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Abstract

Background: Multiple genome alignment remains a challenging problem. Effects of recombination including
rearrangement, segmental duplication, gain, and loss can create a mosaic pattern of homology even among closely
related organisms.

Methodology/Principal Findings: We describe a new method to align two or more genomes that have undergone
rearrangements due to recombination and substantial amounts of segmental gain and loss (flux). We demonstrate that the
new method can accurately align regions conserved in some, but not all, of the genomes, an important case not handled by
our previous work. The method uses a novel alignment objective score called a sum-of-pairs breakpoint score, which
facilitates accurate detection of rearrangement breakpoints when genomes have unequal gene content. We also apply a
probabilistic alignment filtering method to remove erroneous alignments of unrelated sequences, which are commonly
observed in other genome alignment methods. We describe new metrics for quantifying genome alignment accuracy which
measure the quality of rearrangement breakpoint predictions and indel predictions. The new genome alignment algorithm
demonstrates high accuracy in situations where genomes have undergone biologically feasible amounts of genome
rearrangement, segmental gain and loss. We apply the new algorithm to a set of 23 genomes from the genera Escherichia,
Shigella, and Salmonella. Analysis of whole-genome multiple alignments allows us to extend the previously defined
concepts of core- and pan-genomes to include not only annotated genes, but also non-coding regions with potential
regulatory roles. The 23 enterobacteria have an estimated core-genome of 2.46Mbp conserved among all taxa and a pan-
genome of 15.2Mbp. We document substantial population-level variability among these organisms driven by segmental
gain and loss. Interestingly, much variability lies in intergenic regions, suggesting that the Enterobacteriacae may exhibit
regulatory divergence.

Conclusions: The multiple genome alignments generated by our software provide a platform for comparative genomic and
population genomic studies. Free, open-source software implementing the described genome alignment approach is
available from http://gel.ahabs.wisc.edu/mauve.
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Introduction

Multiple genome alignment is among the most basic tools in the

comparative genomics toolbox, however its application has been

hampered by concerns of accuracy and practicality [1–3].

Accurate genome alignment represents a necessary prerequisite

for myriad comparative genomic analyses.

During the course of evolution, genomes undergo both local

and large-scale mutational processes. Local mutations affect only a

small number of nucleotides and include nucleotide substitution

and insertion or deletion of nucleotides. Large-scale mutations can

include gain and loss or duplication of large segments, generated

by unequal recombination or other processes. Homologous

recombination can lead to replacement of whole genes, or even

larger segments of the chromosome with non-identical but

homologous sequences. Together, these mutational processes

cause otherwise identical regions in two or more genomes to be

fragmented, reordered, possibly missing, and even to occur in

multiple copies.

The genome alignment task seeks to identify the homologous

nucleotides in two or more genomes, that is, a genome alignment

identifies nucleotides that descended from a single site in some

ancestral organism. Homologous sites can be classified in any

number of ways, and the genome alignment task usually targets
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the identification of certain classes of nucleotides. Homologous

sites are commonly classified by evolutionary history such as

orthology, paralogy, and xenology [4,5]. Sites can also be classified

by non-evolutionary relationships such as the number or identity

of organisms involved (e.g. only homologous sites involving an

important reference organism such as Homo sapiens), or even by

ordering relationships relative to other homologous nucleotides

(e.g. collinearity). Genome alignment methods often define their

target alignment to consist of homologous nucleotides falling into

one or more of those classes.

Early work in genome alignment included development of

MUMmer, which identifies homologous sites in pairs of genomes

[6–8]. MUMmer aligns orthologous and xenologous sequences

with the further constraint that any site in a genome can be aligned

to at most one site in the other genome. Pairs of homologous sites

within a single genome (paralogs) are never aligned to each other.

The first stage of MUMmer alignment involves identifying

alignment anchors. Alignment anchors are local alignments of

highly identical sequence that by virtue of their high identity, can

be easily found algorithmically, and are presumed to be part of the

true alignment. MUMmer then aggregates local alignment

anchors into one or more groups that cover collinear regions of

the two genomes. Each group of anchors is internally free from

rearrangement, but the order of groups may be shuffled from one

genome to another. As such, MUMmer can identify and align

genomes with rearranged homologous sequences. However

MUMmer does not align paralogous sequences (repeats within a

genome), nor does it align all copies of multi-copy orthologous

sequence. Because it aligns any site to at most one site in the other

genome, and due to the way it anchors alignment of repetitive

sequence using neighboring unique regions, MUMmer often

aligns the positionally conserved copy of a repeat element. We

term this type of alignment a positional homology genome alignment;

such alignments are also generated by a method we developed

previously [9].

In the present work, we describe a new method to construct

positional homology multiple genome alignments that extends our previous

method [9] to aligning regions conserved in subsets of the

genomes. The new method can align a larger number of genomes

than the previous method, and does so with higher accuracy as

demonstrated by simulation. The previous method has especially

low sensitivity in regions conserved among some but not all

organisms, whereas the new method can align those same

differentially conserved regions with high accuracy. Three

algorithmic innovations factor strongly in our method’s ability to

align genomes with variable gene content and rearrangement. The

first is a novel objective function, called a sum-of-pairs breakpoint

score, to score possible configurations of alignment anchors across

multiple genomes. Our second algorithmic contribution is a

greedy heuristic to optimize a set of anchors under the sum-of-

pairs breakpoint score. Finally, we demonstrate that most

anchored alignment techniques suffer a bias leading to erroneous

alignment of unrelated sequence in regions containing differential

gene content. Our third algorithmic contribution is the application

of a homology hidden Markov model (HMM) to reject such

erroneous alignments of unrelated sequence. The new method is

implemented in a program called progressiveMauve, part of the

Mauve genome alignment package versions 2.0 and later.

We compare the accuracy of alignment methods existing at the

time of this work and the new alignment method on datasets

simulated to encompass a broad range of genomic mutation types

and rates, including inversion, gene gain, loss, and duplication. We

then apply the multiple genome alignment method to a group of

23 finished genomes in the family Enterobacteriacae (Table S1).

We precisely identify the core- and pan- genomes of this group

independently of annotated gene boundaries, and report basic

analysis of gene flux patterns in Enterobacteriacae. Development

of our new alignment algorithm was inspired by genomic studies of

E. coli, which revealed substantial gene content variability among

individual E. coli isolates [10,11]. Since those early studies, gene

content variability has been reported as a common feature in

numerous other microbial species [12–15]. It appears that

microbial populations undergo vast amounts of gene gain, loss

and homologous recombination [16], although most systematic

studies have been limited to gene-based methods by the difficulty

of complete and accurate multiple genome alignment. Our aligner

offers a platform on which to base study of the combined effects of

gene gain, loss, and rearrangement in microbial species.

Previous genome alignment methods
Approaches to whole-genome alignment typically reduce the

alignment search space using anchoring heuristics [17–22] or

banded dynamic programming [23]. Anchoring heuristics appear

to provide a good tradeoff between speed and sensitivity. Most

anchored alignment methods assume that the input sequences are

free from genomic rearrangement. As such, a separate synteny

mapping algorithm must be applied to map collinear homologous

segments among two or more genomes prior to alignment.

Synteny mapping approaches are too numerous to list, however

most involve computing reciprocal best BLAST hits on putative

ORFs, with BLAST hits filtered by e-value thresholds, coverage

thresholds, and uniqueness criteria. Some synteny mapping

methods apply genomic context to help resolve ambiguous

orthology/paralogy relationships, and others use probabilistic

transitive homology approaches to infer homologs among distantly

related taxa [24].

Integrated approaches to synteny mapping and alignment have

been proposed, most of which operate on pairs of genomes

[8,25–27]. Research into multiple alignment with rearrangements

has been limited, although some progress has been made

[9,28–31]. Apart from greater ease-of-use, integrated synteny

mapping and alignment methods could in theory provide more

accurate inference because the alignment can influence the

synteny map and vice-versa.

New methods for genome alignment have become available

since the time of this work. Two of these methods construct so-

called glocal multiple genome alignments [32,33] (see [25] for a

definition of glocal). The main distinguishing feature in how those

methods align genomes lies in how they handle repetitive

segments. Instead of aligning the positionally conserved copy of

a repetitive DNA segment (a la Mauve), glocal methods construct a

multiple alignment of all homologous copies of the repetitive

segment, regardless of whether they are orthologous or paralogous.

Figure 1 illustrates the difference using three example genomes.

We note that by concatenating several genomes into a single

sequence, methods for large-scale local multiple alignment of

genomic DNA [34,35] can also be used to compute glocal

alignments, requiring only a ‘‘de-concatenation’’ step after

alignment. The task of identifying the positionally homologous

region and subclassifying homology relationships into types of

orthology or paralogy is left for downstream inference methods.

Such an approach has advantages when applied to duplication-

rich metazoan and plant genomes, for which positional homology

is often not as clear as in smaller microbial genomes. In organisms

with clear positional homology, however, the need to resolve

duplication histories in glocal alignments can unecessarily compli-

cate downstream inference tasks when compared to positional

homology alignments. As discussed below, a large number of tools
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exist to analyze positional homology alignments that can not be

applied to glocal alignments.

Methods

An overview of our method as applied to three hypothetical

genomes appears in Figure 2 and is presently described in detail.

Notation and assumptions
Our genome alignment algorithm takes as input a set of G

genome sequences G~fg1,g2, . . . ,gGg. We denote the length of

genome i as Dgi D. Contigs in unfinished or multi-chromosome

genomes are concatenated to form a single coordinate system.

Various default parameter settings in our software implementation

depend on the average length of the input genome sequences,

which we denote by D�ggD. Genomic coordinates are assumed to start

at 1, and increase in magnitude from left to right. Coordinates can

be denoted by a signed integer xi in gi. The sign of xi indicates

strandedness, with negative values denoting alignments to the

reverse strand. Let ai be the corresponding nucleotide base at

genomic position xi; when xiw0,a(xi)~ai, and when xiv0,a(xi)
is the complementary base of position {xi. Finally, xi~0
indicates a gap in genome gi. The basic building blocks of the

whole genome alignment are local multiple alignments (LMAs),

which we will denote by Aloc. We use LMAs that generalize

MUMmer’s Maximal-Unique-Matches (MUMs) to include ap-

proximate matching and multiple genomes.

Local Multiple Alignments as potential anchors
We identify local multiple alignments as potential anchors using

families of palindromic spaced seed patterns [36] in a seed-and-

extend hashing method (see Appendix of [9]). A spaced seed

pattern of length k and weight w [37] identifies the location of k-

mers in the input genomes that have identical nucleotide sequence

except that a small number of mutations are allowed at fixed

positions. For example, the seed pattern 11*11*11 would identify

matching oligomers of length k = 8 where the 3rd and 6th

positions are degenerate. The number of 1’s in the seed pattern is

commonly referred to as the weight of the seed pattern, denoted w.

Thus the pattern 11*11*11 has w = 6. A pattern is said to be

palindromic if the pattern is identical when read forward or in

reverse [38]. A seed family is a collection of seed patterns that

when used in conjunction provide improved matching sensitivity,

and such families have been previously demonstrated to offer

excellent speed and sensitivity [39].

To minimize compute time and focus anchoring coverage on

single-copy regions, our method only extends seeds that are unique

in two or more genomes. By default, we use seed patterns with

weight equal to w~ log2 (D�ggD=1:5). This formula is also applied to

determine the appropriate seed weight during recursive anchoring

(Figure 2 step 5, described later), with the restriction that w§7 in

all cases. The resulting local multiple alignments are ungapped

and always align a contiguous subsequence of two or more

genomes in G. Any given local multiple alignment m can be

described formally by its length DmD and vector of integers:

x~(x1,x2 . . . ,xG), where xi is a signed left-end coordinate of the

LMA in gi, or 0. When xi takes on a value of 0, the ith genome is

absent from all of m.

The LMAs found by our procedure are ungapped alignments of

unique subsequences and thus are similar to multi-MUMs, but

may contain mismatches according to the palindromic seed

patterns. As with multi-MUMs, any portion of a unique LMA may

be non-unique and no LMA may be completely contained within

the boundaries of another LMA. We refer to the set of local

multiple alignments generated in this step as Aloc. An example is

given in Figure 2 step 1.

Local alignment anchor scoring
Given a pairwise alignment without gaps in genomes gi and gj ,

we compute a pairwise substitution score using a substitution

matrix, which defaults to the HOXD matrix [40]. The HOXD

matrix appears to discriminate well between homologous and

unrelated sequence in a variety of organisms, even at high levels of

sequence divergence.

The substitution matrix score quantifies the log-odds ratio that a

pair of nucleotides share common ancestry, but does not account

for the inherent repetitive nature of genomic sequence. Our desire

to discriminate between alignment anchors that suggest positional

homology and alignments of regions with random similarity or

paralogy requires that we somehow consider repetitive genomic

sequence in our anchoring score [41].

We combine the traditional substitution score for a pair of

nucleotides with an adjustment for the multiplicity of k-mer seeds

at the aligned positions:

Q(xi,xj)~HOXD½a(xi),a(xj)� when xixj=0,0 otherwise ð1Þ

Figure 1. The difference between positional homology alignment
and glocal alignment. Three example linear genomes are broken into
genes labeled A,B,C,D, and R. R is a multi-copy (repetitive) gene, with
different copies labeled using numeric subscripts. Each copy of R is
assumed to be identical in sequence, so that orthology/paralogy is
unknowable from nucleotide substitution (as is often the case with
mobile DNA repeat elements). Genes shifted downward in a given
genome are inverted (reverse complement) relative to the reference
genome. The positional homology alignment would ideally create two
local alignment blocks where each block has exactly one alignment row
for each genome. Only positionally-conserved copies of the repetitive
gene family R become aligned to each other. The glocal alignment
would ideally create four local alignment blocks wherein all copies of
the repetitive gene family become aligned to each other.
doi:10.1371/journal.pone.0011147.g001
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s(xi,xj)~

Q(xi,xj)ifQ(xi,xj)v0

2Q(xi,xj)

n(xi)n(xj)
{Q(xi,xj)otherwise:

8<
: ð2Þ

where n(xi) is the number of occurrences of the spaced seed

pattern that matches the subsequence of gi at xi. The product of

n(xi)n(xj) approximates the number of possible ways that sites in

gi and gj with the same seeded k-mers as xi and xj could be

combined. For example, consider a repeat element present in both

genomes with copy number ri in genome gi and copy number rj in

gj . There are rirj possible pairs of repeats. When a pair of

Figure 2. Overview of the alignment algorithm using three example genomes A, B, and C.
doi:10.1371/journal.pone.0011147.g002
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nucleotides in a repeat element have a positive substitution score,

the product n(xi)n(xj) down-weights the score.

In summary, this scoring scheme assigns high scores to well-

conserved regions that are unique in each genome and does not

consider gap penalties.

Pairwise locally collinear blocks
A pair of genomes gi and gj may have undergone numerous

genomic rearrangements since their most recent common

ancestor. As such, local alignments among orthologous segments

of gi and gj may align segments that occur in a different order or

orientation in each genome. We define a pairwise locally collinear

block (LCB) as a subset of local alignments in Aloc that occur in the

same order and orientation in a pair of genomes gi and gj , i:e:
they are free from internal rearrangement. To define pairwise

LCBs among genomes gi and gj , we first define the projection of

the current set of local multiple alignments Aloc onto gi and gj as

pij(Aloc), realized by setting all coordinates for genomes G\fgi,gjg
to 0. In local alignment m for example, the projection pij(m) onto

gi and gj is obtained by setting all left-end coordinates:

(x1,x2, . . . ,xG) to 0 except for xi and xj .

Having transformed LMAs into local pairwise alignments, we

apply the well-known breakpoint analysis procedure [42,43] to

minimally partition pij(Aloc) into pairwise LCBs. Let P denote the

minimal partition of a projection pij into disjoint LCBs:

Lij~fL1
ij ,L

2
ij , � � � ,LK

ij g~fP(pij(Aloc))g. Projecting onto two di-

mensions allows us to apply the previously described scoring

scheme.

L(Lij)~{bELijEz
X

m[Aloc

S(pij(m)) ð3Þ

where bw0 is a fixed constant, ELijE is the number of pairwise

LCBs formed in the projection of Aloc onto gi and gj , and

S(pij(m))~
XDmD{1

k~0

s(z(xi)zk,z(xj)zk) ð4Þ

z(xi)~
xi when xiw0

xi{DmDz1 when xiv0

�
ð5Þ

therefore S(pij(m)) computes the sum of scores for each pair of

sites in m that are aligned in genomes gi,gj . The function z(:)
computes the matching sequence coordinates in matches that

contain reverse-complement regions.

Our method computes alignments along a rooted guide tree Y.

We use g to denote an arbitrary internal node of Y, and the set of

leaf (or terminal) nodes by T (G). As Y is a rooted bifurcating tree,

each internal node g has two children, designated by L(g) and

R(g) for left and right child. The terms left and right are for

notational convenience, and have no intrinsic meaning. We

denote the set of leaf nodes descended from g as D(g). This

terminology is illustrated in Figure 3.

We compute the following sum-of-pairs LCB anchoring (SP

anchoring) objective function to select a set of alignment anchors:

Wg(Aloc)~
X

fgi[Dr(g)g

X
fgj[Dl (g)g

L(Lij) ð6Þ

along a guide tree whose construction is described below.

Anchoring guide tree construction
Our method computes alignment anchors progressively accord-

ing to a guide tree computed as follows. We compute a genome-

content distance matrix and Neighbor Joining tree based on the

initial set of local multiple alignments Aloc. Values in the genome-

content distance matrix are computed as described in Figure 2 step

2. Information about shared genomic content factors strongly into

the distance metric, so that organisms with similar genomic

content tend to cluster. The topology of the resulting guide tree

may not represent the clonal genealogy of the organisms, however,

we have found that guide trees based on genomic content allow

our algorithm to produce better alignments. We also note that

users may change the guide tree to one of their own choosing via a

command-line option. The resulting tree is midpoint-rooted to

yield our progressive anchoring guide tree.

The guide tree is used for anchoring but not for the gapped

global multiple sequence alignment, wherein alignments are

optimized over a variety of guide trees muscle [44]. Steps 2 and

3 in Figure 2 illustrate guide tree construction.

Optimizing the SP anchoring objective function
In equation 3, the constant b is a breakpoint penalty, and when

multiplied by ELijE, creates a scoring penalty that increases in

magnitude when the anchors in pij(Aloc) induce a larger number

Figure 3. Illustration of terminology used for tree nodes. Rotating the figure 90 degrees counterclockwise explains the descriptive use of left
and right.
doi:10.1371/journal.pone.0011147.g003
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of LCBs. Thus, anchor sets inducing fewer breakpoints are given

higher scores.

Recent versions of the algorithm apply a genome-pair-specific

scaling of the breakpoint penalty b, based on the expected divergence

among the organisms in terms of genomic content and rearrange-

ments. The scaling is motivated by the biological phenomenon of rate

heterogeneity in evolutionary processes. The rates of gene gain, loss,

rearrangement, and nucleotide substitution appear to vary indepen-

dently of one another across lineages, and the scaling factor helps to

account for this fact. We omit mathematical derivation of the scaling

here for brevity and clarity of presentation.

The value of the breakpoint penalty b is a user controlled

parameter in our implementation of the algorithm, and we use a

default minimum scaled value of b~4000 as manual experimen-

tation on real genome sequence data suggests this value represents

a good tradeoff between sensitivity to small genomic rearrange-

ments and filtration of spurious alignments. When b~4000, a

rearranged segment as short as 40nt may be aligned, so long as it is

perfectly identical and in single-copy in both genomes. We arrive

at that figure by observing that the highest score for a nucleotide

match in the HOXD matrix is 100, so that 40 consecutive

matching nucleotides would have a score of 4000 according to

equation 4, but only if all k-mer seeds in that region are unique.

The minimum scaled value of b~4000 was selected by testing

increasing values of b on genomes with v60% nucleotide identity

until a value was found that excluded most spurious alignments, as

determined by BLAST and gene annotation.

We apply a greedy breakpoint elimination heuristic to optimize

Wg(Aloc) which removes potential anchors from Aloc until the

score can no longer be increased. Removing the matches which

constitute a single LCB Lij decreases the total number of LCBs in

Lij by at least one and at most four if neighboring LCBs coalesce

[9]. The number of LCBs in projections to other genome pairs

may decrease as well. The decreased number of LCBs, and hence

breakpoints, reduces the total breakpoint penalty in Wg. But the

anchoring function has two components, and Wg increases only ifP
pij (m)[Li,j

S(pij(m)) has a sufficiently small total score, favouring

the deletion of ‘‘small’’ LCBs that ‘‘interrupt’’ large LCBs.

Our algorithm iteratively identifies the LCB whose removal

from Lij would provide the largest increase to Wg. This procedure

corresponds to step 4 in Figure 2. Formally, we identify the L�ij that

maximizes:

max
Lij[Lij

Wg(Lij\Lij) ð7Þ

over f(i,j), where gi,gj [ D½L(g)�,D½R(g)�g.
When deleting one L�ij from the current set of pairwise LCBs

Lij , we simultaneously remove those local alignments

fA�1, . . . ,A�kg whose projections generate L�ij . Therefore removal

of a pairwise LCB from gi,gj may simultaneously remove LCBs

and breakpoints from other pairwise projections. Multiple

iterations of the optimization procedure result in a strictly

decreasing sequence of LMAs: Aloc~A06A16 . . .6AD.

The greedy breakpoint elimination process repeats until further

removal of LCBs (and their constituent LMAs) fails to improve the

SP anchoring score at node g. The procedure is repeated

successively at each of the G-1 internal nodes of the guide tree

Y, starting with the two nearest genomes in T (G) and proceeding

through the guide tree to the root.

Recursive anchoring
The initial set of local alignments in Aloc is typically computed

using a seed weight that finds local alignments in unique regions of

high sequence identity (w70%). As such, the initial set of anchors

frequently misses homologous regions with lower sequence

identity. After anchor selection by greedy breakpoint elimination

(Equation 4), our method searches for additional local alignments

between anchors existing among all pairs of genomes in D½L(g)�
and D½R(g)�, see Figure 2 step 5.

To improve sensitivity during recursive anchor search, smaller

seed weights are used as described by [9]. Any new local

alignments are added to Aloc. Consistency is enforced among the

new anchors and they are merged to form multi-genome anchors.

After the recursive anchor search, we apply greedy breakpoint

elimination to optimize the SP anchor score once again. The

recursive anchoring and breakpoint elimination steps repeat until

Wg(Aloc) no longer improves by more than e percent. The value of

epsilon defaults to e = 0.5%. This limit prevents the aligner from

expending large amounts of computational effort to improve the

anchoring by a trivial amount.

Anchored profile alignment and iterative refinement
The alignment anchors AD computed at node g are used to

perform an anchored profile-profile global alignment with

modified MUSCLE 3.7 software [44]. Global profile-profile

alignment requires the input sequences to be free from

rearrangement. Therefore, we partition the anchors in Aloc into

groups that are free from breakpoints in any pairwise projection. A

fully fledged locally collinear block L(g) at node g, no

longer constrained to two dimensions, is a maximal set

A�~A1,A2, . . . ,AN(AD(g) in which each pair-wise projection

of Ak into gi and gj in D(g) is contained in a common pair-wise

LCB in Pfpij(A
D)g. One or more of the original pair-wise LCBs

from Pfpij(A
D)g may be truncated by this restriction, and hence

the partitioning into LCBs at node g can be thought of as the

intersection among constituent pairwise LCBs. Then each LCB in

L(g) is independently subjected to anchored profile-profile

alignment using methods described elsewhere [44]. In order to

capture the full region of homology at the boundaries of each

LCB, sequence regions outside LCBs are randomly split and

assigned to neighboring LCBs. An example is shown with the

yellow regions in Figure 2 step 5.

After the initial profile-profile alignment, we then apply

window-based iterative refinement to improve the alignment.

Step 6 of Figure 2 corresponds to this process. Importantly,

MUSCLE refines the alignment with a multitude of alternative

guide trees and is not restricted to the guide tree chosen for

progressive anchoring. The use of multiple guide trees is a

particularly important feature in microbial genomes, which are

subject to lateral gene transfer. It should be noted that our use of

MUSCLE as a refinement step is an approach used in other

software pipelines as well [45].

Rejecting alignments of unrelated sequences
Segments of DNA between high-scoring alignment anchors can

be unrelated, especially in bacteria. Despite that, our method (like

many other genome aligners) applies a global alignment algorithm

to all inter-anchor segments, navely assuming that homology

exists. Our assumption of homology sometimes proves erroneous,

so to arrive at an accurate alignment we must detect forced

alignment of unrelated sequence. To do so, we apply an HMM

posterior decoder that classifies columns in a pairwise alignment as

either homologous or unrelated. The HMM structure, transition,

and emission probabilities are described elsewhere [34]. The

HMM makes predictions of pairwise homology, which we

combine using transitive homology relationships. Regions found

to be unrelated are removed from the final alignment. Application

Multiple Genome Alignment
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of the homology HMM is the final step in the alignment

procedure, shown as step 8 in Figure 2.

Implementation
The alignment algorithm has been implemented in the

progressiveMauve program included with Mauve v2.0 and later.

The program is open source C++ code (GPL), with 32- and 64-bit

binaries for Windows, Linux, and Mac OS X available from

http://gel.ahabs.wisc.edu/mauve. An accessory visualization pro-

gram is included. Default alignment parameters have been

calibrated for bacterial genomes [38].

Results

Quantifying alignment accuracy
Our new alignment algorithm uses approximations and

computational heuristics to compute alignments. To understand

the quality of alignments produced by our approach it is essential

to objectively quantify alignment accuracy. Without a known

‘correct’ genome alignment, automated alignment heuristics can

not be evaluated for accuracy. Although several benchmark data

sets exist for protein sequence alignment [44,46], no such

benchmark data sets exist for genome alignment with rearrange-

ment. Thus far, manual curation of a megabase-scale whole-

genome multiple alignment that includes rearrangement and

lateral gene transfer has proven too time-consuming and difficult.

Despite the lack of a manually curated correct alignment, we can

estimate the alignment accuracy by modeling evolution and

aligning simulated data sets. All results described in this section

and the programs used to generate them are available as

supplementary material.

Simulated evolution model
In previous work, we constructed a genome evolution simulator

that captures the major types, patterns, and frequencies of

mutation events in the genomes of Enterobacteriacae [9]. We

use the same simulated model of evolution in the present study but

with different evolutionary parameters. Given a rooted phyloge-

netic tree and an ancestral sequence we generate evolved

sequences for each internal and leaf node of the tree, along with

a multiple sequence alignment of regions conserved throughout

the simulated evolution. Along the branches, mutations such as

nucleotide substitution, indels, gene gain/loss, and inversion

rearrangements are modeled as a marked Poisson process. We

score calculated alignments against the correct alignments

generated during the evolution process.

Although gene duplication occurs very frequently in bacteria,

we do not explicitly model it here as duplications tend to be unstable

in bacterial chromosomes and are often counterselected [47]. That

is, duplications generally do not persist for long periods of time.

Instead, we indirectly model gene duplications in two ways. First,

the source DNA sequence for gene gain events comes from a

1Mbp pool of sequence. At moderate to high simulated rates of

gene gain, many megabases of DNA are sampled from the donor

pool, and as a result, identical donor sequence gets inserted into

the simulated genomes in multiple places. The effect is similar to a

dispersed repeat family, such as bacterial IS elements or

mammalian SINE elements.

Second, we use the genome sequence of E. coli O157:H7 as

ancestral sequence and as donor sequence for all insertion and

gene gain events. The E. coli O157:H7 genome has numerous

naturally occurring repeats that are carried on to simulated

descendant genomes, and is among the largest of the sequenced E.

coli genomes, providing as much natural starting material for

simulation as possible. By using real genome sequence as ancestral

sequence, the resulting evolved genomes often have similar

nucleotide, dinucleotide, k-mer composition, repeat copy number

and repeat distribution. The unknown natural forces governing

the evolution of such traits would otherwise be extremely difficult

to capture in a simulation environment.

Our experimental results at high mutation rates should be

interpreted with caution, however, since the more simulated

mutations applied, the less a simulated genome will look like a real

genome. This is a shortcoming of all forward-time evolution

simulations and we are unaware of any solution to this problem.

Nevertheless, simulation studies remain the only practical way to

objectively measure the quality of multiple genome alignments.

Accuracy evaluation metrics
Previous studies of alignment accuracy have used a sum-of-pairs

scoring scheme to characterize the residue level accuracy of the

aligner [9,46]. The experiments presented here use sum-of-pairs

scoring, but we also define new accuracy measures to quantify

each alignment system’s ability to predict indels and breakpoints of

genomic rearrangement. For each type of mutation, we define

True Positive (TP), False Positive (FP), and False Negative (FN)

predictions as discussed below. Using these definitions, we can

measure the aligner’s Sensitivity as
TP

TPzFN
and Positive

Predictive Value (PPV) as
TP

TPzFP
.

For nucleotide pairs, a TP is a pair aligned in both the

calculated and correct alignments. A FP is a nucleotide pair in the

calculated alignment that is absent from the correct alignment.

Likewise, a FN is a pair in the correct alignment not present in the

calculated alignment. We do not quantify True Negative (TN)

alignments as the number of TN possibilities is extremely large,

growing with the product of sequence lengths.

We classify each indel in the correct alignment as a TP or a FN

based on the predicted alignment. A true positive indel has at least

one correctly aligned nucleotide pair in the diagonal/block on

either side of the indel and at least one nucleotide correctly aligned

to a gap within the indel (see Figure 4). The number of TP indels

will never exceed the number of indels in the correct alignment.

We define FP indel predictions as the number of excess indel

predictions beyond the true positives. FN indels lack a correctly

predicted nucleotide pair in the flanking diagonals/blocks or lack

predictions of gaps in the correct gapped region. Figure 4 gives

examples of each case.

Aligners are notoriously bad at predicting the exact position of

indels [48]. Under our definition, a TP indel prediction need not

predict the exact boundaries of an indel, merely the existence of an

indel. This scheme allows us to distinguish cases of missing indel

predictions from cases where the indel was predicted but not

positioned correctly. We quantify indel boundary prediction

accuracy as the distance between the true boundary and the

nearest aligned nucleotide pair in the diagonal/blocks which flank

the predicted indel. When the predicted indel is too large, our

metric assigns a positive value to the boundary score. When the

predicted indel is too small, a negative value is assigned.

Large indels have historically caused problems for nucleotide

aligners, which have a tendency to break up large indels into a

string of smaller gaps with intermittent aligned sequence. Under

our definition, a large indel can still be considered as a TP

prediction even if it is broken into a string of smaller gaps by the

aligner (See Figure 4 prediction A for an example). Our rationale

is that the aligner did correctly predict the presence of unrelated

sequence, for which it garners a TP, but erroneously predicts

additional transitions to and from homology, which are classified
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as FP indel predictions. To distinguish whether a TP indel was

broken into two or more smaller gaps, we define a class of

‘‘singular’’ TP indel predictions as indels that were predicted as a

single alignment gap. See Figure 4 prediction D for an example of

a ‘‘singular’’ TP indel.

Sum-of-pairs LCB accuracy and breakpoint localization
For each pair of genomes we also measure whether the aligner

correctly predicts LCBs among that pair, yielding a sum-of-pairs

LCB accuracy metric. For each pairwise LCB in the true

alignment, we record a TP LCB prediction when the predicted

alignment contains at least one correctly aligned nucleotide pair in

that LCB. Pairwise LCBs lacking any correctly predicted

nucleotide pairs are FN predictions. Finally, pairwise LCBs in

the predicted alignment lacking any correctly aligned nucleotide

pairs are False Positive (FP). Again, we do not measure TN.

As with indels, we define a separate metric to quantify how well

each aligner localizes the exact breakpoints of rearrangement. For

TP LCB predictions, we record the difference (in nucleotides)

between the boundaries of the correct LCB and those of the

predicted LCB. The resulting value is negative when the predicted

LCB fails to include the full region of homology, and positive when

a predicted LCB extends beyond the true boundary.

The rationale behind the LCB accuracy metrics is that they are

robust to misprediction of LCB boundaries and effects induced by

prediction of extra LCBs. For example, if a predicted LCB

contains a single correctly aligned pair of nucleotides and is much

shorter than the true LCB, then the error will be recorded as LCB

boundary prediction error. In another example, imagine a single

true LCB is split into two predicted LCBs with a third false positive

LCB intervening. Our metric would record 1 True Positive and 1

False Positive. The LCB boundary scores would be determined by

how far the left and right boundaries of the true LCB lie to the

nearest boundaries of the predicted LCBs that have correctly

aligned nucleotides in that true LCB. This approach prevents the

False Positive LCB from disturbing our measurement of LCB

boundary accuracy.

Under our definitions of TP, FP, TN, and FN predictions,

specificity, which is commonly defined as
TN

FPzTN
, is not a useful

metric. The extremely large values taken on by TN would drive

the quotient to 1 in most cases.

Selection of aligners for testing
We downloaded and tested all multiple-genome aligners that

were publicly available as of May 2008, when this work was

completed. Multi-genome aligners known to handle rearrange-

ments at that point in time included mauveAligner 1.3.0 [9],

progressiveMauve 2.2.0, and TBA 28-02-2006 [17]. We did not

test two-stage pipelines involving separate synteny mapping and

alignment steps, such as MERCATOR+MAVID [49] or Chain-

net+TBA [50] but this would be an interesting area for future

work. We did test a selection of available multiple-aligners that

assume collinear genome sequences as input, including MLAGAN

2.0 [19], MAVID 2.0 [18], and Pecan 0.7 [33], which was

Figure 4. Quantifying indel accuracy. The correct alignment is
shown at left and four possible predicted alignments are shown as A, B,
C, and D. Nucleotides have been assigned a numerical identifier. The
correct alignment has a single indel which partitions the alignment into
three sections: the left aligned block, the indel, and the right aligned
block. Predicted alignments must have one correctly aligned nucleotide
pair in each of the three sections to count a true positive indel
prediction.
doi:10.1371/journal.pone.0011147.g004
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available at the time of this work for download but not yet

published. In the time since the aligner testing was completed,

several new alignment systems have been published, including

Enredo+Pecan [33], FSA [51], and an extension of LAGAN for

reference-free alignment with duplication and rearrangements

[32]. We did not test the duplication alignment accuracy of glocal

alignment methods. Our simulation system does not explicitly

model gene duplication, and worse, we do not know the true

alignment of repeats in the ancestral genomic material, so it is

impossible to quantify the accuracy of glocal aligners using our

evaluation scheme. Testing of FSA [51] remains as future work.

Finally, we did not test any of the numerous pairwise aligners or

pairwise synteny mapping methods, as our work focuses on the

multiple genome alignment problem.

Unless otherwise specified, we ran each aligner with default

parameter settings. The aligners MLAGAN, TBA, and PECAN

require specification of a guide tree for alignment; a guide tree is

optional for MAVID. We supplied those aligners with the true

simulation tree. mauveAligner and progressiveMauve were not

supplied with the true simulation tree, but rather calculated their own

guide tree for anchoring (a variety of local guide trees are used for

alignment optimization). This potentially gives an advantage to

MLAGAN, TBA, PECAN, and MAVID in the accuracy compar-

ison, as in many cases of biological interest, a reasonable guide tree

may not be identifiable prior to alignment. Three supplementary files

described below contain complete command-line logs for each

simulation and aligner run, along with the raw accuracy results.

Accuracy on collinear genomes
Our first experiment compares the accuracy of mauveAligner

1.3.0, progressiveMauve, MLAGAN 2.0, MAVID 2.0, and TBA

28-02-2006 when aligning collinear sequences that have under-

gone increasing amounts of nucleotide substitution and indels. For

each combination of indel and substitution rate, nine genomes are

evolved from a 1Mbp ancestor according to a previously inferred

phylogeny [9]. We then construct alignments of evolved sequences

using each aligner with default parameters, and quantify sensitivity

and positive predictive value, (PPV) for nucleotide pair and indel

predictions. Three replicates were performed, results shown in

Figure 5; the simulation tree is shown in Figure 6.

In general, all aligners perform well on collinear sequence,

except for mauveAligner 1.3.0 which is unable to anchor genomes

with high mutation rates. Of the tested aligners, TBA offers the

highest nucleotide sensitivity, and progressiveMauve gives the best

indel sensitivity and positive predictive value in most cases. Despite

that, all aligners are quite bad at predicting indels accurately,

which may be in part due to an inherent loss of information

introduced during the course of simulated evolution [48]. We did

not test the Pecan aligner here, although a detailed evaluation of

its performance can be found elsewhere [45] and we do perform

some testing on it below. We note that on the smaller set of

simulated datasets for which we did test Pecan (below) it had

higher indel sensitivity, nucleotide sensitivity, and nucleotide PPV

than all other methods including progressiveMauve (data not

shown).

Figure 5. The accuracy of aligners on sequences evolved without rearrangement and with increasing nucleotide substitution and
indel rates. Aligners were tested on 100 combinations of indel and substitution rate, with performance averaged over three replicates. All methods
lose accuracy as mutation rates grow, and the most accurate alignment method depends on the particular mutation rates. progressiveMauve and
MLAGAN exhibit the best indel sensitivity and positive predictive value (PPV), while TBA is more sensitive than other methods at extremely high
mutation rates. MLAGAN did not align genomes without indels within the allotted 10 hours, resulting in the black row at the bottom. The asterisk in
this figure indicates the combination of indel rate and substitution rate expected to be similar to our 23 target genomes.
doi:10.1371/journal.pone.0011147.g005
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The data corresponding to this simulation are available as

File S1.

Accuracy in the face of gain, loss, and rearrangement and
gene

We assessed the relative performance of mauveAligner 1.3.0,

progressiveMauve, and TBA [17] when aligning genomes with

high rates of genomic rearrangement, gain, loss, and nucleotide

substitution. Although the original TBA manuscript did not fully

describe alignment with genomic rearrangement, the most recent

release (dated 28-02-2006) handles it [28,30]. For our first set of

experiments, shown in the top half of Figure 6, we simulated

evolution at 100 combinations of substitution and inversion rate.

In addition to nucleotide and indel accuracy, we also quantify

LCB accuracy on this data set. The results indicate that

Figure 6. Accuracy of mauveAligner, progressiveMauve, and TBA when aligning genomes with inversions and segmental gain and
loss. In the experiments shown at top, the inversion rate increases along the y-axis and the substitution rate along the x-axis. The most distant taxa
have 0.05 indels per site. progressiveMauve clearly outperforms mauveAligner 1.3.0 over the entire space of inversion rates. It should be noted that in
applications such as the UCSC browser alignments TBA was used in conjuction with a separate synteny-mapping method to identify rearrangements
[66], so the performance results given here are not cause for alarm. Experiments at bottom quantify aligner performance in the presence of small- and
large-scale gain and loss events. The y-axis gives the average number of large gain and loss events [length*Unif(10kbp, 50kbp)] between the most
distant taxa, while the x-axis gives small gain and loss events [length*Geo(200bp)]. Substitution and indel rates are those indicated by the asterisk in
Figure 5, and the most distant taxa have 42 inversions on average. The asterisk in this figure indicates a simulation scenario expected to be similar to
our 23 target genomes. Once again progressiveMauve outperforms other methods, but all methods break down when faced with substantial large-
scale gain and loss. Of note, when mauveAligner 1.3.0 attains high PPV it usually does so with very poor sensitivity.
doi:10.1371/journal.pone.0011147.g006
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progressiveMauve can accurately align genomes with substantially

higher rates of rearrangement than our previous approach.

Although TBA exhibits lackluster performance on heavily

rearranged genomes, comparison with the results for MAVID

2.0 and MLAGAN 2.0 (shown in Figure S1) demonstrates that for

all rates of inversion, TBA produces much better alignments than

methods which assume genomes are free from rearrangement. We

are uncertain why TBA does not reach the same level of

performance as progressiveMauve on heavily rearranged genomes,

but discussion with the authors of TBA suggests that it may be a

bug in the specific version available at the time of testing (Webb

Miller, personal communication). A new version of TBA was

available at the time of manuscript submission.

For the second set of experiments we simulated genomes with

10 increasing rates of small-scale segmental gain and loss and 10

increasing rates of large-scale segmental gain and loss. Small gain

and loss events are geometrically size distributed with mean

200bp, while large gain and loss events have uniform lengths

between 10kbp and 50kbp. These sizes were chosen to match

empirically derived estimates [9]. The results, shown in Figure 6,

indicate that mauveAligner 1.3.0 falters when faced with large-

scale segmental gain and loss, while progressiveMauve and TBA

perform significantly better. As gain and loss rates increase in our

model, the amount of orthologous sequence shared among

genomes deteriorates, eventually reaching zero in the limit of

infinitely high rates.

The data corresponding to these simulations are available as

File S2 and File S3 for the substitution/inversion simulation and

the gene gain/loss simulation, respectively.

Gap dribble and the quality of long gap predictions
Gene gain and loss events manifest themselves in genome

alignments as long gaps. Every predicted alignment gap implies at

least one insertion or deletion of nucleotides has taken place in the

history of the organisms under study. Since we would like to

quantify the contribution of segmental gain and loss to the target

genomes, it is imperative that predicted alignment gaps be as

accurate as possible.

Current sequence alignment methods typically score pairwise

alignments with an affine gap scoring scheme consisting of a gap

open penalty and a gap extend penalty. In a probabilistic setting,

the optimal affine-gap alignment roughly corresponds to a viterbi

path alignment from a pair-HMM with a single pair of insert and

delete states [52]. However, when aligning genomes which have

undergone a significant amount of gene gain and loss, an excess of

large gaps exists that does not fit the gap size distribution imposed

by a standard global alignment pair-HMM [2]. The net result is

that under the affine gap model, aligners tend to break up large

gaps into a series of small gaps interspersed with short stretches of

improperly aligned nucleotides. In the spirit of classifying

systematic alignment errors introduced by [48], we refer to this

problem as gap dribble, since short alignments are dribbled along

the large gap. The large number of small gaps creates problems

when trying to reconstruct the history of gene gain and loss events,

since they imply a much greater number of insertions and

deletions than actually occurred.

Using our simulated evolution platform, we quantify the

performance of each aligner in predicting gaps of varying size.

We simulated evolution of collinear genomes (no rearrangement)

that have undergone a realistic amount of gene gain and loss,

corresponding to previous estimates for the rates of these events in

the enterobacteria [9]. Nucleotide substitutions and indels were

modeled to occur at the rate indicated by the blue asterisk in

Figure 5, and gene gain and loss events were modeled to occur

with twice the frequency indicated by the blue asterisk in Figure 6.

Figure 7 Left gives the observed size distribution of gaps.

We then applied each aligner to the simulated genomes and

measured the accuracy of gap predictions as a function of gap size.

The aligners mauveAligner 1.3.0, MAVID 2.0, MLAGAN 2.0,

TBA 28-02-2006, progressiveMauve, and Pecan v0.7 were tested.

Pecan v0.7 is a new aligner that has been demonstrated to have

excellent performance [33,45] by virtue of using probabilistic

consistency during the anchoring process. Moreover, Pecan v0.7

uses a pair-HMM with an extra gap state specifically designed to

model long indels. The reconstructed alignments were scored

against the true alignments and results for ten replicates were

recorded.

The right side of Figure 7 shows the quality of each aligner’s

indel predictions as a function of the true gap size. Shown is the

frequency with which gaps of a particular size are predicted as a

single gap (singular TP) instead of a string of smaller gaps with

interspersed alignments of non-homologous sequence (nonsingular

TP). From the figure, it is obvious that aligners which use an affine

gap penalty tend to perform poorly in predicting large gaps.

Somewhat surprisingly, the pair-HMM with an extra gap state

used by Pecan to model long indels still yields poor predictions of

long gaps, although sensitivity is quite good (not shown).

progressiveMauve appears to perform well at all gap sizes,

especially when the aligner is told to explicitly assume the

genomes are collinear (proMauve_col). To determine whether

progressiveMauve’s performance results from its anchoring

algorithm or use of the Homology HMM to reject alignments of

unrelated sequence, we also tested progressiveMauve without the

Homology HMM, shown as panels proMauve_no_HMM and

proMauve_col_no_HMM. Without the Homology HMM pro-

gressiveMauve yields inferior results, indicating that the Homology

HMM does indeed address the problem of gap dribble. The

Homology HMM functionality of progressiveMauve is available

via command-line interface, so it is possible to apply it to any

alignment in the XMFA format.

Discussion

progressiveMauve excels at aligning rearranged genomes with

different gene content. The so-generated positional homology

alignments enable a wide variety of downstream research. Here we

illustrate some applications with an alignment of 23 complete E.

coli, Shigella and Salmonella genomes. The alignment can be used to

characterize the shared (core) and total (pan-genome) amount of

sequence found in these species. The alignment can also be used to

extract variable sites for more traditional phylogenetic analyses.

progressiveMauve identifies and aligns both conserved regulatory

regions and hypervariable intergenic regions.

The progressiveMauve alignment of twenty-three E. coli, Shigella,

and Salmonella genomes reveals a core genome of 2,675 segments

conserved among all taxa, which account for an average of

2.46 Mbp of each genome. Between the core segments lie regions

conserved among subsets of taxa and regions unique to individual

genomes. By counting each core, unique, and subset segment

exactly once, one constructs a total pan-genome that includes

genes and intergenic regions alike. The 23 genomes have a pan-

genome of 15.2 Mbp, approximately three times that of a single

strain, indicating a tremendous degree of variability in both genic

and intergenic content.

We now focus specifically on the genomic variation among the

E. coli and Shigella. Shigella spp. are widely recognized as E. coli

based on phylogenetic analyses [53] and genome comparisons

[54], though the original phenotypically derived taxonomy
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persists. We will refer to them collectively as E. coli/Shigella.

Similarly, taxonomic revisions of Salmonella, have collapsed almost

all strains into a single species: S. enterica. Thus, we are examining

the structure of the pan and core genomes of two sister species, E.

coli/Shigella and Salmonella. The 16 E. coli/Shigella strains have a

pan-genome of 12.5 Mbp and core of 2.9 Mbp, while the seven S.

enterica serovars have a pan-genome of 5.8 Mbp and a core

genome of 4.1 Mbp. The intersection of the core genomes is the

joint core, while the union of the pan-genomes is the combined

pan-genome, shown in Figure 8. Note that the intersection of pan-

genomes is 580 kb larger than the joint core. This counter-

intuitive situation arises when components of the core-genome of

one group are found in some, but not all members of the other

species. In this instance, 220 kb can be attributed to losses of genes

in Shigella strains that are otherwise conserved among all E. coli and

Salmonella. A more detailed dissection of the patterns of gene gain

and loss in the E. coli and Shigella based on progressiveMauve

alignments has been given elsewhere [55].

In comparison with the core- and pan-genome sizes estimated

using intact protein coding genes, we expect our core-genome

estimates to be somewhat larger and the pan-genome smaller,

because our method can include any positionally homologous

segment and not just intact genes. In 17 E. coli isolates, Rasko et

al. found 2200 conserved genes and 13,000 genes in the pan-

genome [56]. The average gene size in E. coli is slightly less than

1000nt. Based on the average gene length, our method finds an

additional 14% of the average genome to be part of the core and

a reduction in the pan-genome size of 4% in a similar number of

genomes. However, our study includes Shigella which was not

included in the protein-based study [56], so organism sampling

may also contribute to differences in core- and pan-genome

sizes.

Figure 8. Venn diagram of the pan-genome (left) and core genome (right) of E. coli/Shigella and S. enterica.
doi:10.1371/journal.pone.0011147.g008

Figure 7. Frequency with which gaps are correctly predicted as a singular gap as a function of gap size. Left Average size distribution
of gaps in an alignment of the nine genomes evolved at mutation rates which correspond to previous estimates for the E. coli, Shigella, and
Salmonella. The gap size distribution was averaged over 10 simulations. Right Fraction of TP indel predictions that are singular TP indel predictions
by true gap size. Ten replicate simulations of evolution with gene gain, gene loss, indels, and nucleotide substitution were performed and alignments
were computed using each aligner. Predicted indels were classified according to the definitions given in Figure 4, namely, a singular True Positive
implies the true gap is predicted as a single gap. Remaining True Positive indels have the true gap broken up into two or more predicted gaps. For
each aligner, the fraction of singular predicted gaps is shown as a function of gap size. Missing points indicate a lack of TP indel predictions in that
size category. All aligners do well in predicting small gaps, but large gaps present problems. Most aligners, including Pecan which uses an extra pair-
HMM state to model long gaps, tend to predict long gaps as a series of short gaps interspersed with alignments of unrelated sequence. We refer to
such behavior as ‘‘gap dribble.’’ progressiveMauve was run with default parameters (proMauve), without the Homology HMM (proMauve_no_HMM),
with the option to assume genomes are collinear (proMauve_col), and finally assuming collinearity and without the HMM (proMauve_col_no_HMM).
doi:10.1371/journal.pone.0011147.g007
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Inference of genome rearrangement history
progressiveMauve alignments also make an excellent starting

point for analysis of genome rearrangement patterns. Genome

rearrangement is known to occur via a multitude of mutational

forces, including inversion, transposition, and duplication/loss,

and is especially prominent in bacterial pathogens. Methods

already exist to infer inversion histories among pairs of genomes

[57,58] and multiple genomes [59,60]. More general models to

account for multiple chromosomes and multi-break rearrange-

ments have also been developed [61–63], although not yet in the

Bayesian phylogenetic context.

Most genome rearrangement history inference methods do not

also infer gene gain and loss, but instead assume that gene content

across genomes is equal. When gene content is nearly equal,

current models can use a multiple genome alignment to infer

patterns of genome rearrangement [64]. However, equal gene

content has proved to be the exception rather than the rule.

Despite that, a progressiveMauve alignment with differential

content can be trivially reduced to contain only segments

conserved among all taxa of interest, yielding a signed gene-order

permutation matrix that is suitable for current genome rearrange-

ment inference software.

A further avenue of genome rearrangement inference would be

to combine the positional homology information in a progressi-

veMauve genome alignment with the repeat family information

available from general local-multiple alignment programs such as

Repeatoire [34]. One could then infer repeat-annotated phyloge-

netic trees using genome arrangement information [65]. Such an

approach might be especially appropriate for bacteria where

homologous recombination among repeats appears to play a

major role in genome rearrangement.

Alignment visualization
Genome alignments are large and complex entities that are not

usually suitable for direct interpretation. Genome comparison

browsers such as the UCSC browser [66], VISTA [67], and others

have proven invaluable as tools to facilitate understanding of

whole genome alignments. To aid in use of progressiveMauve

alignments, we have developed an interactive visualization

program that can present a complex alignment in a meaningful

and easily understandable visual paradigm.

The visualization system illustrates three major aspects of genome

evolution: genome rearrangement, patterns of segmental gain and

loss, and the extent of local conservation of nucleotide sequences.

Figure 9 illustrates the latter two aspects in a visualization of the 23-

way alignment of E. coli, Shigella, and Salmonella.

Figure 9 shows the region surrounding the yhjE gene, which

encodes a product in the Major Facilitator Superfamily of

transporters. yhjE is flanked by yhjD to the left, and yhjG to the

right. The intergenic regions between these three genes are

hypervariable (as indicated by the variety of colors in Figure 9) and

have been subject to multiple insertion and deletion events. The

hypervariable nature of the regions surrounding yhjE may not be

surprising, because it harbors a REP element to the left, and a RIP

element to the right. REP elements contain a series of two or more

35-bp palindromic repeats and are known for a variety of

functions, including the binding of DNA gyrase and PolI, and as

mRNA anti-decay hairpins or rho-dependent attenuators. RIP

elements are a specialized form of REP elements that contain an

IHF binding site [68], and this particular RIP also contains a REPt

transcription terminator sequence. IHF is a global transcriptional

regulator in E. coli. Repeat elements are known to be unstable in

bacterial genomes [47].

Figure 9. A Mauve visualization of the hypervariable intergenic regions surrounding yhdE. Each genome is laid out in a horizontal track,
with annotated coding regions shown as white boxes. A colored similarity plot is shown for each genome, the height of which is proportional to the
level of sequence identity in that region. When the similarity plot points downward it indicates an alignment to the reverse strand of the genome.
Colors in the similarity plot indicate the combination of organisms containing a particular segment of the genome. Segments colored pink/mauve are
conserved among all organisms, while purple segments are conserved in everything but Salmonella, and segments colored in olive green are
conserved among non-uropathogenic E. coli. The visualization system is interactive and written in Java, and works on all computers supporting Java
1.4 or later.
doi:10.1371/journal.pone.0011147.g009
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Interestingly, the patterns of insertion/deletion in the intergenic

regions surrounding yhjE do not follow the expected taxonomic

patterns, suggesting instead that recombination among strains has

taken place. The RIP region present to the right of yhjE in most E.

coli has been replaced with an unrelated sequence in E. coli

E23477A and S. boydii (shown as turquoise in Figure 9), but not in

S. sonnei. Those three strains form a clade in the E. coli/Shigella

taxonomy [55] with E. coli E23477A branching first, so convergent

evolution must have occurred here.

The pattern of intergenic variability surrounding yhjE suggests

potential regulatory divergence, a much studied evolutionary

mechanism in eukaryotes often overlooked in microbial research.

The yhjE locus is by no means the only region harboring intergenic

variablity; a screen of the 23-way alignment identifies 102 other

strictly intergenic regions with similarly variable conservation

patterns.

Scalability to large genomes and many genomes
The algorithm is complex and many factors contribute to the

overall asymptotic time complexity and running time of the

algorithm in practice. The novel sum-of-pairs anchoring heuristic

used by progressiveMauve is at least O(N2) in time complexity,

since it requires evaluation of LCBs among pairs of genomes. We

find that alignments of 5 genomes averaging 5Mbp in size can be

computed in under an hour on a single computer, 20 genomes of

the same size can be computed about 24 hours using 4Gb of

memory, and alignments of 40 Escherichia and Shigella genomes of

5Mbp can be computed in ~1170 compute hours with 8GB RAM.

The main contributing factors to wall-clock runtime are number of

genomes and divergence of those genomes, with higher values of

each causing fast growth in both memory and time requirements.

Alignment of larger genomes is feasible; pairwise alignment of

Drosophila melanogaster and Drosophila yakuba requires less than

3 hours on a single computer, while alignment of the human and

mouse genomes requires 90GB RAM and about 32 compute

hours. The human/mouse alignments and the alignment of 40 E.

coli and Shigella genomes are available for download from http://

biotorrents.net [69].

We note that many parts of the algorithm are independent and

would be amenable to parallelization, however the current release

(version 2.3.1) runs in serial mode only.

Gene duplications: glocal versus positional homology
alignment

As described above, progressiveMauve generates positional

homology multiple genome alignments. These alignments differ

substantially from glocal genome alignments, wherein all copies of a

repetitive gene family may become aligned to each other. In our

view, the positional homology alignment is most useful for comparison

of closely related microbes for several reasons. First, the

contribution of whole genome duplication and segmental

duplication in most bacteria and archaea is thought to be small.

Second, even though large tandemly repeated segments are

generated very frequently in microbes and may be a fundamental

process in adaptive evolution, they are extremely unstable and

generally do not persist over long periods of time [70]. For this

reason, a method which optimizes long collinear regions for

alignment generally will identify and align the correct positional

homolog. The so-aligned positional homologs will often be

orthologs, or in the case of lateral gene transfer, they will be

xenologs. The positional homology alignment facilitates down-

stream alignment tasks such as phylogenetic inference of

nucleotide substitution, phylogenetic inference of gene gain and

loss [55], phylogenetic inference of rearrangement [64], and even

inference of homologous recombination-induced lateral gene

transfer [71].

The main disadvantage of a positional homology alignment is

that by itself it does not provide a suitable basis for inference of

within-genome gene conversion or inference of gene duplication

histories. Especially in scenarios where some of the input genomes

have undergone whole-genome duplication, the positional homology

alignment method may fail to align many target regions. A glocal

alignment by itself can be used for such purposes. Inference tools

to reconstruct genome evolution based on glocal-type alignments

have begun to appear [72], and some have even begun to

incorporate nucleotide-level evolutionary models [73]. Still, a

model that incorporates both nucleotide and genome arrangement

evolution remains to be implemented.

One major shortcoming of our simulation study is that it does

not explicitly model gene duplication. Even though duplicated

material can be indirectly created by repeated gain of the same

region, our simulation platform does not quantify the frequency

with which that happens. Therefore we are unable to objectively

characterize the accuracy of alignment methods at particular rates

of simulated gene duplication. However, by manually inspecting

alignments of multi-gene families in the Mauve alignment viewer,

we have observed that the progressiveMauve algorithm aligns the

positional homolog in many cases where our previous mauveA-

ligner algorithm failed to do so. progressiveMauve is an

improvement with respect to alignment of positional homologs

in multi-gene families, but a full characterization of limitations

with respect to gene duplication remains for future work.

Conclusions
We have presented a novel multiple genome alignment heuristic

that extends our previous approach by aligning regions conserved in

subsets of genomes. which demonstrates a substantial accuracy

improvement on simulated datasets. Key features of the approach are

an anchor scoring function that penalizes alignment anchoring in

repetitive regions of the genome and penalizes genomic rearrange-

ment. Use of a Sum-of-pairs approach enables robust scoring of

genomes that have undergone gene gain, loss and rearrangement—a

scenario not addressed by our previous alignment method.

Future efforts to improve genome alignment may explicitly

incorporate models of evolutionary distance into alignment scoring

process [74]. Multiple alignment methods based on probabilistic

consistency have demonstrated great promise in the context of

amino-acid alignment [75] and aligning collinear genomic regions

[33], and in principle, could be extended to genome alignment

with rearrangement. Other recent efforts have developed fast

approximations to statistical alignment [51] and such methods will

surely factor into future approaches to align genomes with

rearrangement.

No method reconstructs error-free genome alignments, and any

particular alignment is likely to contain errors that can

substantially influence downstream inference. However, methods

to estimate the confidence in aligned columns are under

continuing development [48,51]. Downstream inference methods

that can explicitly cope with the inherent uncertainty in

reconstructed alignments will be crucial for continued advances

in comparative genomics.

Supporting Information

Table S1 A listing of bacterial strains and accession numbers

included in the 23-way genome alignment.

Found at: doi:10.1371/journal.pone.0011147.s001 (0.03 MB

PDF)
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Figure S1 Accuracy results for MLAGAN 2.0 and MAVID 2.0

on genomes simulated with rearrangement and gene flux. Neither

software was designed to handle such cases directly.

Found at: doi:10.1371/journal.pone.0011147.s002 (0.06 MB

PDF)

File S1 Accuracy results for nt substitution and indels. Evolution

was simulated along a fixed 9-taxon tree encoded as a newick

string in the file simujobparams.pm. A range of substitution rates

were simulated from 0 substitutions per site to about 0.9

substitutions per site among the most distant taxa in the fixed

tree. In conjunction, a range of indel rates were also simulated, up

to about 0.18 indels per site among the most distant taxa. For each

simulation, the true alignment is recorded along with the set of

evolved sequences. Aligners are then run to reconstruct the true

alignment. The program scoreAlignment2 is used to calculate

various accuracy metrics on the reconstructed alignments. These

accuracy metrics include sensitivity and positive predictive value

when for aligning homologous nucleotides, along with similar

metrics for identifying indels. The scoreAlignment2 program also

generates an indel boundary report, although it in not included in

this archive due to size constraints. The indel boundary report

records, for every indel in the true alignment, how close the

boundaries of the predicted indel were in the alignment calculated

by an aligner. The report contains the size of the true and

predicted indels, so that one can generate summaries of indel

accuracy stratified by size. Note: this archive must be decom-

pressed with 7-zip first and then tar. This archive contains results

of accuracy evaluations on each aligner program. The simulated

alignments themselves are not contained in the archive, as they

would be far too space-consuming. Instead, each subdirectory

contains the summary of the accuracy tests, along with all

simulated evolution parameters used, and importantly, the

random seed used for simulation so that the each alignment

dataset can be reconstructed. To reconstruct the original

alignments, one must also obtain a few freely-available programs

and scripts, as described on http://asap.ahabs.wisc.edu/mauve-

aligner/mauve-developer-guide/evaluating-alignment-quality-and-

stress-testing-the-aligner.html. Subdirectories are named first

according to the aligner tested, e.g., mauve = = mauveAligner,

promauve = = progressiveMauve, mavid = = Mavid 2.0, mla-

gan = = MLAGAN 2.0, tba = = TBA 2006-02-28. The remaining

portion of each subdirectory name indicates the type of experiment

performed. ntsub_indel is for collinear genomes simulated with

increasing rates of substitution and indels. ntsub_inv is for genomes

simulated with increasing rates of inversion rearrangements and

nucleotide substitution. geneflux is for genomes simulated with

increasing rates of small- and large-scale gain and loss (flux) of genes.

Note that the full indel boundary accuracy results have also been

omitted, as they include several numerical values for every indel of

every simulated alignment and were therefore too space-consuming.

They can of course be regenerated using the simulation scripts and

the random seeds contained in this archive.

Found at: doi:10.1371/journal.pone.0011147.s003 (5.74 MB

TAR)

File S2 Accuracy results for gene gain and loss (flux). Evolution

was simulated along a fixed 9-taxon tree encoded as a newick

string in the file simujobparams.pm. Nucleotide substitution and

indel rates were fixed so that the most distant taxa would have

divergence similar to E. coli and Salmonella. Large gene gain and

loss events were simulated with rates giving 0 to 150 events along

the path connecting the most distant taxa in the fixed tree. In

conjunction, small gene gain and loss events were also simulated,

ranging from 0 up to about 10000 events among the most distant

taxa. For each simulation, the true alignment is recorded along

with the set of evolved sequences. Aligners are then run to

reconstruct the true alignment. The program scoreAlignment2 is

used to calculate various accuracy metrics on the reconstructed

alignments. These accuracy metrics include sensitivity and positive

predictive value when for aligning homologous nucleotides, along

with similar metrics for identifying indels. The scoreAlignment2

program also generates an indel boundary report, although it in

not included in this archive due to size constraints. The indel

boundary report records, for every indel in the true alignment,

how close the boundaries of the predicted indel were in the

alignment calculated by an aligner. The report contains the size of

the true and predicted indels, so that one can generate summaries

of indel accuracy stratified by size. Note: this archive must be

decompressed with 7-zip first and then tar. This archive contains

results of accuracy evaluations on each aligner program. The

simulated alignments themselves are not contained in the archive,

as they would be far too space-consuming. Instead, each

subdirectory contains the summary of the accuracy tests, along

with all simulated evolution parameters used, and importantly, the

random seed used for simulation so that the each alignment

dataset can be reconstructed. To reconstruct the original

alignments, one must also obtain a few freely-available programs

and scripts, as described on http://asap.ahabs.wisc.edu/mauve-

aligner/mauve-developer-guide/evaluating-alignment-quality-and-

stress-testing-the-aligner.html. Subdirectories are named first

according to the aligner tested, e.g., mauve = = mauveAligner,

promauve = = progressiveMauve, mavid = = Mavid 2.0, mla-

gan = = MLAGAN 2.0, tba = = TBA 2006-02-28. The remaining

portion of each subdirectory name indicates the type of experiment

performed. ntsub_indel is for collinear genomes simulated with

increasing rates of substitution and indels. ntsub_inv is for genomes

simulated with increasing rates of inversion rearrangements and

nucleotide substitution. geneflux is for genomes simulated with

increasing rates of small- and large-scale gain and loss (flux) of genes.

Note that the full indel boundary accuracy results have also been

omitted, as they include several numerical values for every indel of

every simulated alignment and were therefore too space-consuming.

They can of course be regenerated using the simulation scripts and

the random seeds contained in this archive.

Found at: doi:10.1371/journal.pone.0011147.s004 (7.73 MB

TAR)

File S3 Accuracy results for inversion and nucleotide substitution

simulations. Evolution was simulated along a fixed 9-taxon tree

encoded as a newick string in the file simujobparams.pm. Indel

rates were fixed to a low value so that the most distant taxa would

have indels similar to E. coli and Salmonella. Inversion events were

simulated with rates giving 0 to about 1400 events along the path

connecting the most distant taxa in the fixed tree. In conjunction,

nucleotide substitution events were also simulated, ranging from 0

up to about 0.9 substitutions per site among the most distant taxa.

For each simulation, the true alignment is recorded along with the

set of evolved sequences. Aligners are then run to reconstruct the

true alignment. The program scoreAlignment2 is used to calculate

various accuracy metrics on the reconstructed alignments. These

accuracy metrics include sensitivity and positive predictive value

when for aligning homologous nucleotides, along with similar

metrics for identifying indels. The scoreAlignment2 program also

generates an indel boundary report, although it in not included in

this archive due to size constraints. The indel boundary report

records, for every indel in the true alignment, how close the

boundaries of the predicted indel were in the alignment calculated

by an aligner. The report contains the size of the true and

predicted indels, so that one can generate summaries of indel
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accuracy stratified by size. The average distance between a true

rearrangement breakpoint and a predicted rearrangement break-

point is also reported by scoreAlignment2. Note: this archive must

be decompressed with 7-zip first and then tar. This archive

contains results of accuracy evaluations on each aligner program.

The simulated alignments themselves are not contained in the

archive, as they would be far too space-consuming. Instead, each

subdirectory contains the summary of the accuracy tests, along

with all simulated evolution parameters used, and importantly, the

random seed used for simulation so that the each alignment

dataset can be reconstructed. To reconstruct the original

alignments, one must also obtain a few freely-available programs

and scripts, as described on http://asap.ahabs.wisc.edu/mauve-

aligner/mauve-developer-guide/evaluating-alignment-quality-and-

stress-testing-the-aligner.html. Subdirectories are named first

according to the aligner tested, e.g., mauve = = mauveAligner,

promauve = = progressiveMauve, mavid = = Mavid 2.0, mla-

gan = = MLAGAN 2.0, tba = = TBA 2006-02-28. The remaining

portion of each subdirectory name indicates the type of experiment

performed. ntsub_indel is for collinear genomes simulated with

increasing rates of substitution and indels. ntsub_inv is for genomes

simulated with increasing rates of inversion rearrangements and

nucleotide substitution. geneflux is for genomes simulated with

increasing rates of small- and large-scale gain and loss (flux) of genes.

Note that the full indel boundary accuracy results have also been

omitted, as they include several numerical values for every indel of

every simulated alignment and were therefore too space-consuming.

They can of course be regenerated using the simulation scripts and

the random seeds contained in this archive.

Found at: doi:10.1371/journal.pone.0011147.s005 (9.16 MB

TAR)
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