitoring (e.g., a deadfall trap). Oswalt

created a further distinction between simple and complex

subsistants. Simple subsistants do not change structurally during

use, whereas complex subsistants have multiple parts that change

position relative to one another during use.

Oswalt [1,2] devised three measures of toolkit structure. The

first is the total number of subsistants (STS), which is an indicator

of the size, or what Torrence [6] and Shott [7] call the diversity, of a

toolkit. The second is the total number of technounits (TTS).

Formally, a technounit is an ‘‘integrated, physically distinct, and

unique structural configuration that contributes to the form of a

finished artifact’’ ([2], p. 38). More simply, technounits are the

different kinds of parts of a tool. The total number of technounits

included in a toolkit is a measure of its complexity [2,6,7]. Oswalt’s

third measure of toolkit structure is the average number of

technounits per subsistant (AVE). Again, this is a measure of

toolkit complexity [2,6,7].

We focused on testing the hypothesis that risk of resource failure

drives toolkit diversity and complexity. The risk hypothesis has its
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roots in Torrence’s ‘‘Time budgeting and hunter-gatherer

technology’’ [4]. In this paper, Torrence hypothesized that as

time stress increases, hunter-gatherers produce more specialized

tools because they tend to be more effective. Because specialized

tools generally have more parts than generalized tools, the

production of more specialized tools increases not only toolkit

diversity but also toolkit complexity. Subsequently, Torrence [5,6]

argued that time stress was likely only a proximate cause of toolkit

variation and suggested that its ultimate causes are the timing and

severity of risk of resource failure. Torrence argued further that the

use of more specialized and therefore more elaborate tools reduces

risk of resource failure. Thus, groups that experience high risk of

resource failure will produce toolkits that are diverse and complex,

whereas those that experience lower risk of resource failure will

create simpler toolkits.

Several factors in addition to time stress and risk of resource

failure have been hypothesized to influence the diversity and

complexity of hunter-gatherer toolkits [1,2,4–12]. These include

degree of reliance on mobile versus immobile resources [2],

residential group mobility [7,11], degree of reliance on terrestrial

Table 1. Groups in sample.

Group Country Group Country Group Country

Akamba Kenya Lur Iran Sema Naga India

Aymara Peru Malay Malaysia Seminole USA

Azande Sudan Malekula Vanuatu Sinhalese Sri Lanka

Garo India Mapuche Chile Somali Somalia

Gikuyu Kenya Mataco Bolivia Tanala Madagascar

Guarani Paraguay Mam Maya Guatemala Tarahumara Mexico

Gwembe Valley Tonga Zambia Monguor China Tikopia Solomon Islands

Haddad Chad Ojibwa Canada Trukese Micronesia

Hopi USA Okinawa Japan Tuareg Algeria

Huron Canada Ovimbundu Angola Vietnamese Vietnam

Jivaro Ecuador Pawnee USA Walapai USA

Kapauku Indonesia Pima USA Yanomami Venezuela

Kogi Colombia Pukapuka Cook Islands Yuma USA

Korea South Korea Quichua Ecuador Zapotec Mexico

Lepcha India Rwanda Rwanda Zuni USA

Present-day country names are provided as a guide to the location of the groups.
doi:10.1371/journal.pone.0040975.t001

Figure 1. Distribution of the sample used in the study.
doi:10.1371/journal.pone.0040975.g001

Risk and Farmers’ Tools
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versus aquatic game [8], and population size [9,12]. All of these

hypotheses have received some empirical support [2,7,8,11,12].

However, when their explanatory power has been compared risk

of resource failure has emerged as the major determinant of

variation in hunter-gatherer toolkit diversity and complexity at the

global scale [9,11]. As such, testing the risk hypothesis is an

obvious starting point for understanding the causes of toolkit

variation among small-scale farmers and herders.

Extending the risk hypothesis to farmers and herders requires

two assumptions to be made. One is that the principle that task-

specific tools are more effective than multipurpose tools holds for

food-producing tools as well as for tools used for hunting and

gathering. The other is that farmers and herders experience

similar levels of risk of resource failure as hunters and gatherers.

Neither of these assumptions is particularly problematic. There is

little experimental data on the relative effectiveness of task-specific

versus multipurpose craft-produced tools, but there seems to be no

reason why the principle should apply to hunting and gathering

tools but not to food-producing tools. With regard to the risk

experienced by food-producers, traditionally the transition to

Table 2. Descriptive statistics and transformations.

Variable Mean Std dev D p Transformation D p

STS 44.93 18.18 .103 ..150 no – –

TTS 155.24 100.15 .183 ,.010* yes, square root .120 .098

AVE 3.29 .76 .135 .040* yes, square root .112 ..150

HUNT 17.60 13.38 .110 ..150 no – –

FARM 23.09 14.80 .096 ..150 no – –

STORIRG 4.24 5.79 .169 ,.010* yes, square root .088 ..150

LAT 20.25 13.54 .106 ..150 no – –

ELEV 853.40 857.08 .139 .036* yes, square root .069 ..150

CPB 18.07 9.70 .102 ..150 no – –

RAINAVG 97.68 87.35 .144 .028* yes, Box-Coxa .068 ..150

ET 16.84 3.39 .208 ,.010* yes, Box-Coxb .096 ..150

The sample mean and standard deviation for each variable are presented. Kolmogorov-Smirnov normality tests were performed on each variable and the test statistic
(D) and p-value reported. If the results of the Kolmogorov-Smirnov normality tests indicated a significant departure from normality, a transformation of the original data
was performed and the results presented.

See text for an explanation of the variables.
*Indicates that the original data departed significantly from the expectations of a normal distribution based on the Kolmogorov-Smirnov normality test.
aA Box-Cox transformation with a l of.337 (lower estimate.281, upper estimate.393) was used.
bA Box-Cox transformation with a l of –2.022 (lower estimate –2.079, upper estimate –1.966) was used.
doi:10.1371/journal.pone.0040975.t002

Table 3. Simple linear regression results for STS.

Variable r2 Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT .002 .057 .205 –.355 .470 .782

ELEV .003 .070 .188 –.310 .449 .713

CPB .003 –.097 .285 –.673 .478 .735

RAINAVG .002 .436 1.694 –2.98 3.851 .798

ET .002 –713.153 2259.596 –5270.062 3843.756 .754

doi:10.1371/journal.pone.0040975.t003

Table 4. Multiple regression results for STS (overall model r2 = .044; ANOVA results: df = 5,39, F = .355, p = .876).

Variable Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT .354 .324 –.300 1.009 .280

ELEV .259 .247 –.241 .758 .301

CPB –.170 .322 –.821 .481 .601

RAINAVG .863 1.96 –3.098 4.824 .662

ET –3939.658 3921.616 –11871.876 3992.560 .321

doi:10.1371/journal.pone.0040975.t004

Risk and Farmers’ Tools
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farming was conceptualized in terms of reducing food-related

uncertainty and shortfalls [14,15]. The ability of farmers to have

some control over what and how much is planted, as well as when

it is harvested, was argued to have reduced the rate of failure to

meet dietary needs compared to hunting and gathering. However,

in recent years it has become clear that farming is not less risky

than hunting and gathering. For example, having reviewed human

responses to environmental extremes and uncertainty, Low [16]

concluded that hunter-gatherers are actually at lower risk of

starvation and pathogen infection than are farmers. Similarly,

Dirks [17] compared farmers and hunter-gatherers in terms of risk

of resource failure and found that the levels of risk they experience

are similar. Benyshek and Watson [18] carried out a comparable

analysis to the one conducted by Dirks and reached similar

conclusions. More recently still, Bowles [19] estimated the caloric

costs and benefits of Neolithic cereal cultivation compared to

hunting and gathering. His analyses indicated that early farming

did not have a clear caloric benefit over hunting and gathering.

Accordingly, there is reason to believe that small-scale food-

producers experience similar levels of risk of resource failure to

hunter-gatherers.

The present study proceeded in a manner similar to those that

have focused on the causes of toolkit variation among hunter-

gatherers [4–9,11]. We collected toolkit data for a global sample of

ethnographically-documented small-scale farming and herding

groups, and then collected data for several environmental variables

that there is reason to believe influence the probability of resource

failure. Subsequently, we regressed the toolkit variables on the risk

variables and compared the resulting relationships with the main

prediction of the risk hypothesis–that as risk of resource failure

increases, toolkit diversity and complexity should increase.

Materials and Methods

The sample consisted of 45 groups, 12 from North America, 8

from South America, 10 from Asia, 10 from Africa, and 5 from

Oceania (Table 1). The locations of the groups are shown in

Figure 1. At the time the ethnographic data used in the study were

collected, all the groups produced food primarily for subsistence

rather than commercial sale and used craft-made rather than

factory-produced tools.

We collected data on all foraging and food production-related

tools used by the groups. This includes tools employed in

irrigation, tools used to ward off birds and mammals from

agricultural fields, tools used to process food for consumption, and

tools used to prepare food for storage. For each group we

Table 5. Simple linear regression results for HUNT.

Variable r2 Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT .001 –.023 .151 –.327 .281 .878

ELEV .019 –.124 .137 –.401 .153 .372

CPB .082 –.395 .201 –.801 .012 .057

RAINAVG .004 .505 1.245 –2.005 3.015 .687

ET .007 –889.560 1658.809 –4234.868 2455.748 .595

doi:10.1371/journal.pone.0040975.t005

Table 6. Simple linear regression results for FARM.

Variable r2 Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT ,.000 .011 .167 –.325 .347 .946

ELEV .025 .158 .151 –.147 .463 .302

CPB .059 .372 .226 –.083 .827 .107

RAINAVG .003 .503 1.377 –2.274 3.280 .717

ET ,.000 –164.043 1840.727 –3876.223 3548.137 .929

doi:10.1371/journal.pone.0040975.t006

Table 7. Simple linear regression results for STORIRG.

Variable r2 Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT .008 .007 .013 –.018 .033 .564

ELEV .030 .014 .012 –.010 .037 .252

CPB .031 –.021 .018 –.057 .015 .246

RAINAVG .024 –.109 .106 –.322 .104 .309

ET .005 64.285 142.496 –223.085 351.656 .654

doi:10.1371/journal.pone.0040975.t007

Risk and Farmers’ Tools
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calculated the total number of subsistants (STS), the total number

of technounits (TTS), and the average number of technounits per

tool (AVE). We also divided STS into the total number of tools

used to obtain wild resources (HUNT), the total number of general

farming tools (FARM), and the total number of tools used in food

storage and irrigation (STORIRG). The main source of toolkit

data was the digital version of the Human Relations Area Files

(eHRAF), which is a Web-accessible, key word-searchable

collection of ethnographies. Additional data were obtained from

searches of hardcopy ethnographic sources not included in the

eHRAF.

Next, we collected values for five risk variables: latitude (LAT),

elevation (ELEV), average monthly rainfall (RAINAVG), effective

temperature (ET), and the number of insect crop-pest species

present in the groups’ countries, which we call ‘‘crop pest burden’’

(CPB). Other variables obviously could have been measured–for

example, evapotranspiration rate or soil quality–but we considered

these five to be an adequate ensemble of variables affecting

probability of resource failure. Both the kinds of plants that can be

grown and the yields of those plants are affected by latitude and

elevation [20]. Rainfall, effective temperature, and the number of

insect pests also affect farming yields [21–23]. Importantly, the

variables include two of the risk variables that have been found to

influence the diversity and complexity of hunter-gatherer toolkits

(LAT and ET) [5,6,9], making it possible to directly compare our

results with the previous work on the drivers of toolkit structure

variation in hunter-gatherers.

Latitude and elevation data were collected from the same

sources as the toolkit data. The values for average rainfall were

obtained from several open-access sources of climatic information

[24–28]. As far as possible, we used values for average rainfall

from the same historical period as the toolkit data. Developed by

Bailey [29], ET is a measure of relative warmth. It is calculated

using the following equation:

ET~(½18WM�{½10CM�)=(WM{CMz8)

where WM is the mean temperature of the warmest month of the

year, and CM is the mean temperature of the coldest month of the

year. The first constant in the equation (18) is the minimum

temperature for tropical climates for the coldest month of the year.

The second (10) is the temperature limit of polar climates for the

warmest month of the year. The third (8) is the minimum mean

temperature at the beginning and end of the growing season. All

Table 8. Multiple regression results for HUNT (overall model r2 = .109; ANOVA results: df = 5,39, F = .958, p = .455).

Variable Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT .034 .230 –.430 .499 .882

ELEV –.073 .175 –.427 .281 .679

CPB –.451 .229 –.913 .011 .056

RAINAVG 1.200 1.390 –1.612 4.012 .393

ET 460.897 2784.168 –5170.614 6092.409 .869

doi:10.1371/journal.pone.0040975.t008

Table 9. Multiple regression results for FARM (overall model r2 = .103; ANOVA results: df = 5,39, F = .893, p = .495).

Variable Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT .177 .255 –.338 .693 .491

ELEV .250 .195 –.144 .643 .207

CPB .366 .254 –.147 .880 .157

RAINAVG –.038 1.543 –3.159 3.084 .981

ET –3318.802 3090.846 –9570.627 2933.024 .290

doi:10.1371/journal.pone.0040975.t009

Table 10. Multiple regression results for STORIRG (overall model r2 = .105; ANOVA results: df = 5,39, F = .914, p = .482).

Variable Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT .022 .020 –.018 .062 .270

ELEV .023 .015 –.008 .053 .143

CPB –.025 .020 –.064 .015 .216

RAINAVG –.036 .120 –.278 .206 .765

ET –181.967 239.534 –666.470 302.536 .452

doi:10.1371/journal.pone.0040975.t010

Risk and Farmers’ Tools
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the temperatures included in the equation for ET are in degrees

Celsius. Values for the temperatures incorporated into effective

temperature were obtained from the same sources as the values for

average rainfall. Again, as far as possible, we used values for WM

and CM from the same historical period as the toolkit data. The

source of data for CPB was the Centre for Agricultural Bioscience

International’s crop pest database [30], which contains country-

level distribution data for approximately 900 insect crop-pest

species. We selected a random sample of 100 species and counted

the number of those species present in the countries occupied by

the groups in the sample.

Subsequently, we ran both simple linear regression and multiple

regression analyses to test the prediction that the diversity and

complexity of toolkits used by small-scale farming and herding

groups are positively related to risk proxies. These analyses used

the toolkit variables (STS, TTS, and AVE) and three subsets of the

number of subsistants (HUNT, FARM, and STORIRG) as the

dependent variables, and the five risk variables (LAT, ELEV,

RAINAVG, ET, CPB) as the predictors or independent variables.

In the multiple regression analyses we used the enter model with

all the risk proxies included as independent variables. LAT,

ELEV, and CPB, were predicted to have a significant, positive

impact on the toolkit variables, while RAINAVG and ET were

predicted to have a significant, negative influence on the toolkit

variables.

Prior to running the regression analyses we assessed the

normality of the variables with the Kolmogorov-Smirnov test

(Table 2). Six of the 11 variables departed significantly from the

expectations of a normal distribution and therefore were

transformed. We took the square root of four of them (TTS,

AVE, STORIRG, ELEV) and used the Box-Cox transformation

for the other two (RAINAVG, ET). The Box-Cox procedure

estimates the best transformation to normality within the family of

power transformations [31]. After transformation, the six variables

had distributions that conformed to the expectations of a normal

distribution according to the Kolmogorov-Smirnov test.

In the simple linear regression analyses we used an alpha

correction method to reduce the possibility of committing type-II

errors. We used Benjamini and Yekutieli’s [32] method of

significance-level correction for multiple comparison tests. Narum

[33] has shown that this method optimizes the reduction of both

type-I and type-II error rates.

We conducted the Kolmogorov-Smirnov tests and Box-Cox

transformations in Minitab 11. All regression analyses were run in

PASW (SPSS) 18.

Results

The prediction that the diversity of tools used by small-scale

farming and herding groups should be positively related to risk

proxies was not supported. The five simple linear regressions of the

number of subsistants (STS) on the risk proxies (LAT, ELEV,

CPB, RAINAVG, and ET) did not return any significant

relationships (Table 3). Similarly, the multiple regression in which

STS was the dependent variable and the risk proxies were the

predictors indicated the overall model was not significant

(r2 = .044; ANOVA results: df = 5,39, F = .355, p = .876) and that

none of the predictors had a significant impact on STS (Table 4).

The prediction that the diversity of tools used by small-scale

farming and herding groups should be positively related to risk

proxies was also not supported when the subsistants used for

hunting (HUNT), general farming (FARM), and storage and

irrigation (STORIRG) were analyzed separately. None of the

simple linear regressions in which HUNT, FARM, and STOR-

IRG were regressed on the risk proxies identified a significant

relationship (Tables 5–7). Similarly, the three multiple regression

analyses in which HUNT, FARM, and STORIRG were the

dependent variables and the risk proxies were the predictors

indicated the overall model was not significant and that none of

the predictors was significantly related to the three subsets of

subsistants (Tables 8–10).

Our analyses also did not support the prediction that the

complexity of tools used by small-scale farming and herding

Table 11. Simple linear regression results for TTS.

Variable r2 Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT .001 .007 .038 –.070 .085 .847

ELEV .002 .011 .035 –.060 .082 .762

CPB .004 .023 .054 –.085 .131 .674

RAINAVG .012 .226 .316 –.412 .864 .478

ET .005 –194.744 423.560 –1048.932 659.444 .648

doi:10.1371/journal.pone.0040975.t011

Table 12. Simple linear regression results for AVE.

Variable r2 Slope (b1) Standard error Lower 95%CI for b1 Upper 95% CI for b1 p

LAT ,.000 ,.000 .002 –.005 .004 .900

ELEV .001 ,.000 .002 –.004 .005 .834

CPB .093 .006 .003 ,.000 .012 .042*

RAINAVG .031 .022 .018 –.015 .059 .246

ET .009 –15.409 24.749 –65.320 34.502 .537

*Significant at a= .05, but not significant when corrected for multiple unplanned comparisons using the Benjamini-Yekutieli method (a= 0.022).
doi:10.1371/journal.pone.0040975.t012

Risk and Farmers’ Tools
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groups should be positively related to risk proxies. The simple

linear regressions in which the number of technounits (TTS) was

regressed on the risk proxies did not identify any significant

relationships (Table 11), nor did the simple linear regressions in

which the average number of technounits per subsistant (AVE) was

regressed on the risk proxies (Table 12). Results of the multiple

regression analyses were consistent with those of the simple linear

regression analyses. The multiple regression analysis in which TTS

was the dependent variable and the risk proxies were the

predictors indicated the overall model was not significant

(r2 = .050; ANOVA results: df = 5,39, F = .414, p = .836) and that

none of the predictors was significantly related to TTS (Table 13).

Similarly, the multiple regression in which AVE was the

dependent variable and the risk proxies were the predictors

indicated the overall model was not significant (overall model

r2 = .133; ANOVA results: df = 5,39, F = 1.194, p = .330) and that

none of the predictors was significantly related to AVE (Table 14).

Discussion

The analyses reported here indicate that risk of resource failure

does not have a significant impact on variation in either toolkit

diversity or toolkit complexity among non-industrial farming and

herding groups. They also indicate that risk of resource failure

does not have a significant impact on variation in the diversity of

hunting tools, general farming tools, or storage- and irrigation-

related tools among such groups. These findings run counter to the

risk of resource failure hypothesis.

The results of our analyses are strikingly different from the

results of the global-scale analyses of variation in toolkit structure

among hunter-gatherers that have been published to date. To

reiterate, the latter collectively suggest that risk of resource failure

is a major, if not the major, driver of toolkit diversity and

complexity among hunter-gatherers [9,11]. What accounts for this

difference? Why should risk of resource failure seemingly drive

variation in the toolkits of hunter-gatherers but not variation in the

toolkits of food-producers?

One possibility is that the discrepancy is a consequence of the

way in which we implemented our study. We think this is unlikely,

however. The methods we used are the same ones used in the

relevant hunter-gatherer studies. Similarly, there is sufficient

overlap between the toolkit and risk variables we used and the

ones employed in the hunter-gatherer studies that variable choice

can be discounted as a potential explanation for the difference

between our results and those of the hunter-gatherer studies. Most

important, we included two risk proxies–latitude and effective

temperature–that have been found to have a significant impact on

hunter-gatherer toolkit diversity and complexity. The only other

potential implementation-related cause of the discrepancy is the

composition of our sample. If our sample were substantially

smaller or more biased than the sample used in the hunter-

gatherer studies, it might explain why ours does not support the

risk hypothesis, whereas the hunter-gatherer studies support it. But

such is not the case. The sample used in the hunter-gatherer

studies comprises 20 groups from 4 regions (Africa, Australasia,

Asia, and North America) [9,11], whereas our sample consists of

45 groups from 5 regions (North America, South America, Asia,

Africa, and Oceania). Thus, our sample is not only twice as large

as the sample employed in the hunter-gatherer studies but also

more geographically representative. It seems unlikely, therefore,

that methodological differences account for the fact that our study

did not support the risk hypothesis.

So far, we have identified two other potential explanations for

the discrepancy between the results of our study and the results of

the analyses of the drivers of global variation in hunter-gatherer

toolkits. One is that food producers rely more heavily on non-

technological practices to buffer themselves from risk of resource

failure than hunter-gatherers do and that this affects the

relationship between risk and toolkit structure. Among the non-

technological practices we have in mind are spatial diversification,

mixed farming, crop rotation, and intercropping. Spatial diversi-

fication–situating fields in several different locations instead of

concentrating them in one area–allows a farmer to take advantage

of microclimatic variations, thus reducing the risk of a total crop

failure. Mixed farming, or using a combination of both cultigens

Table 13. Multiple regression results for TTS (overall model r2 = .050; ANOVA results: df = 5,39, F = .414, p = .836).

Variable Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT .064 .061 –.059 .186 .300

ELEV .046 .046 –.047 .140 .322

CPB .010 .060 –.112 .132 .871

RAINAVG .220 .366 –.521 .960 .552

ET –813.635 733.412 –2297.101 669.831 .274

doi:10.1371/journal.pone.0040975.t013

Table 14. Multiple regression results for AVE (overall model r2 = .133; ANOVA results: df = 5,39, F = 1.194, p = .330).

Variable Slope (b1) Standard error Lower 95% CI for b1 Upper 95% CI for b1 p

LAT .002 .003 –.005 .009 .574

ELEV .002 .003 –.003 .007 .506

CPB .006 .003 –.001 .013 .070

RAINAVG .009 .020 –.033 .050 .676

ET –44.882 41.037 –127.886 38.122 .281

doi:10.1371/journal.pone.0040975.t014

Risk and Farmers’ Tools

PLoS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e40975



and domestic animals, is another way for farmers to diversify and

therefore reduce the likelihood of failing to meet their dietary

needs. Crop rotation is the practice of growing different crops in

the same field in different seasons, whereas intercropping is the

practice of growing multiple crops in the same field. Crop rotation

and intercropping have a number of outcomes that are beneficial

in terms of risk reduction. Most notably, they protect against soil

erosion, help maintain soil fertility, discourage crop pest infesta-

tion, and maximize land productivity [34].

Another potential explanation for the fact that the risk

hypothesis is supported by the hunter-gatherer studies but not

by ours is that farmers and herders experience higher levels of

intergroup raiding and warfare than hunter-gatherers do and that

this affects the relationship between toolkit structure and the

environmental variables we used as risk proxies. On this

hypothesis, intergroup raiding and warfare heighten the risk of

resource failure for food-producing groups because food is likely to

be stolen and economically active individuals are likely to be

injured or killed, thereby reducing the number of people available

to plant crops, build irrigation ditches, and so forth. The corollary

of this is that the type of general environmental variables we used

as risk proxies in our study can be expected to underestimate the level

of risk faced by groups that experience high levels of intergroup

raiding and warfare. This in turn means that the toolkit diversity

and complexity values for these groups will be higher than

expected given their latitude, effective temperature, and so on, and

that the strength of the relationship between the toolkit variables

and the environmental variables in the overall sample will be

reduced.

In conclusion, the results of the study reported here are

inconsistent with the hypothesis that risk of resource failure is the

major determinant of variation in toolkit diversity and complexity

in non-industrial societies. Thus there is a need to rethink the

hypothesis in question. Either the hypothesis needs to be

broadened to acknowledge that non-environmental factors such

as intergroup raiding and warfare can impact risk of resource

failure, or the hypothesis needs to be restricted to hunter-gatherer

groups.
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