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Abstract

Chitosan is a cationic polymer of natural origin and has been widely explored as a pharmaceutical excipient for a broad
range of biomedical applications. While generally considered safe and biocompatible, chitosan has the ability to induce
inflammatory reactions, which varies with the physical and chemical properties. We hypothesized that the previously
reported zwitterionic chitosan (ZWC) derivative had relatively low pro-inflammatory potential because of the aqueous
solubility and reduced amine content. To test this, we compared various chitosans with different aqueous solubilities or
primary amine contents with respect to the intraperitoneal (IP) biocompatibility and the propensity to induce pro-
inflammatory cytokine production from macrophages. ZWC was relatively well tolerated in ICR mice after IP administration
and had no pro-inflammatory effect on naı̈ve macrophages. Comparison with other chitosans indicates that these
properties are mainly due to the aqueous solubility at neutral pH and relatively low molecular weight of ZWC. Interestingly,
ZWC had a unique ability to suppress cytokine/chemokine production in macrophages challenged with lipopolysaccharide
(LPS). This effect is likely due to the strong affinity of ZWC to LPS, which inactivates the pro-inflammatory function of LPS,
and appears to be related to the reduced amine content. Our finding warrants further investigation of ZWC as a functional
biomaterial.
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Introduction

Chitosan is a linear copolymer of D-glucosamine (2-amino-2-

deoxy-D-glucose) and N-acetyl-D-glucosamine (2-acetamido-2-

deoxy-D-glucose), obtained by partial (usually.80%) deacetyla-

tion of chitin, the main component of exoskeletons of insects and

crustaceans [1]. Chitosan has low oral toxicity (oral LD50:

.10,000 mg/kg in mouse and .1500 mg/kg in rats [2,3]) and

has been used in dietary supplements. It is also known to be safe

for topical use and as an ingredient of medical devices or cosmetics

[2,4,5]. Therefore, chitosan is considered a safe and biocompatible

material, and has been widely explored as a pharmaceutical

excipient for a variety of applications such as wound healing [6,7],

surgical adhesives [8,9], mucoadhesive oral drug/gene delivery

[10,11], gene delivery [12,13], and tissue engineering [2,14–16].

With a pKa of ,6.5, chitosan is insoluble in water at neutral

pH, where the majority of amines are deprotonated, but it is

positively charged and water-soluble at acidic pH [11]. The

limited solubility of chitosan in neutral pH provides a unique

opportunity to form nanoparticulate drug/gene delivery platforms

[11], but it is also an obstacle if one intends to apply chitosan as a

solution in the physiological condition [13]. To improve chitosan

solubility in a broader range of pH, the amine groups of chitosan

are partially quaternized [13] or conjugated with a sugar moiety

[17]. Glycol chitosan, a chitosan derivative with 2-hydroxyethy-

lether groups in the 6-O position, is also used when aqueous

solubility of chitosan at neutral pH is desired [18–21]. We have

recently reported that chitosan partially amidated with succinic

anhydride has a unique pH-dependent charge profile, with

isoelectric points (pI) tunable from pH 5 to 7 [22]. The chitosan

derivative, which we call zwitterionic chitosan (ZWC), is soluble in

water at pH’s below and above the pI according to the change of

its net charge.

Due to the unique pH dependence and aqueous solubility, we

propose to use ZWC for parenteral applications, specifically as a

component of nanoparticulate drug delivery systems. For nano-

particles or the components to be compatible with parenteral

applications, they should not activate immune cells in the

bloodstream (monocytes, platelets, leukocytes, and dendritic cells)

and in tissues (resident phagocytes), which would cause premature

removal of the nanoparticles and/or elicit inflammatory responses

[23]. There are split opinions about biocompatibility of chitosan.

Some studies indicate that chitosan has various biological activities

that can adversely influence its parenteral applications. Chitosan is

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e30899



shown to cause hemostatic effect and complement activation

[2,24–26]. Studies also show that chitosan is an inducer of pro-

inflammatory cytokines or chemokines [2,16,27–32]. Intraperito-

neal (IP) administration of chitosan induces a large number of

macrophages with hyperplasia in the mesenterium of mice [33]

and causes severe peritoneal adhesions in rabbits [27]. On the

other hand, others do not observe pro-inflammatory activities of

chitosans [34–36]. Some studies with chitosan derivatives and

chitosan oligosaccharides even find that the chitosans have a

protective effect on various cells and prevent cytokine induction

[37–41]. These studies suggest that the biocompatibility of

chitosans may not be generally assumed but varies with the

physical and chemical properties of chitosans.

In our previous study, ZWC showed excellent compatibility

with blood components and was well tolerated upon IP injection

[22]. Compared to its precursor, low molecular weight chitosan

(LMCS), the ZWC showed lower potential to cause hemolysis,

complement activation, and inflammatory responses [22]. To

understand what makes ZWC relatively more compatible with IP

application, here we compare ZWC with other chitosans having

different aqueous solubilities, primary amine contents, or molec-

ular weights (summarized in Table S1), with respect to the tissue

reactions to IP-administered chitosans and the propensity to

induce pro-inflammatory cytokine production from macrophages.

We report that ZWC is not only distinguished from the other

chitosans in IP biocompatibility but also possesses a unique ability

to suppress pro-inflammatory responses of activated macrophages.

These properties are attributable to good aqueous solubility,

relatively low molecular weight, and reduced amine content of

ZWC.

Materials and Methods

Materials
Mouse peritoneal macropahge cell lines were purchased from

ATCC (CRL-2457). All media and their components were

purchased from Invitrogen (Carlsbad, CA). All other reagents

were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Chitosan glutamate (Protasan UP G113; MW: 200 kDa; degree of

deacetylation: 75–90%) was purchased from Novamatrix (Nor-

way), low-molecular-weight chitosan (LMCS; MW: 15 kDa;

degree of deacetylation: 87%) from Polysciences, and glycol

chitosan (MW: 82 kDa; degree of deacetylation: 83%) from Wako

USA (Richmond, VA).

Synthesis of ZWC and other chitosans
ZWC was synthesized as previously described [22]. Briefly,

LMCS was first dissolved in 1% acetic acid to obtain an acetate

salt form. LMCS acetate 200 mg was dissolved in 30 mL of

deionized water. Succinic anhydride was added as solid to the

LMCS solution under vigorous stirring varying the quantities

according to the desired molar feed ratio of anhydride to amine

(An/Am ratio). The pH of the reaction mixture was maintained at

6–6.5 and subsequently increased to 8–9 with 1 N NaHCO3. After

an overnight reaction at room temperature under stirring, the

reaction mixture was dialyzed against water (molecular weight

cutoff: 3500) maintaining the pH at 8–9 with 1 N NaOH. The

purified ZWC was freeze-dried and stored at 220uC. Unless

specified otherwise, ZWC prepared with An/Am ratio of 0.7 was

used in most experiments.

Ethics statement
Animals were cared for in compliance with a protocol

specifically approved for this study by the Purdue Animal Care

and Usage Committee (Approval number: 09-093-11), in

conformity with the NIH guidelines for the care and use of

laboratory animals.

In vivo biocompatibility
Chitosan glutamate, glycol chitosan, and ZWC were tested for

tissue responses following IP administration (800 mg/kg). Chit-

osan and buffer controls (phosphate buffered saline (PBS), pH 7.4,

or glutamate buffer, pH 5) were sterilized by aseptic filtration.

Chitosan solutions (20 mg/mL) were prepared by dissolving

chitosan glutamate in water or glycol chitosan and ZWC in

PBS. ICR mice (25 g) (Harlan, Indianapolis, IN) were anesthetized

with subcutaneous injection of ketamine 50 mg/kg and xylazine

10 mg/kg. A 0.5 cm skin incision was made in the skin 0.5 cm

above the costal margin, and the peritoneum was nicked with a

24-gauge catheter. One milliliter of 20 mg/mL chitosan solutions

or control buffers were injected into the peritoneal cavity through

the catheter, and the skin was closed with suture. Animals were

sacrificed after 7 days to evaluate the presence of residues, tissue

adhesions, and visible signs of inflammation (nodules, increased

vascularization) in the peritoneal cavity. Liver and spleen were

sampled for histology, and the peritoneal fluid was sampled on a

slide for cytological analysis. After fixation in 10% formalin, the

sectioned organ samples and peritoneal fluid cells were stained

with hematoxylin and eosin (H&E).

Cell proliferation assay
Mouse peritoneal macrophages were maintained in Dulbecco’s

Modified Eagle Medium (DMEM) supplemented with 5% fetal

bovine serum and 5 mM HEPES. Cells were seeded in 24 well

plates at a density of 50,000 cells per well in 1 mL culture medium.

After overnight incubation, chitosan solutions (2 or 20 mg/mL)

were added to make a final concentration of the medium 0.2 or

2 mg/mL. PBS and lipopolysaccharide (LPS) (1 mg/mL) were

added in control groups. MTT assay was performed after 24 hours

of incubation to determine the effects of chitosans on macrophage

proliferation.

Cytokine release from peritoneal macrophages
Peritoneal macrophages were seeded in 24-well plates at a

density of 150,000 cells per well in 1 mL of medium. After

overnight incubation, 100 mL of the chitosan solution was added

to each well to bring the final chitosan concentration in medium to

2 mg/mL. In control groups, 100 mL of PBS or glutamate buffer

(pH 5) was added in lieu of chitosan solutions. After 24 hour

incubation, the culture media were centrifuged at 2000 rpm for

10 min to separate supernatants. The concentrations of interleukin

(IL)-1b, IL-6, tumor necrosis factor (TNF)-a, and macrophage

inflammatory protein (MIP)-2 in the supernatant were determined

using a Milliplex Multi-Analyte Profiling (MAP) cytokine/

chemokine panel (Millipore, Billerica, MA). In another set of

experiments, macrophages were first challenged by adding LPS to

the media in the final concentration of 1 mg/mL shortly before the

chitosans or buffer controls. For selected samples, enzyme-linked

immunosorbent assay (ELISA) was performed to determine the

MIP-2 levels using an MIP-2 ELISA kit (R&D systems,

Minneapolis, MN). The detection range of MAP panel was 0–

10,000 pg/mL for all analytes. For MIP-2 ELISA, standard curves

were prepared in the range of 0–667 pg/mL. In both assays, the

supernatant collected from LPS-challenged macrophages was

always diluted 10 times prior to the analysis.

To investigate the time course of the ZWC effect on cytokine

production, ZWC or LMCS was added in the final concentration

of 2 mg/mL at 0, 2, 4, or 8 hours after the LPS addition. After
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incubating with chitosans for 24 hours, the culture media were

collected and diluted 10 times, and the MIP-2 levels were

determined using ELISA. For comparison, another set of

macrophages was challenged with LPS and incubated for 0, 2,

4, 8, or 24 hours, and the media were sampled without any

treatment or further incubation.

To investigate the effect of ZWC on LPS, LPS was

preincubated with ZWC before it was added to the cells. Briefly,

10 mg of LPS was mixed with 20 mg of ZWC in 1 mL of 0.9%

NaCl and incubated at room temperature for 1 hour. The ratio of

LPS to ZWC (10 mg per 20 mg) was consistent with the ratio used

in prior experiments (1 mg per 2 mg). ZWC was then precipitated

by decreasing the solution pH to 4.8 with 0.1–1 M HCl and

removed by 15-min centrifugation at 10,000 rpm. Assuming that

the LPS was present in the supernatant, a volume equivalent to

1 mg of LPS was sampled and added to 1 mL of peritoneal

macrophage culture. After overnight incubation, MIP-2 levels in

the culture media were determined using ELISA.

Endotoxin analysis
The amount of endotoxin present in each chitosan was

determined by the kinetic turbidometric Limulus Amebocyte

Lysate (LAL) assay at Associates of Cape Cod Inc. (East Falmouth,

MA). Chitosan samples were initially prepared as 1 mg/mL

(ZWC, LMCS) or 10 mg/mL (chitosan glutamate, glycol chitosan)

solutions in LAL reagent water (LRW) and then serially diluted

from 1:20 to 1:8000 to find the minimum concentration that did

not interfere with analysis. E. coli O113:H10 was used as a control

standard endotoxin and serially diluted from 0.32 to 0.002 EU/

mL to construct a calibration curve. Positive product controls were

prepared in parallel by fortifying the diluted samples with

additional endotoxin equivalent to 0.008 EU/mL. LRW was

tested as a negative control and found to contain less than the

lowest concentration of the calibration curve (0.002 EU/mL).

PyrotellH-T LAL lysate was reconstituted with Glucashield buffer,

a b-glucan inhibiting buffer, and mixed with samples or controls in

a 1:1 ratio in a depyrogenated microplate. The absorbance of each

well was monitored over time. The time required for the

absorbance to increase significantly over background was defined

as the onset time. The correlation coefficient for the regression of

log of onset time vs. log of endotoxin concentration was $0.98. All

samples were tested in duplicate. The results were reported as the

amount of endotoxin present in each chitosan (EU/g).

Statistical analysis
All data were expressed as mean 6 standard deviation. One-

way ANOVA was used to determine difference among the groups.

Multiple comparisons between treatments were performed with

Bonferroni’s test, and pair-wise comparison of each treatment with

the control group was performed with Dunnett’s test A value of

p,0.05 was considered statistically significant.

Results

Chitosan properties
All chitosans showed pH-dependence in aqueous solubilities

(data not shown) and corresponding charge profiles (Fig. 1).

Solutions of chitosan glutamate and LMCS (10 mg/mL) became

turbid at pH above 6.5 reaching the maximum turbidity at pH 8,

where they had neutral charges. On the other hand, ZWC

(10 mg/mL) formed clear solutions at both acidic and basic pHs,

indicating aqueous solubility, except at the pI value. The pI value

of ZWC decreased with the increase of the An/Am ratio (Fig. 1),

consistent with our previous report [22]. Glycol chitosan was

similar to chitosan glutamate and LMCS in that it showed neutral

charges around pH 8, but the solution (10 mg/mL) was not

turbid, which indicated the aqueous solubility of glycol chitosan.

Gross tissue responses to intraperitoneally administered
chitosans

ICR mice received IP injection of chitosan glutamate, glycol

chitosan, and ZWC (800 mg/kg). The animals were sacrificed

after 7 days, which was found to be an optimal time point for the

evaluation of inflammatory tissue responses [42]. During the

observation period, the animals did not show any signs of distress

and body weight change, similar to those treated with buffer

controls. Upon necropsy, the organs of animals treated with ZWC

or glycol chitosan were grossly normal. No material was found in

the peritoneal cavity of the mouse injected with glycol chitosan or

ZWC. On the other hand, white chitosan precipitates were seen in

all mice injected with chitosan glutamate due to the near-neutral

pH of the peritoneal fluid [43] (Fig. 2A). The white precipitates

were usually present on the liver and spleen (Fig. 2B). In 3 out of 4

cases, lobes of the liver were connected via the residual materials

(Fig. 2C).

Histological and cytological evaluation
Biomaterials delivered to peritoneal cavity often cause inflam-

matory responses followed by adhesion formation between in

peritoneal tissues and abdominal walls [44]. Once entering

systemic circulation, they can also cause abnormalities in filtering

organs [44]. To estimate the destination and effect of IP chitosan,

peritoneal fluid and organs as well as abdominal wall were

microscopically examined. Incidence of lesions in peritoneal tissues

is summarized in Table 1. In mice injected with PBS, glutamate

buffer, and ZWC, no significant microscopic differences were seen

in the liver (Fig. 3A, 3B, or 3C), spleen, and abdominal wall.

One mouse treated with glycol chitosan had mild inflammation of

the body wall, but liver (Fig. 3D) and spleen were normal.

Peritoneal tissues from other mice in this group were unremark-

able. In contrast, mice treated with chitosan glutamate had

noticeable chitosan precipitates on the liver, spleen and abdominal

wall, which were surrounded by macrophages and neutrophils

(Fig. 3E and 3F). Capsular surface of the liver adjacent to

Figure 1. pH-dependent zeta-potential profiles of unmodified
low molecular weight chitosan (LMCS) (data from the previous
study [22]) and zwitterionic chitosan (ZWC) derivatives pre-
pared with different anhydride to amine (An/Am) ratios,
chitosan glutamate (C-Gt), and glycol chitosan (Gly-C). Data
are expressed as averages with standard deviations of 3 repeated
measurements.
doi:10.1371/journal.pone.0030899.g001
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precipitates of chitosan was thickened and mildly fibrotic (Fig. 3E

and 3F). No abnormality was observed in peritoneal fluid of the

animals injected with PBS, glutamate buffer, or ZWC (Fig. 4A,
4B, and 4C). However, chitosan precipitates were detected in

peritoneal macrophages in mice treated with glycol chitosan

(Fig. 4D) or chitosan glutamate (Fig. 4E). Chitosan glutamate

was also observed as extracellular residues, surrounded by large

activated macrophages (Fig. 4E). No chitosan precipitates were

observed in those injected with ZWC (Fig. 4C).

Chitosan effect on macrophage proliferation
In an attempt to understand the difference in IP responses to

chitosan glutamate, glycol chitosan, and ZWC, in vitro prolifer-

ation of peritoneal macrophages was evaluated in the presence of

the three chitosans. Peritoneal macrophages were chosen because

they are prevalent in the peritoneal cavity and likely to be an

important player in inflammatory responses to IP injected

chitosans. For all chitosans, 0.2 mg/mL of chitosan treatment

did not negatively influence the macrophage proliferation (Fig. 5).

At 2 mg/mL, there was a moderate reduction in macrophage

proliferation with chitosan glutamate (p,0.01 vs. PBS). Gluta-

mate buffer (pH 5) added in an equivalent volume showed a

similar level of decrease in cell proliferation, indicating that this

reduction might be partly due to the acidity of the medium.

Neither glycol chitosan nor ZWC significantly reduced the

macrophage proliferation at 2 mg/mL.

Cytokine induction by chitosans
To investigate whether each chitosan had an intrinsic ability to

activate peritoneal macrophages, naı̈ve (non-challenged) peritone-

al macrophages were incubated with different chitosans (2 mg/

mL), and the medium was analyzed to determine the concentra-

tions of pro-inflammatory cytokines (IL-1b, TNF-a, IL-6 and

MIP-2). In this experiment, LMCS, the parent material for ZWC,

was also tested. Naı̈ve macrophages treated with PBS produced

3767 pg/mL of MIP-2, 6765 pg/mL of TNF-a, and 863 pg/

mL of IL-6, which were considered basal levels of cytokines. There

was no additional cytokine release in those treated with glutamate

buffer, glycol chitosan, LMCS, and ZWC. There was no

difference between LMCS and ZWC-treated groups. On the

other hand, chitosan glutamate treatment resulted in significant

increases in the levels of MIP-2 (p,0.001), TNF-a (p,0.05), and

IL-6 (p,0.01), as compared with PBS-treatment (Fig. 6A).

To investigate how each chitosan influenced the cytokine

production in activated macrophages, the cells were first

challenged with LPS, a potent inducer of cytokine release [45],

prior to the addition of chitosans (2 mg/mL). LPS-challenged,

then PBS-treated macrophages produced 23416564 pg/mL of

MIP-2, 106618 pg/mL of TNF-a, and 13466535 pg/mL of IL-

6 (Fig. 6B). Glutamate buffer caused increase in MIP-2

production, whereas chitosan glutamate did not have any

influence. LMCS treatment increased production of all three

cytokines from the LPS-challenged macrophages. Interestingly,

Figure 2. Chitosan precipitates (arrows) in the peritoneal cavity. Mice injected with chitosan glutamate intraperitoneally were examined 7
days after injection. (A) Chitosan precipitates found between the liver and the stomach. (B) Chitosan precipitates stuck on the spleen (top) and the
liver (bottom). (C) Lobes of the liver were connected via chitosan residue.
doi:10.1371/journal.pone.0030899.g002

Table 1. Incidence of lesions in tissues after intraperitoneal injection of chitosans and buffers.

PBS Glutamate buffer ZWC (An/Am = 0.7) Glycol chitosan Chitosan glutamate

Liver, capsule inflammation 0/2a 0/3 0/5 0/4 4/4

Liver, capsular chitosan precipitates 0/2 0/3 0/5 0/4 4/4

Spleen, capsule inflammation 0/2 0/3 0/5 0/4 3/4

Spleen, capsular chitosan precipitates 0/2 0/3 0/5 0/4 3/4

Body wall, inflammation 0/2 0/3 0/5 1/4 3/4

Body wall, chitosan precipitates 0/2 0/3 0/5 0/4 0/4

Peritoneal fluid, inflammation 0/2 0/4 0/5 3/3 4/4

Peritoneal fluid, chitosan precipitates 0/2 0/4 0/5 3/3 4/4

aIncidence of occurrence: Number of mice with lesion/total number of mice examined.
doi:10.1371/journal.pone.0030899.t001
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ZWC caused a marked decrease in the LPS-induced production

of MIP-2 (p,0.01) and TNF-a (p,0.01) as compared with PBS.

Glycol chitosan also decreased the production of MIP-2 as

compared to PBS. Chitosan treatment did not cause any change

in IL-1b levels in either naı̈ve or LPS-challenged macrophages

(data not shown).

MIP-2 induction by chitosans with different number of
amine groups

The effects of chitosans on MIP-2 release from naı̈ve or LPS-

challenged macrophages were monitored varying the amine

content in the chitosan. We compared LMCS and ZWC with

different An/Am ratios (0.3 or 0.7), all at 2 mg/mL, with respect

to the ability to induce macrophages to produce MIP-2, the most

sensitive response in the prior experiment. From naı̈ve macro-

phages, LMCS induced a higher level of MIP-2 than PBS

(p,0.01), but no significant change was observed after ZWC

treatment (Fig. 7A). In LPS-challenged macrophages, LMCS

significantly increased the MIP-2 level (p,0.001). In contrast, the

two ZWC’s suppressed MIP-2 production from the LPS-

challenged macrophages (p,0.001 for An/Am: 0.7, p,0.05 for

An/Am 0.3 vs PBS) (Fig. 7B). ZWC (An/Am: 0.7) decreased the

Figure 4. Cytology of the peritoneal fluid from different treatment groups using hematoxylin and eosin staining. (A) PBS; (B)
Glutamate buffer; (C) ZWC. (A-C) Peritoneal fluid composed of small macrophages (box) and lymphocytes (arrows). No chitosan precipitates were
identified. (D) Glycol chitosan: peritoneal fluid is composed of large macrophages (box) containing chitosan. (E) Chitosan glutamate: peritoneal fluid
composed of large macrophages with intracellular eosinophilic chitosan. Extracellular chitosan (Ch) is surrounded by numerous macrophages. All
images are of 4006magnification.
doi:10.1371/journal.pone.0030899.g004

Figure 3. Hematoxylin and eosin staining of liver sections of different treatment groups. (A) PBS (100x); (B) Glutamate buffer (100x); (C)
ZWC (100x); (D) Glycol chitosan (100x). (A-D) Normal capsular surface (box). (E) Chitosan glutamate (100x): capsular surface of liver markedly
thickened with precipitates of chitosan, which are surrounded by chronic inflammation and mild fibrosis (box). (F) Chitosan glutamate (400x):
precipitates of chitosan on the liver surface surrounded by macrophages, fibroblasts, and neutrophils.
doi:10.1371/journal.pone.0030899.g003
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LPS-induced MIP-2 production to a greater extent than ZWC

(An/Am: 0.3).

Of note, MIP-2 levels measured by ELISA were not identical to

the values determined with the MAP panel, most likely due to the

difference between the two assay methods in the sensitive detection

ranges. However, results of the two assays were consistent in that

MIP-2 levels from LPS-challenged macrophages were at least two

orders of magnitude higher than those of naı̈ve macrophages and

that the MIP-2 production from the LPS-challenged macrophages

was significantly reduced by the ZWC treatment.

Onset of ZWC effect on LPS-induced MIP-2 production
To confirm the ability of ZWC to prevent LPS-induced

cytokine production and examine the onset of the action,

macrophages were first challenged with LPS for 0, 2, 4, or

8 hours. Subsequently, ZWC or LMCS were added to the

challenged macrophages, followed by additional 24 hour incuba-

tion. In ZWC-treated macrophages, the MIP-2 levels in the

culture media were comparable to those sampled prior to ZWC

treatment (Fig. 8). This result shows that cytokine production was

completely blocked from the time ZWC was added to the medium,

and proliferating cells did not further produce cytokines. In

contrast, LMCS-treated macrophages continued to produce MIP-

2, resulting in the same level as those grown for 24 hours without

any other treatment after LPS challenge.

LPS inactivation by ZWC
To investigate how ZWC prevented the MIP-2 production from

the LPS-challenged macrophages, LPS was incubated with ZWC

for 1 hour before it was given to the macrophages. ZWC was

removed by precipitation at pH 4.8 (,pI of ZWC) at the end of

the 1-h incubation so that the direct effect of ZWC on the cells

could be excluded. Fig. 9 shows that the LPS-induced MIP-2

production was reduced when ZWC coexisted in the culture,

consistent with prior experiments. The LPS pre-treated with ZWC

also lowered the MIP-2 production to a comparable level. This

result suggests that the reduction in MIP-2 production was due to

the inactivation of LPS by ZWC rather than a direct effect of

ZWC on the LPS-challenged cells. A similar trend was observed

with LPS pre-incubated at a higher ratio of LPS to ZWC (30 mg

LPS per 20 mg ZWC). Further increase of LPS (40 mg LPS per

20 mg ZWC) resulted in a significant production of MIP-2 (data

not shown), indicating that there was an upper limit of LPS that a

fixed amount of ZWC could inactivate.

Endotoxin content in chitosans
We hypothesized that ZWC inactivated LPS by high-affinity

interaction. To test this possibility, we determined the endotoxin

levels in all chitosans used in this study (Table 2). The levels were

comparable among chitosan glutamate, glycol chitosan, and

LMCS. However, endotoxin levels in ZWC were one or two

orders of magnitude higher than those of other chitosans. ZWC

with An/Am ratio 0.7 had highest endotoxin concentration. This

result suggests the relatively high affinity of ZWC to LPS.

Discussion

We previously reported that a new chitosan derivative ZWC

had excellent biocompatibility, comparing favorably with the

precursor chitosan (LMCS) in hemocompatibility and with

chitosan glutamate in the IP tissue responses [22]. Biological

activity of chitosan is often attributed to the positive charges

carried by the amine groups, which can electrostatically interact

with cell membranes or circulating plasma proteins and lead to

platelet adhesion/activation and thrombus formation [2,24,25].

Due to the ability to interact with serum proteins, chitosans

activate macrophages and induce cytokine production [2].

Chitosan derivatives with reduced positive charge densities

cause much lower platelet adhesion and aggregation than

original chitosan [46]. Aqueous solubility of chitosan in

physiological pH is also expected to play a role in biological

responses, because chitosan precipitates can be subjected to

phagocytic uptake and further stimulate macrophages. There-

fore, we hypothesized that the good hemocompatibility of ZWC

and the lack of pro-inflammatory effect might be related to the

reduced amine contents of ZWC and/or the aqueous solubility

at neutral pH.

To test this, we have first extended the evaluation of IP

biocompatibility to a greater variety of chitosans, which include

ZWC, glycol chitosan, and chitosan glutamate. ZWC and glycol

chitosan are water-soluble in physiological pH, whereas chitosan

glutamate precipitates at pH .6.5. Glycol chitosan and chitosan

glutamate are comparable in the degree of deacetylation (i.e.,

amine content), whereas ZWC has less amines due to partial

amidation with acid anhydride. The peritoneal cavity was used as

a location to test biocompatibility of these chitosans, because of its

well-known sensitivity to foreign insults, which results from the

peritoneal defense mechanisms [47,48]. We observed the most

inflammatory responses associated with chitosan glutamate,

although they were not as severe as in our previous experience

with a rabbit model [27]. The peritoneal fluid cytology of this

group showed eosinophilic chitosan debris surrounded by

macrophages. These results were consistent with a previous study,

where many macrophages with hyperplasia were observed in the

mesenterium after IP injection of chitosan [33]. The animals

treated with the water-soluble ZWC and glycol chitosan showed

relatively low incidence of tissue lesions. Considering the difference

in aqueous solubility of these chitosans, the inflammatory response

caused by chitosan glutamate is likely to be primarily due to its low

aqueous solubility in neutral pH, which results in precipitation of

chitosan in the peritoneal cavity. Macrophages react directly to the

Figure 5. Viability of mouse peritoneal macrophages in the
presence of ZWC (An/Am ratio = 0.7), chitosan glutamate (C-Gt)
and glycol chitosan (Gly-C). Data are expressed as averages with
standard deviations of three repeated measurements. *: p,0.05;
**: p,0.01 vs PBS.
doi:10.1371/journal.pone.0030899.g005
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precipitated materials and elicit inflammatory reactions, ultimately

helping in degradation of the materials [49].

Chitosans have been shown to induce production of pro-

inflammatory cytokines or chemokines from macrophages

[27,29,31,33,50]. To examine if ZWC and glycol chitosan were

intrinsically less bioactive than other chitosans, we then

monitored the secretion of IL-1b, IL-6, TNF-a, and MIP-2

(murine functional homologue of IL-8 [51]) from peritoneal

macrophages after treating with different chitosans. These

cytokines or chemokines are responsible for both local and

systemic inflammatory responses [49] and have been used in

evaluating the safety of other chitosan based formulations

[27,30,31,49,52]. Production of MIP-2, IL-6, and TNF-a in

naı̈ve macrophages was increased by treatment with chitosan

glutamate but not with glycol chitosan, ZWC, or LMCS (Fig. 6A).

Chitosan glutamate is not particularly more cytotoxic than

others; therefore, the difference is unlikely due to the chemotactic

effect of dead cells. A potential explanation is the high molecular

weight of chitosan glutamate. Previous studies show that a

relatively high molecular weight chitosan induces higher cytokine

release from human keratinocytes [53]. Similarly, the relatively

high molecular weight of chitosan glutamate (200 kDa), as

compared to glycol chitosan (82 kDa), ZWC (15 kDa), and

LMCS (15 kDa), may account for the relatively high pro-

inflammatory effect of chitosan glutamate both in vivo and in

vitro. The effect of the primary amine content on the intrinsic pro-

inflammatory potential of chitosan is not readily apparent from

the MAP panel assay given the lack of difference between ZWC

and LMCS (Fig. 6A). ELISA detects a correlation between MIP-2

production and the amine content (LMCS.ZWC (An/

Am = 0.3).ZWC (An/Am = 0.7)), but the levels of MIP-2 are

close to the basal level in all cases (Fig. 7A). According to these

results, ZWC and glycol chitosan have relatively low potential to

cause inflammatory reactions in the peritoneal cavity by

themselves, and this property can be explained by their aqueous

solubility and relatively low molecular weights.

Figure 6. Effect of chitosan treatment (all in 2 mg/mL) on the levels of proinflammatory cytokines released from (A) naı̈ve mouse
peritoneal macrophages and (B) LPS-challenged macrophages. Cytokine levels are determined by Milliplex Multi-Analyte Profiling cytokine/
chemokine panel. Media of the LPS-challenged macrophages were 10 times diluted prior to analysis. Graphs on the right are displayed in narrow y-
scales. ZWC (An/Am = 0.7); C-Gt: chitosan glutamate; Gly-C: glycol chitosan. Data are expressed as averages with standard deviations of three
repeated measurements. *: p,0.05; **: p,0.01; ***: p,0.001 vs PBS.
doi:10.1371/journal.pone.0030899.g006
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Additionally, we consider another scenario of parenteral

application, where chitosan is administered to tissues with lesions

that attract activated macrophages. Interestingly, only ZWC

suppressed the cytokine production from LPS-challenged macro-

phages significantly (Fig. 6B, Fig. 7B). Timed application of ZWC

revealed that MIP-2 production stopped as soon as ZWC was

applied (Fig. 8). There are at least two potential mechanisms by

which ZWC counteracts the LPS stimulation. First, ZWC may

bind the cell surface receptors and modify signaling pathways that

regulate cytokine production. Second, ZWC may tightly bind to

LPS and inactivate it. The fact that LPS pre-incubated with ZWC

lost the ability to induce MIP-2 (Fig. 9) supports the second

possibility. Moreover, ZWCs show much higher endotoxin content

than other chitosans, further supporting that ZWC has high

affinity to LPS. The mechanism of ZWC-LPS interaction is not yet

clear, but the ZWC–mediated inactivation of LPS appears to be

potent and irreversible, given that ZWC with such high endotoxin

content did not activate naı̈ve macrophages or induce inflamma-

tory responses in vivo. MIP-2 production from the LPS-challenged

macrophages decreased in the order of LMCS, ZWC (An/

Am = 0.3), and ZWC (An/Am = 0.7) (Fig. 7B), indicating that this

ability may be related to the amine content (inversely proportional

to the amidation degree, An/Am ratio) in chitosan.

While we find that the interaction of LPS with ZWC is

responsible for the reduced MIP-2 production from the LPS-

challenged macrophages, we do not rule out the possibility of

ZWC directly affecting the macrophages. Previous studies have

shown at the molecular level that chitosan oligosaccharides modify

the signaling mechanisms regulated by protein kinases and inhibit

LPS-induced cytokine production [38]. A similar effect was

observed with water-soluble chitosan or chitosan oligomers and

LPS-activated RAW macrophages [39,41].

The ability of ZWC to interact with LPS may be useful for a

variety of biomedical applications. Coming from the cell wall of

gram-negative bacteria, endotoxins are extremely potent stimula-

tors of mammalian immune system. Endotoxins are a common

cause of toxic reactions, and the level in parenteral products and

water is strictly limited by the regulatory authorities [54]. As a

scavenger of an endotoxin, ZWC may provide an efficient and

cost-effective way of removing endotoxicin from pharmaceutical

products.

In summary, ZWC showed excellent biocompatibility upon IP

administration and had no pro-inflammatory effect on naı̈ve

Figure 7. Effect of chitosan treatment (all in 2 mg/mL) on the
MIP-2 production from (A) naı̈ve mouse peritoneal macro-
phages and (B) LPS-challenged macrophages. MIP-2 level is
determined by ELISA. Media of the LPS-challenged macrophages were
10 times diluted prior to analysis. Data are expressed as averages with
standard deviations of three repeated measurements. **: p,0.01;
***: p,0.001.
doi:10.1371/journal.pone.0030899.g007

Figure 8. Effect of timed application of ZWC or LMCS (all in
2 mg/mL) on MIP-2 production in the LPS-challenged macro-
phages. Mouse peritoneal macrophages were incubated with LPS for
0, 2, 4, 8, or 24 hours, and the culture medium was sampled for
determination of the MIP-2 level (white bars). In another set,
macrophages were incubated with LPS for 0, 2, 4, or 8 hours with
LPS and then treated with ZWC or LMCS, and the media were sampled
after 24 hours (grey or black bars). Data are expressed as averages with
standard deviations of three repeated measurements.
doi:10.1371/journal.pone.0030899.g008
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macrophages. According to comparison with other chitosans,

these properties may be attributable to the aqueous solubility at

neutral pH and relatively low molecular weight of ZWC.

Moreover, ZWC had unique ability to suppress cytokine

production in LPS-challenged macrophages. The results suggest

that ZWC has a strong affinity to LPS and inactivates its pro-

inflammatory function. ZWC is a promising pharmaceutical

excipient for parenteral use and may be also useful as an

endotoxin scavenger.
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