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Abstract

Background: Autism is a developmental disorder characterized by decreased interest and engagement in social interactions
and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social
impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the
representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-
representations in ASD are relatively unexplored.

Methodology/Principal Findings: We used event-related fMRI to investigate brain responsiveness to images of the
subjects’ own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly
presented digital morphs between their own face and a gender-matched other face, and made ‘‘self/other’’ judgments.
Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater
percentage of the self face. However, while TD children showed activation of this system during both self- and other-
processing, children with ASD only recruited this system while viewing images containing mostly their own face.

Conclusions/Significance: This functional dissociation between the representation of self versus others points to a potential
neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and
suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults
possess and may use to understand others.
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Introduction

Autism spectrum disorder (ASD) is a complex developmental

condition in which fundamental social development and commu-

nication are compromised [1,2], often with concomitant restricted

interests and repetitive and stereotyped behaviors. The term

‘‘autism’’ is derived from the Greek word ‘‘autos’’, meaning ‘‘self’’.

The first case studies of the condition include numerous

descriptions of the solitary characteristics of the children

examined. In describing one boy, Kanner (1943) writes ‘‘he got

happiest when left alone, almost never cried to go with his mother,

did not seem to notice his father’s homecomings, and was

indifferent to visiting relatives…He seems to be self-satisfied…al-

most to draw into his shell and live within himself...To get his

attention almost requires one to break down a mental barrier

between his inner consciousness and the outside world.’’ Kanner’s

early work includes numerous such references to the seeming

indifference to social interaction and extreme self-focus exhibited

by these children, who, as he observed, regarded contact with

others as ‘‘interference’’. In describing another child he writes that

he ‘‘…behaved as if people as such did not matter or even exist’’

and describes one young girl as giving ‘‘the impression of being

self-absorbed’’ [3]. While this and subsequent reports have

highlighted the primary significance of altered self- and other-

representations in ASD [4,5], the question of what specific brain

processes give rise to these phenomena remains open.

Despite recent efforts to use a cognitive neuroscientific approach

to understand key components of the ASD symptomatology, there

is still little consensus as to its precise neurobiological underpin-

nings. Several imaging studies have shown both structural and

functional brain abnormalities in individuals with ASD (see [6]

and [7] for reviews), but reports are still far from consistent.
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Impairments in the types of higher-order mentalizing essential to

social cognition have long been implicated in autism [8,9]. While

previous work has focused largely on interpersonal cognition in

autism, a recent shift has been towards understanding altered

intrapersonal cognition in ASD. One recent study highlights broad

impairments in both self-referential cognition and empathy as

measured by a battery of scales designed to measure these

constructs [10].

It has been suggested that the core symptoms of autism may

result from a lack of the fundamental appreciation of the

commonality between self and others [11]. Such interpersonal

awareness may be mediated by a right fronto-parietal neural

network [12]. Our previous work also suggests that in adults, a

right fronto-parietal network responds to both self and other

familiar faces, with greatest activity in response to stimuli most

resembling the self-face [13,14]. These regions engaged during

self- and other-face processing overlap with areas that may contain

mirror neurons [15,16]. Recently, it has been proposed that

mirror neuron dysfunction may underlie some of the symptoms

characteristic of ASD, including deficits in social cognition [17–

19]. Preliminary support for the mirror neuron dysfunction theory

of autism comes from studies using fMRI [20], EEG [21,22],

transcranial magnetic stimulation (TMS) [23], EMG [24] and

structural MRI [25] (see [18] and [26] for reviews). To date no

neuroimaging study has attempted to examine whether such

dysfunction contributes to aberrent self-other representations using

facial stimuli in individuals with ASD.

Self-face recognition is evidenced by typically developing

children around 2 years of age [27]. Many young children with

autism exhibit a developmental delay in the acquisition of this

ability, though the majority tested to date show evidence of some

self-recognition [28,29]. The ability to self-recognize is often

thought of as indicative of an underlying self-concept [30], as it

tends to develop in parallel with the use of personal pronouns (‘‘I’’

and ‘‘me’’) [31], and has only been reliably demonstrated in

humans and great apes [32]. Little is currently known about the

development of neural systems supporting self-recognition, and

even less is known about the integrity of these systems in autism.

The current study aimed to investigate the functioning of neural

systems involved in shared representations for self and others in

autistic children. We used a self-face recognition paradigm to test

whether the autistic profile may involve abnormal functioning of

fronto-parietal systems during self- and other-representation.

Materials and Methods

Participants
Eighteen high-functioning ASD and 12 age-and IQ matched

TD (all male) children were recruited and compensated for their

participation in this fMRI study. Due to excessive head

movements (.3 mm mean displacement), the final analyses

include 12 children with ASD (average age: 13.1962.61, average

full-scale IQ: 116614) and 12 TD children (average age

12.2362.10, average full-scale IQ: 11968). The two groups did

not differ significantly with respect to age or IQ (See Table 1). All

participants were right-handed as confirmed by self and parent

reports as well as by examiner observation. Participants were

recruited through the Autism Evaluation Clinic at UCLA, and

flyers posted throughout the Los Angeles area, and from a pool of

subjects who had previously participated in other research studies

at UCLA. A prior clinical diagnosis of ASD was confirmed

utilizing both the Autism Diagnostic Observation Schedule-

Generic (ADOS-G) [33] and the Autism Diagnostic Interview-

Revised (ADI-R) [34]. Participants and parents gave written

informed consent (assent for children under 13) according to the

guidelines of the UCLA Institutional Review Board and were

compensated for their participation. All participants were screened

to rule out medication use, head trauma, and history of

neurological or psychiatric disorders, substance abuse, or other

serious medical conditions.

Image acquisition
Images were acquired using a Siemens Allegra 3.0 Tesla MRI

scanner. Each child completed 2 functional runs lasting 5 min

8 sec each (152 EPI volumes, gradient-echo, TR = 2000 ms,

TE = 25 ms, flip angle = 90u), each with 36 transverse slices,

3mm thick, 1 mm gap, and a 64664 matrix yielding an in-plane

resolution of 3 mm63 mm. Co-planar high-resolution EPI

structural images were acquired to aid image registration

(TR = 5000 ms, TE = 33 ms, 1286128 matrix size).

Stimuli and Task
Stimuli were individually tailored to each child, and consisted of

a series of static color images constructed from pictures acquired

on a Kodak 3400C digital camera of the child’s own face (self) and

the face of another person (other). The Other face was chosen

from the MacBrain Face Stimulus Set (http://www.macbrain.

org/faces/index.htm). We chose faces from this stimulus set for the

Other face because subjects had previously viewed faces from this

stimulus set in other experiments. Thus, novelty effects were

minimized. MorphEditor (SoftKey Corporation, Cambridge, MA)

Table 1. Participant Characteristics.

Participant
Classification Age

Full-Scale
IQ

ADI-R
Score

ADOS
Score

ASD 1 17.85 134 20 9

ASD 2 15.59 106 45 17

ASD 3 11.84 118 42 8

ASD 4 16.15 127 N/A N/A

ASD 5 9.78 120 32 12

ASD 6 9.37 93 47 9

ASD 7 11.71 127 43 10

ASD 8 11.24 122 26 10

ASD 9 12.21 121 40 13

ASD 10 13.63 129 38 20

ASD 11 14.77 108 35 14

ASD 12 14.14 91 59 24

TD 1 14.23 134

TD 2 13.06 119

TD 3 8.87 116

TD 4 11.49 115

TD 5 13.28 104

TD 6 12.45 119

TD 7 10.93 128

TD 8 15.00 125

TD 9 14.53 115

TD 10 11.57 116

TD 11 8.32 118

TD 12 13.02 124

doi:10.1371/journal.pone.0003526.t001
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was used to create digital morphs between the subjects’ face and

the other face (a gender- and race-matched face chosen from the

MacBrain Face Stimulus Set), resulting in 6 unique faces, each

morphed to a varying extent (0%, 20%, 40%, 60%, 80%, 100%,

with 0% being ‘‘no morphing of self’’). See Figure 1 for examples

of types stimuli used in the experiment. The actual stimuli used in

the experiment are not shown in order to protect the identity of

our participants. Images were edited using Adobe Photoshop to

remove external features (hair, ears) and create a uniform gray

background. A scrambled control face was created by randomly

rearranging one image. The software package Presentation

(Neurobehavioral Systems Inc., http://www.neuro-bs.com/) was

used to present stimuli and record responses. Stimuli were

presented through magnet-compatible goggles (Resonance Tech-

nology Inc.) and responses were recorded using two buttons of an

fMRI compatible response pad. During each functional run, each

of the six morphed faces and the scrambled control were presented

10 times in a random sequence optimized and counterbalanced

using the optseq algorithm (http://surfer.nmr.mgh.harvard.edu/

optseq/), which provides temporal jitter to increase signal

discriminability [35]. Each of the two runs consisted of a different

optimized random sequence. Each stimulus was presented for 2

seconds, with at least a 1 second gap between each stimulus

presentation. Participants were instructed to press one button with

their right hand if the image presented looked like self, and

another button if it looked like an other or scrambled face.

Data Processing and Statistical Analyses
Functional imaging analysis was carried out using FEAT (FMRI

Expert Analysis Tool), part of FSL (FMRIB’s Software Library,

www.fmrib.ox.ac.uk/fsl). After motion correction, images were

temporally high-pass filtered with a cutoff period of 50 seconds

and smoothed using an 8 mm Gaussian FWHM algorithm in 3

dimensions. The BOLD response was modeled using a separate

explanatory variable (EV) for each of the seven stimulus types. For

each stimulus type, the presentation design was convolved with a

gamma function to produce an expected BOLD response. The

temporal derivative of this timecourse was also included in the

model for each EV. Data were then fitted to the model using FSL’s

implementation of the general linear model, with motion

components included as confound EVs.

Each participant’s statistical data was then warped into a

standard space based on the MNI-152 atlas. We used FLIRT

(FMRIB’s Linear Image Registration Tool) to register the

functional data to the atlas space in two stages. Functional images

were aligned with the high-resolution co-planar T2-weighted

image using a 6 degrees-of-freedom rigid-body warping procedure.

The co-planar volume was registered to the standard MNI atlas

with a 12 degrees-of-freedom affine transformation.

Statistical analyses were conducted with FSL using mixed-

effects models to compute group differences. Higher-level analysis

was carried out using FLAME (FMRIB’s Local Analysis of Mixed

Effects) [36]. Z (Gaussianized T/F) statistic images were

thresholded using Z.2.3 and a (corrected) cluster significance

threshold of p = 0.05 [37–39].

To investigate effects in an a priori region of interest (right inferior

frontal gyrus, activated in our previous self-recognition study [13]), a

mask was derived based on regions activated in the Task-Rest

contrast for TD children. Here we use ‘‘Rest’’ to refer to periods

between stimulus presentations, during which subjects fixated on a

central cross. For this between-group comparison, Z statistic images

were thresholded at p = 0.01 (uncorrected voxel p threshold).

Additional ROIs created from anatomical parcellation based on

the Harvard-Oxford Structural Atlas provided by FSL [40,41]

were used to query neural response in several regions comprising

classical face processing networks [42] and additional regions of

particular interest in this study based on our previous work [13],

including Brodmann Area (BA) 44, BA 45, middle frontal gyrus,

precentral gyrus, angular gyrus, superior parietal cortex, lateral

occipital cortex, and fusiform gyrus (also referred to as fusiform

face area, FFA).

Results

Behavioral
Figure 2a shows the participants’ percent self responses for each

of the seven stimulus types, and Figure 2b shows participants’

reaction times. Due to technical failure, behavioral responses were

not collected from three ASD and two TD children. As expected,

the number of self responses diminished as the images presented

contained less of the self-face, indicating that both TD and ASD

children were able to successfully perform the task. There were no

significant group differences in behavioral performance, neither in

% self responses nor reaction time.

fMRI
Self.Rest and Other.Rest Contrasts. The Self.Rest

(0%, 20%, and 40%.Rest) contrast for the ASD group revealed

activations in the right lateral occipital cortex, right occipital

fusiform gyrus, right temporal occipital fusiform cortex, right

precentral gyrus, right inferior frontal gyrus, right insular cortex,

left lateral occipital cortex, left occipital pole, and left temporal

occipital fusiform cortex. The Self.Rest contrast for the TD

group revealed a nearly identical pattern of activation (Table 2,

Figure 3). Direct comparisons (ASD.TD, TD.ASD) between

groups revealed no significant differences for the contrast of

Self.Rest in whole-brain analyses (Z.2.3, cluster significance

threshold of p = 0.05, corrected).

Figure 1. Examples of types of stimuli used in the experiment. For each participant, a series of morphed images were created between the
participant’s own face and another gender-matched face. This resulted in six face images, from 0% morphing (Self) to 100% morphing (Other).
doi:10.1371/journal.pone.0003526.g001
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The Other.Rest (60%, 80%, or 100%.Rest) contrast for the

ASD group showed activations in right occipital fusiform gyrus,

right lateral occipital cortex, left occipital fusiform gyrus, and left

temporal occipital fusiform cortex. The Other.Rest contrast for

the TD group showed activations in right occipital fusiform gyrus,

right lateral occipital cortex, right inferior frontal gyrus, right

precentral gyrus, right insular cortex, right frontal operculum

cortex, left occipital fusiform gyrus, and left temporal occipital

fusiform cortex. While direct statistical comparisons between groups

(ASD.TD, TD.ASD) revealed no significant differences for the

contrast of Other.Rest in whole-brain, cluster corrected analyses

(Z.2.3, cluster significance threshold of p = 0.05, corrected), the

within-group results for the Other.Rest contrast revealed striking

differences between TD and ASD children in the right prefrontal

cortex. Specifically, while TD children activated the right inferior

frontal gyrus (rIFG) while viewing images of others, there was no

change in activity between Other versus Rest for the ASD children

(Table 2, Figure 3). For this reason, and based on previous studies

implicating the rIFG in similar face-processing tasks [13,43–45], we

conducted a subsequent between-group analysis focusing specifi-

cally on the right prefrontal cluster, using a functionally defined

region-of-interest (ROI) derived from the group mean of the TD

children in the Task-Rest contrast. As shown in Figure 4, the results

of this analysis showed greater rIFG signal change for Other.Rest

in TD children than in ASD children.

ROI Analyses. Using anatomically defined ROIs provided

by the Harvard-Oxford Structural Atlas, signal intensities were

estimated within the following brain regions in the right

hemisphere: BA 44, BA 45, middle frontal gyrus, precentral

gyrus, angular gyrus, superior parietal cortex, lateral occipital

cortex, and fusiform gyrus (Figure 5). For all of these regions, no

significant differences were found between the ASD and TD group

during viewing of Self faces (Figure 6). Additionally, the only

regions in which group differences in signal intensity for viewing

Other faces approached significance were BA 44 (t(22) = 1.717,

p = 0.07) and BA 45 (t(22) = 1.717, p = 0.08), confirming the results

of our between-group comparison based on the functionally

defined ROI in this area.

Figure 2. a: Behavioral responses to the task. Both groups of children (ASD and TD) showed decreasing ‘‘self’’ responses as the image presented
contained less of the self-face, demonstrating behavioral competence. Error bars represent standard error. b: Reaction Time. There were no
significant differences between groups with respect to reaction time.
doi:10.1371/journal.pone.0003526.g002

Self-Recognition in Autism

PLoS ONE | www.plosone.org 4 October 2008 | Volume 3 | Issue 10 | e3526



Table 2. Contrasts against resting baseline.

Group/Contrast Region MNI Coordinates Max Z-score

x y z

ASD: Self.Rest Right Lateral Occipital Cortex 40 272 28 6.31

Right Occipital Fusiform Gyrus 30 282 214 5.26

Right Lateral Occipital Cortex 36 282 22 4.68

Right Temporal Occipital Fusiform Cortex 42 254 28 4.4

Right Temporal Occipital Fusiform Cortex 38 250 214 4.2

Right Temporal Occipital Fusiform Cortex 38 254 218 4.17

Left Lateral Occipital Cortex 232 286 28 5.55

Left Lateral Occipital Cortex 240 282 212 5.14

Left Occipital Pole 214 2100 2 3.92

Left Occipital Pole 220 294 2 3.7

Left Temporal Occipital Fusiform Cortex 238 264 218 3.67

Left Temporal Occipital Fusiform Cortex 234 248 220 3.64

Right Precentral Gyrus 50 6 26 4.61

Right Frontal Pole/Inferior Frontal Gyrus 40 34 14 4.49

Right Insular Cortex 34 24 0 3.65

Right Insular Cortex 32 16 8 3.56

Right Precentral Gyrus 48 4 40 3.4

Right Precentral Gyrus 40 0 40 3.19

TD: Self.Rest Right Lateral Occipital Cortex 40 272 210 6.89

Left Occipital Fusiform Gyrus 230 286 214 6.15

Left Lateral Occipital Cortex 242 282 212 6.06

Right Lateral Occipital Cortex 46 262 216 5.83

Right Lateral Occipital Cortex 28 276 26 5.1

Right Temporal Occipital Fusiform Cortex 38 242 222 4.8

Right Precentral Gyrus 50 6 26 4.59

Right Frontal Pole/Inferior Frontal Gyrus 40 34 12 4.23

Right Insular Cortex 32 18 28 4.21

Right Frontal Pole 38 48 10 3.85

Right Frontal Pole 42 48 10 3.84

Right Frontal Operculum/Frontal Orbital Cortex 34 28 4 3.77

ASD: Other.Rest Right Occipital Fusiform Gyrus 28 284 216 6.09

Left Occipital Fusiform Gyrus 230 284 210 5.06

Right Lateral Occipital Cortex 42 276 214 4.78

Left Temporal Occipital Fusiform Cortex 232 248 222 4.52

Right Lateral Occipital Cortex 40 274 28 4.51

Left Occipital Fusiform Gyrus 218 288 214 4.31

TD: Other.Rest Right Occipital Fusiform Gyrus 30 284 216 7.02

Right Lateral Occipital Cortex 42 272 214 6.15

Left Occipital Fusiform Gyrus 230 284 216 6.12

Left Occipital Fusiform Gyrus 242 266 224 6.07

Right Occipital Fusiform Gyrus 22 288 212 6.04

Left Temporal Occipital Fusiform Cortex 236 258 218 5.88

Right Inferior Frontal Gyrus 52 14 30 4.61

Right Precentral Gyrus 48 6 28 4.55

Right Inferior Frontal Gyrus 42 32 10 4.29

Right Frontal Operculum/Insular Cortex 32 26 6 3.71

Right Frontal Operculum Cortex 40 12 6 3.32

Right Insular Cortex 30 16 2 3.22

doi:10.1371/journal.pone.0003526.t002
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Discussion

The representation of self and other may be fundamentally

altered in autism spectrum disorders [4]. While previous work has

largely emphasized deficits in interpersonal interaction in ASD,

current empirical work emphasizes the need for understanding

differences with respect to both interpersonal (social) and intrapersonal

(self-referential) cognition [10]. Previously we and others have

shown that in normal adults, self-recognition is accompanied by

signal changes in a right hemisphere network including the inferior

frontal gyrus and inferior parietal lobule [13,43,44], consistent

with earlier work implicating preferential right hemisphere

involvement in self-recognition [46]. Here we used this paradigm

to test whether children with ASD recruit the same brain areas

during self- and other-face processing as do TD children. We

showed that while self- and other-face processing involve virtually

overlapping right frontal activity in TD children, children with

ASD only exhibit such activation when viewing their own faces.

ROI analyses confirm that ASD and TD children differentially

activate the rIFG (specifically BA44 and BA45) during viewing of

other faces. Specifically, children with ASD activate the rIFG less

than do TD children during viewing of other faces. In every other

ROI within the broader face-processing networks we examined,

we observed no significant group differences during viewing of self

or other faces. Thus, consistent with clinical observations of higher

levels of self-focused behavior in autism, these children show

decreased neural response to viewing faces of others compared to

Figure 3. While both groups of children activated the right IFG while viewing of faces of themselves, only TD children also
activated this region while viewing faces of others.
doi:10.1371/journal.pone.0003526.g003

Figure 4. TD children showed greater activation to other faces than children with ASD, specifically in the right IFG region-of-
interest.
doi:10.1371/journal.pone.0003526.g004

Self-Recognition in Autism

PLoS ONE | www.plosone.org 6 October 2008 | Volume 3 | Issue 10 | e3526



viewing faces of themselves. While hypoactivation of the fusiform

gyrus to faces has been previously reported [47], this region does

not appear to be involved in self-other distinction as examined in

the current study. One can speculate that normal engagement of

several brain regions by self faces and reduced activity to other

faces in the rIFG might be related to the social impairments

characteristic of children with ASD.

Previous work on the neural basis of self-face recognition in

adults suggests that while the right inferior frontal gyrus responds

most strongly to self-faces, it also shows signal increases (although

Figure 5. ROIs based on Harvard-Oxford atlas used to probe differences between TD and ASD groups.
doi:10.1371/journal.pone.0003526.g005

Figure 6. ROI analyses indicated hypoactivation to Other faces in the ASD group in BA 44 and BA 45.
doi:10.1371/journal.pone.0003526.g006
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weaker) above baseline to personally familiar faces [13,45]. The

fact that the TD children examined in this study do not yet show

self-other differentiation in the right IFG suggests that our cross-

sectional design captures a period in cognitive development where

this distinction is not robustly represented, and a great deal of self-

other overlap exists. One may speculate that as the representation

of self becomes more differentiated in post-adolescent develop-

ment, the rIFG activation to self relative to others becomes more

selective. In contrast, children with ASD appear to not exhibit this

neural overlap. As our study did not use personally familiar faces

as controls, we cannot address the interesting question of whether

the response of the rIFG of children with ASD is modulated by

personal familiarity, as has been suggested for the fusiform face

area [48].

Our paradigm required participants to explicitly evaluate facial

identity to decide whether the image presented resembled

themselves. Both groups of children behaviorally demonstrated a

diminishing ‘‘self’’ response as the image presented contained a

smaller percentage of the self face, indicating successful self-other

discrimination. This result is consistent with behavioral work

demonstrating successful visual self-recognition in most children

with ASD [28,29,49]. Our previous work has implicated the right

inferior parietal lobule in this type of discrimination, as virtual

lesions induced with rTMS reduced subjects sensitivity to detecting

self faces [14]. The right IPL is thought to be part of a circuit

mediating complex own-body perception [50], and contributes to

the sense of agency, or the feeling of generation of action [51]. We

saw no significant group differences during viewing of self-faces in

this region, suggesting that the perception of the self face as part of

one’s own body is not altered in children with ASD. Rather, it

appears that the mechanisms for detecting self-other similarity,

likely dependent on the right inferior frontal gyrus, are

dysfunctional in these children. The mechanisms implemented

by the rIFG likely mediate differences between ASD and TD

children in social interactions that are more complex than those

tapped by our self-other discrimination task.

Social cognition researchers have previously suggested that

understanding of others’ experiences may involve the activation of

shared affective neural networks that enable us to ‘‘feel the

emotions of others as if they were our own’’ [52]. There is now a

fairly substantial literature documenting the existence of shared

neural representations that bridge the gap between the self and

other in various domains, including the experience of pain [53],

touch [54], and emotion [55,56]. Such ‘‘embodied simulation’’

accounts of action and emotion understanding go by many names

(e.g. ‘‘shared manifold of intersubjectivity’’ or ‘‘intentional

attunement’’ [57], ‘‘shared representations’’ [12], ‘‘shared circuits’’

[58]), but they all support the notion that one of the ways by which

an individual makes sense of the social world is by using the same

brain systems that are used for self-related experiences in order to

understand others. This overlap in self- and other-representation

may breakdown in autism, which is characterized by decreased

empathy [59] and theory of mind impairments [8]. The restricted

social interests of individuals with autism may thus reflect a

fundamental lack of appreciation of self-other similarities, which

may be the result of altered mirroring mechanisms in the brains of

such individuals. There is also mounting evidence for dysfunction

of the so-called mirror neuron system, which is implicated in social

cognition [60], in individuals with autism [18,20–25,61].

One possible explanation for the lack of rIFG response to others

observed in this group of children with ASD may be the fact that

from a young age autistic individuals seem to lack the motivation for

orienting to social cues that their typically developing counterparts

demonstrate [62]. Indeed, some have theorized that the lack of

interest in social stimuli evident in autistic children may result from

the fact that ASD children do not find these stimuli to be rewarding

[63]. Previous reports have shown that when children with ASD are

instructed to pay attention to specific aspects of social stimuli (e.g. a

person’s facial expression or tone of voice), neural responses more

closely resemble those of TD children [64,65]. Thus, while socially

relevant stimuli such as other’s faces may not automatically engage

the attention of children with ASD who are less driven by social

motivation, explicit instruction to attend can ameliorate this effect.

In the present study, however, the task instructions focused the

children’s attention to detecting the self, perhaps further decreasing

the amount of attention directed toward others. Future work should

examine whether simply modifying task instruction (i.e. asking

participants to detect the presence of other faces in the morphs) may

‘‘normalize’’ neural activity to other faces in children with ASD.

In conclusion, we find that children with ASD do not activate

shared regions for self- and other-face processing, as do TD

children. Reduction of activity in right prefrontal areas during

other-face processing may be a neural signature of reduced social

engagement and understanding in these individuals.
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